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Background: This study aimed to systematically investigate gene signatures for
hepatoblastoma (HB) and identify potential biomarkers for its diagnosis and treatment.

Materials and Methods: GSE131329 and GSE81928 were obtained from the Gene
Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between
hepatoblastoma and normal samples were identified using the Limma package in R.
Then, the similarity of network traits between two sets of genes was analyzed by
weighted gene correlation network analysis (WGCNA). Cytoscape was used to visualize
and select hub genes. PPI network of hub genes was construed by Cytoscape. GO
enrichment and KEGG pathway analyses of hub genes were carried out using ClueGO.
The random forest classifier was constructed based on the hub genes using the
GSE131329 dataset as the training set, and its reliability was validated using the
GSE81928 dataset. The resulting core hub genes were combined with the InnateDB
database to identify the innate core genes.

Results: A total of 4244 DEGs in HB were identified. WGCNA identified four modules that
were significantly correlated with the disease status. A total of 114 hub genes were
obtained within the top 20 genes of each node rank. 6982 relation pairs and 3700 nodes
were contained in the PPI network of 114 hub genes. GO enrichment and KEGG pathway
analyses of hub genes were focused on MAPK, cell cycle, p53, and other crucial
pathways involved in HB. A random forest classifier was constructed using the 114 hub
genes as feature genes, resulting in a 95.5% true positive rate when classifying HB and
normal samples. A total of 35 core hub genes were obtained through the mean decrease
in accuracy and mean decrease Gini of the random forest model. The classification
efficiency of the random forest model was 81.4%. Finally, CDK1, TOP2A, ADRA1A,
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FANCI, XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3 were identified by cross-
comparison with the InnateDB database.

Conclusion: Our study established a random forest classifier that identified 10 core
genes in HB. These findings may be beneficial for the diagnosis, prediction, and targeted
therapy of HB.
Keywords: hepatoblastoma, gene expression omnibus, random forest classifier, nomogram, diagnosis
INTRODUCTION

Hepatoblastoma (HB) is the most common pediatric liver tumor,
affecting mainly children under 4 years of age (1). Although its
incidence has increased markedly over the last few decades, HB is
a rare pediatric malignancy with an annual incidence of 1.5 cases
per million (2). Complete surgical resection and chemotherapy
have contributed to improving the survival rate of up to 80% in
all diagnosed patients (3). However, the prognosis for patients
with clinically advanced HB remains relatively low. Furthermore,
surviving patients can suffer severe and lifelong side effects due to
chemotherapy and immunosuppression (4). Lacking of an
effective means of early diagnosis is the main reason
contributed to the relative worse prognosis for patients with
HB. At present, clinicians rely primarily on clinical symptoms,
imaging, and alpha-fetoprotein levels to diagnose the disease.
Among these methods, no novel biomarker had been showed
except the conventional AFP levels. However, the sensitivity and
specificity were not satisfied due to the various sources of AFP
from different patients.In the previous study of Liu et al, it
claimed there were 5 patients with a normal AFP level were
diagnosed as HB (5). Consequently, novel biomarkers must be
identified to develop efficient diagnostic methods and
therapeutic strategies for patients affected with HB.

Recent studies have demonstrated that some RNAs are
aberrantly expressed in HB thanks to the advancements in
gene chips and high-throughput sequencing. A recent study
reported by Liu et al. revealed that the increase of N6-
Methyladenosine modification is an oncogenic mechanism in
HB (6). Multiple studies have also shown that different genes,
including genes encoding for long non-coding RNAs, are
involved in the proliferation, apoptosis, and glutaminolysis of
HB, such as zinc finger antisense 1 (7), 3-hydroxy-3-
methylglutaryl-CoA synthase 1 (8), and TUG1 (9). Since the
analysis pipeline, experimental methods, and sample size of each
research are different, the conclusions have been controversial.
Thus, a further bioinformatics exploration of data published in
public databases could consolidate data and reveal novel
additional genes associated with HB.

In this study, we investigated two HB datasets obtained from
the Gene Expression Omnibus (GEO) database to identify
reliable differentially expressed genes (DEGs) in HB. Through
deep and comprehensive bioinformatics analysis, we identified
hub genes, which we used to construct a diagnosis classification
for HB. Moreover, we identified the core genes using our
classification and cross-comparing it with the congenital
2

immune-related genes present in the InnateDB database. The
identification of a list of core genes may provide new diagnostic,
prognostic, and potential therapeutic biomarkers for HB.
MATERIALS AND METHODS

Acquisition of Microarray Profiles
The flow chart for the study was showed in Figure 1. Microarrays
that met the following criteria were collected: (1) studies including
at least 20 samples and (2) examination expression of both
cancerous tissue and adjacent noncancerous tissue from HB
patients. Microarrays without useful data for analysis were
excluded. Finally, 2 independent microarrays data, GSE131329
and GSE81928 databases, were obtained from the GEO database
(http://www.ncbi.nlm.nih.gov/geo). The characteristics of the 2
datasets were presented in Table 1. Probes were converted into the
corresponding gene symbols according to the annotation
information in the dataset.

Since GSE131329 is chip data and GSE81928 is sequencing
data, we used different procedures to deal with 2 datasets. For the
GSE131329 dataset, platform annotation files were used to match
probes to the gene symbol. If multiple probes matched a single
gene, the median ranking value was used as the expression value.
Then, the disease and normal gene expression spectrum of
GSE131329 was constructed. For the GSE81928 dataset, we
excluded from the analysis genes whose expression value was 0
in 80% of the samples. We analyzed a total of 17920 genes from
the two data sets , which were then used for the
subsequent analyses.

Identification of Differentially Expressed
Genes (DEGs)
The Limma package in R was used to identify DEGs between HB
and non-tumor samples. The cutoff value was set to |Log2FC
(fold-change)| > 0.58 in both datasets to obtain more DEGS for
further analysis in accordance with protocols of previous studies
(11, 12). Because the experimental assay and platform of the 2
datasets were different, the P value was < 0.05 for GSE131329,
and was < 0.01 for GSE81928 to obtain more significant DEGs,
which was used the previous researches as reference (13, 14).

Weighted Gene Correlation Network
Analysis (WGCNA)
WGCNA is a systematic biological method used to describe gene
association patterns among different samples (15). It can be used
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to identify highly collaborative gene sets and to identify
candidate biomarker genes or therapeutic targets based on
gene set interconnection and the correlation between gene sets
and phenotypes. Using the GSE131329 dataset as reference, the
potential DEGs expression profile of HB was constructed. Then,
we identified the related modules of HB, and analyzed the
relationship between those modules and either HB or normal
samples, using the WGCNA package in R. The identified
network of HB modules was visualized using Cytoscape v.
3.8.0 (https://cytoscape.org/) to identify the hub genes in
each module.
Frontiers in Oncology | www.frontiersin.org 3
Protein-Protein Interaction (PPI) Network
Construction of Hub Genes
In order to analyze the role of 114 hub genes in the global human
biological network, we constructed a PPI network of modular
genes. We downloaded and integrated human interaction
protein data from the following database: HPRD release9
(http://www.hprd.org/), IntAct (http://www.ebi.ac.uk/intact/),
MINT (http://mint.bio.uniroma2.it/mint/Welcome.do),
BioGRID Release 3.4.132 (http://thebiogrid.org/), DIP (http://
dip.doe-mbi.ucla.edu/dip/Main.cgi), String (https://string-db.
org). We extracted 114 protein interaction pairs of hub genes
TABLE 1 | The characteristics of the 2 datasets in the study.

Datesets Country Researchers/
References

Experiment type Tumor site Sample size
(normal/tumor)

Platform

GSE131329 Japan Contributed by
Hiyama E, et al.

Expression profiling by array hepatoblastoma 67 (14/53) GPL6244 [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array

GSE81928 USA (10) Expression profiling by high
throughput sequencing

hepatoblastoma 26 (3/23) GPL16791 Illumina HiSeq 2500
FIGURE 1 | Flowchart showing the protocol of the study. DEGs, differentially expressed genes; WGCNA, Weighted gene correlation network analysis; PPI, protein-
protein interaction.
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from the integrated human interaction protein pairs. Even if
there was only one protein interacting with one of the 114
module genes, it would be extracted. The PPI network of these
114 modules was visualized by Cytoscape. In the network, 114
hub genes were marked with the color of their modules. Network
analyzer, a Cytoscape tool, was used to calculate network
topology properties.

Bioinformatic Analysis of Hub Genes
Gene ontology (GO) analysis was used to identify potential
biological processes, cellular components, and molecular
functions associated with DEGs. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) is a collection of databases for the
systematic analysis of gene functions that link genomic
information with higher-order functional information (16). GO
enrichment and KEGG pathway analysis of the top 20 DEGs in
HB were revealed using the ClueGO software. ClueGO software
is a Cytoscape App that extracts representative functional
biological information from a large list of genes or proteins
(17). P < 0.05 was regarded as the cut-off criterion with
statistic difference.

Construction and Validation
of the HB Classifier
Random forest is a classification method that uses multiple trees
to train and predict samples and is characterized by high
accuracy (18). Therefore, we constructed a random forest
model for HB, using GSE131329 as the training set, the top 20
genes in the module as the classification feature, and disease and
normal samples as the variables. Then, we validated the model
using the GSE81928 dataset as an independent validator. The
model feature files of training set (Supplementary Table 1) and
verification set (Supplementary Table 2) were shown in
the Supplementary.

Cross-Comparison of Biological Markers
of HB in InnateDB
InnateDB (http://www.innatedb.com) is a publicly available
database of genes, proteins, and experimentally verified
interacttions and signaling pathways involved in innate
immunity (19). We intersected hub genes related to immunity
in HB as revealed by our bioinformatics analysis with genes
present in the InnateDB database.
RESULTS

Identification of DEGs
In total, 4244 DEGs (2839 in GSE131329 and 1863 in GSE81928)
were identified between tumor and normal t issues
(Supplementary Table 3), of which in GSE131329, 1368 were
downregulated and 1471 were upregulated (Supplementary
Table 4), while in GSE81928, 28 were downregulated and 1835
were upregulated (Supplementary Table 5). There were 453
overlapping DEGs of 2 datasets. The Venn diagrams (Available
online: http://bioinformatics.psb.ugent.be/webtools/Venn/) was
Frontiers in Oncology | www.frontiersin.org 4
showed in Figure 2. The heat map and Volcano plot of the two
datasets were showed in Figures 3–D.

WGCNA
Using the GSE131329 dataset and the WGCNA package in R to
analyze the co-expression with default parameters, we
constructed the expression spectrum of the 4244 DEGs. We
obtained six different modules (indicated in blue, brown, green,
turquoise and yellow) (Figure 4). The blue, brown, green, and
turquoise modules were significantly correlated with HB and
normal samples (Figure 4). The blue and brown modules were
negatively correlated with HB disease, whereas the green and
turquoise modules were positively correlated with HB disease.
The modules contained 408 genes (blue), 188 genes (brown), 123
genes (green), and 666 genes (turquoise). Sample clustering is
shown in Figure 4. The red component represents HB samples,
while green represents the non-tumor samples.

Modules Network Construction and Hub
Genes Identification
The network of HB-related modules (blue, brown, green, and
turquoise modules) is shown in Figures 5A–D. Then, we
analyzed the network using Cytoscape, selecting the top 20
genes of each module as the HB hub genes (genes with the
same degree were taken out at the same time). Degree refers to
the number of connections between one point and other points
in the network. We identified a total of 114 hub genes
(Supplementary Table 6). The larger the point is, the greater
the degree of the representative node.

PPI Network Construction of Hub Genes
We constructed the PPI network of 114 hub genes. Finally, the
network was consisted of 6982 relation pairs and 3700 nodes
(Figure 6). For the topological properties of nodes, we arranged
them in descending order according to the interaction degrees,
and selected the top 20 genes to display, including RPS2,
PPP2R1A, CDK1, FBL, PLK1, TRIM28, CDK4, PRMT1,
SF3A2, ITCH, ANLN, USP15, CCNB1, EHMT2, CCNA2,
USP9X, HCFC1, KIF11, TOP2A, as shown in Table 2. These
genes play an important role in the global biological network.
FIGURE 2 | Total of 4,244 DEGs identified from 2 datasets (2839 in
GSE131329 and 1863 in GSE81928). DEGs, differentially expressed genes.
April 2021 | Volume 11 | Article 591507
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Bioinformatic Analysis of Hub Genes
We performed the GO enrichment and KEGG pathway analysis
of the top 20 genes using ClueGO. Of the 114 hub genes
identified, 21 were from the blue module, 24 from the brown
module, 46 from the green module, and 23 from the turquoise
Frontiers in Oncology | www.frontiersin.org 5
module. GO function enrichment results are shown in Figure 7.
Hub genes were enriched in multiple biological functions,
including regulation of DNA demethylation, nuclear
chromosome isolation, protein targeting to the peroxisomes,
negative regulation of stress-activated MAPK cascade, signal
A B

C D

FIGURE 3 | Heat map of differentially expressed genes (DEGs) and volcano plot of genes in the two datasets. Upregulated DEGs are shown in red; downregulated
DEGs are shown in green; non-DEGs are shown in black. (A, B) GSE131329 dataset; (C, D) GSE81928 dataset.
April 2021 | Volume 11 | Article 591507
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A B

C

FIGURE 4 | Gene modules identified by WGCNA. (A) Cluster dendrogram of the coexpression network modules; (B) Gene relation between hepatoblastoma and
normal samples; (C) Cluster tree of hepatoblastoma and normal samples.
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transduction by p53 class mediator resulting in cell cycle arrest,
toroid dehydrogenase activity with the CH-OH group acting as
donors and NAD or NADP as acceptors et al. (Supplementary
Table 7). The KEGG pathway analysis results showed that these
hub genes also participated in the P53 signaling pathway, cell
aging, cell cycle, meiotic maturation process of oocytes,
progesterone-mediated oocyte maturation, steroid biosynthesis,
Frontiers in Oncology | www.frontiersin.org 7
retinol metabolism, chemical carcinogenesis, and other
biological pathways (Figure 7) (Supplementary Table 8).

Construction and Validation of the HB
Classification Method
The random forest method can calculate the importance of a
single feature and screen the feature against the selected dataset.
A B

C D

FIGURE 5 | Gene symbols and gene interaction in the four modules, as determined by ClueGO. (A) Blue module; (B) Brown module; (C) Green module;
(D) Turquoise module.
April 2021 | Volume 11 | Article 591507
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Therefore, we used the 114 hub genes as the feature, HB and
normal as the variables, and the GSE131329 dataset as the
training set to construct the model. The receiving operator
curve (ROC) of the GES131329 training set is shown in
Figure 8. The area under the curve was 0.955. The mean
Frontiers in Oncology | www.frontiersin.org 8
decrease accuracy (MDA) of the random forest model was
positively correlated with the predictive variable, and the mean
decrease Gini (MDG) is positively correlated with the most
important variable (20). Therefore, 30 hub genes were
established using MDA and MDG (Figure 8). Furthermore, a
FIGURE 6 | The protein-protein interaction (PPI) network of the 114 hub genes.
TABLE 2 | Network topological characteristic of top 20 nodes in PPI network.

Gene label Degree Average
ShortestPath

Length

BetweennessCentrality ClosenessCentrality ClusteringCoefficient Stress TopologicalCoefficient

RPS2 Turquoise 304 2.796578 0.088088 0.35758 0.002084 35651276 0.011482
PPP2R1A Turquoise 285 2.733026 0.10859 0.365895 0.001112 32731778 0.008927
CDK1 Green 277 2.606464 0.086532 0.383662 0.007953 23033244 0.008038
FBL Turquoise 272 2.764259 0.083119 0.361761 0.003337 26783624 0.009266
PLK1 Turquoise 271 2.749593 0.087714 0.36369 0.002952 24705604 0.009257
TRIM28 Turquoise 251 2.847094 0.07047 0.351235 0.000829 35607200 0.02181
CDK4 Turquoise 215 2.763987 0.064648 0.361796 0.002478 17600494 0.009869
PRMT1 Turquoise 174 2.833786 0.051374 0.352885 0.003654 15009342 0.013589
SF3A2 Brown 156 2.933188 0.048426 0.340926 0 11812770 0.028122
ITCH Brown 155 2.893808 0.049782 0.345565 0.000922 10898838 0.016011
ANLN Green 149 2.937534 0.055011 0.340422 0.000998 7721342 0.020761
USP15 Brown 146 2.891092 0.04818 0.34589 0.001606 9324218 0.015811
CCNB1 Green 144 2.747691 0.02827 0.363942 0.019814 5878754 0.013833
EHMT2 Turquoise 132 2.939164 0.038808 0.340233 0 8115194 0.02823
CCNA2 Green 126 2.771863 0.026821 0.360768 0.01981 4666808 0.015196
USP9X Brown 125 2.898968 0.034266 0.34495 0.001419 9220858 0.020271
HCFC1 Brown 120 2.885117 0.032388 0.346606 0.003641 7730212 0.018792
KIF11 Green 118 2.847366 0.039087 0.351202 0.001883 5902744 0.013225
TOP2A Green 106 2.892178 0.020279 0.34576 0.004672 7719634 0.024587
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total of 35 core genes of HB were obtained by cross-comparison
with InnateDB database (Supplementary Table 9). The random
forest model was then validated using the independent
GSE81928 dataset, which was also contained the 114 hub
genes. The area under the ROC curve was 0.814 (Figure 8).

Validation of HB Biological Markers
Through InnateDB Cross-Comparison
We selected the immune-related hub gene, containing 35 genes,
as the HB innate immune core genes and compared it with the
immune-related genes present in the InnateDB database. We
obtained 10 core genes: CDK1, TOP2A, ADRA1A, FANCI,
XRCC1, TPX2, CCNB2, CDK4, GLYATL1, and CFHR3. For
nine genes at least one molecular interaction was annotated in
the InnateDB database, except GLYATL1. These interactions
were mainly protein-protein and DNA-protein, as shown in
Supplementary Figures 1–9.
Frontiers in Oncology | www.frontiersin.org 9
DISCUSSION

In this study, we established for the first time a diagnosis
classifier model based on the random tree method for HB
using 114 hub genes. We also validated the classification
efficiency of this model using an independent dataset.
Consequently, this model may contribute to improving the
diagnosis of HB. We also performed GO and KEGG analyses,
revealing that the identified hub genes were mainly involved in
the p53 pathway and cell cycle. We also identified 10 core genes
by cross-referencing our analysis with the InnateDB database.
Among the 10 core genes, the molecular interactions for 9 genes
were annotated, which may provide new therapeutic targets.

Among the 10 identified core genes, CDK1 and CDK4 were
previously reported to be associated with HB (21, 22). CDK1 and
CDK4 both belong to the family of cyclin-dependent kinases
(CDKs). CDK complexes are critical regulatory enzymes that
A

B

FIGURE 7 | (A) GO analysis of the 114 hub genes. (B) KEGG pathway of the 114 hub genes, GO.
April 2021 | Volume 11 | Article 591507
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A C

B

FIGURE 8 | (A) ROC curve for the GSE131329 dataset; (B) 30 hub genes from the random forest classifier extracted through MDA and MDG; (C) ROC curve for
the GSE81928 dataset. AUC, area under the curve; ROC, receiver operating characteristic; MDA, mean decrease accuracy; MDG, mean decrease Gini.
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drive the transition of different phases of the cell cycle and ensure
successful cell division through their activity (23). Almost all
malignant cells exhibit some features that derange the normal
controls over the cell cycle (24). Therefore, various drugs
targeting different CDKs have been developed and have been
applied in the clinic over the past decades. CDK1 can bind to
different cyclins and regulate all the steps required for cell
division (25). For this reason, CDK1 is essential for
mammalian cell proliferation (21) and is the only CDK that
can initiate mitosis (26). CDK1 is a key determinant of mitotic
progression and thus it is also a pivotal tumorigenic event. It has
been reported that treatment with a CDK1 inhibitor could
decrease tumor growth of HB and prolong the survival rate in
an HB murine model (21). Therefore, CDK1 is considered an
ideal target for HB treatment. CDK4 can mediate the transition
from the G0 or G1 phase into the S phase of the cell cycle (27).
The activity of CDK4 is primarily controlled by its association
with D-type cyclins, with cyclin D1 being the best characterized.
Kim et al. revealed that CDK4 and cyclin D1 were significantly
overexpressed in HB tissues compared with normal tissues (22).
They also suggested that CDK4 may be correlated with
tumorigenesis, tumor recurrence, and metastasis of HB.
Although there is still no available CDK4 inhibitor for HB,
multiple selective CDK4 inhibitors targeting other types of
cancer have been used in the clinic. The progression-free
survival rate of patients with estrogen receptor-positive breast
cancer can improve when CDK4/6 inhibitors are added to
antiestrogen therapy (28). Therefore, the role of CDK4 in HB
progression and treatment requires further studies.

The role of the other 8 core genes in HB has never been
reported before. Among them, 6 genes have been reported to be
associated with hepatocellular carcinoma (HCC). TOP2A was
one of the top 20 genes with the highest degree of interaction in
the PPI network complex. TOP2A encodes a DNA
topoisomerase that controls and alters the topologic states of
intertwined DNA during anaphase. Therefore, TOP2A is
involved in chromosome condensation and chromatid
separation (29). Overexpression of TOP2A is correlated with a
more aggressive tumor phenotype, microvascular invasion, and
early age onset of HCC (30). Moreover, TOP2A has also been a
valuable prognostic marker for tumor advancements,
recurrences, and predictors of poor survival in a variety of
cancers, such as breast, ovarian, colon, and small cell lung
cancer (29). ADRA1A encodes the alpha-1 adrenergic receptor
subtype with catecholamines ligands (31), which is located on
chromosome 8p (32). ADRA1A can stimulate the sympathetic
nervous system to compete with some functions (33). It was
reported by Chen et al. that the mean methylation level of the
ADRA1A promoter region was significantly increased in HCC
tissues compared with the normal tissues (32). They also
demonstrated that the mean methylation levels of the
ADRA1A gene in HCC samples were not only associated with
clinical characteristics but could also discriminate between HCC
tissues and adjacent normal tissues, thus being suitable as a
diagnostic marker. XRCC1 is a DNA repair gene that plays a
crucial role in maintaining genomic integrity and stability and in
Frontiers in Oncology | www.frontiersin.org 11
the pathogenesis and carcinogenesis of various type of cancer
(34). XRCC1 is significantly correlated with the number of
tumors, tumor size, and location, and is also an independent
risk factor for the poor prognosis of HCC (34, 35). TPX2, a
nuclear proliferation microtubule-associated protein, is essential
for spindle formation and stabilizes spindle microtubules (36).
The overexpression of TPX2 induces abnormal centrosome
amplification and aneuploidy formation, leading to malignant
transformation of cells (37). Multiple studies have shown that the
expression levels of TPX2 were significantly upregulated in HCC
tissues compared with the adjacent normal tissues (36–38). They
also confirmed that TPX2may improve the viability of HCC cells
and inhibit cell apoptosis. However, knockdown of TPX2
expression or TPX2 inhibition could reduce the migration and
invasion ability of HCC cells. CCNB2 was one of the top 20 genes
with the highest degree of interaction in the PPI network
complex. CCNB2 belongs to the B-type cyclin family and
regulates the activity of CDKs by binding to them during the
cell cycle (23). The overexpression of CCNB2 was positively
correlated with tumor number, tumor size, tumor thrombus, and
metastasis of HCC, which may contribute to the poor prognosis
of HCC patients (39–41). However, CCNB2 knockdown could
slow cell growth and promote apoptosis of HCC cells, indicating
that CCNB2 may be a novel treatment marker (41). CFHR3, a
member of the human factor H protein family, is a negative
complement activation regulator, which is an essential
component of the innate immune system (42). The expression
level of CFHR3 in HCC tissues was lower than that in normal
tissues (43). In addition, the expression level of the CFHR3 gene
was the highest in the liver than in other organs (44). CFHR3 is
correlated to the HCC stage. In addition, the overall survival of
patients affected with HCC was significantly better when CFHR3
was highly expressed than when its expression was low (43, 44).
Therefore, CFHR3 may be a novel prognostic biomarker for
HCC. Although these 6 genes were never reported in the context
of HB, our bioinformatics analysis suggests that they deserve
further attention as potential targets in HB.

FANCI and GLYATL1 have never been reported in either HB
or HCC. However, their abnormal expression has been found in
other tumor types. FANCI has a key role in the Fanconi anemia
DNA repair pathway, where it forms a heterodimer with
FANCD2 and recruits DNA repair proteins to promote the
interstrand cross-link DNA damage repair (45). Moreover,
FANCI may promote cellular metabolism when it is not
needed for DNA repair, according to a recent study (46).
FANCI mRNA and protein were both found to be
overexpressed in lung adenocarcinoma tumor tissues compared
with adjacent normal tissues (47). It was demonstrated that the
expression level of FANCI was positively associated with
lymphatic metastasis and distant metastasis of lung
adenocarcinoma tumor, whereas knockdown of FANCI
decreased lung adenocarcinoma tumor cell proliferation and
invasion in vitro. FANCI has also been reported to regulate
breast cancer survival (48). These findings suggest that FANCI
has a novel oncogenic role and may be useful as a prognostic
biomarker and/or therapeutic target for different tumors.
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GLYATL1 belongs to the glycine-N-acyltransferase gene family
and is normally expressed in the liver and kidney (49). GLYATL1
encodes an enzyme with phenylacetyl-CoA glutamine N-
acyltransferase activity, which regulates mitochondrial ATP
production, glycine availability, CoASH availability, and the
detoxification of various organic acids (50). In a previous
study, the expression of GLYATL1 was higher in localized
prostate cancers than in benign prostatic tissue and metastatic
prostate cancer (49, 51). This study also demonstrated that
GLYATL1 may be associated with the grade of prostate cancer
since the expression of GLYATL1 was significantly high in low-
grade tumors. Therefore, GLYATL1 could be a potential early-
stage biomarker. In addition, GLYATL was also found to be
overexpressed in ER-negative compared to ER-positive breast
cancer (52).

We also conducted GO enrichment and KEGG pathway
analysis to identify pathways correlated with the hub genes.
KEGG pathway analysis revealed that the largest number of
genes were enriched in the cell cycle, including 13 hub genes.
Most of them, including CDK1 (21), CDK4 (27), BUB1 (53),
BUB1B (54), CCNA2 (55), CCNB1 (56), CCNB2 (39), CDC6 (57),
MAD2L1 (58), MCM6 (59), and PLK1 (60) have been already
reported to be associated with cell cycle-related proliferation and
tumor differentiation. GO analysis further showed that hub genes
are involved in different cell cycle-related processes, including
mitotic nuclear division, cell division, chromosome separation,
sister chromatid cohesion, microtubule cytoskeleton
organization involved in mitosis, and DNA integrity
checkpoint. Furthermore, GO enrichment and KEGG pathway
analysis also demonstrated that the hub genes were associated
with the p53 signaling pathway, a tumor suppression pathway
through a variety of responses, including cell-cycle arrest,
apoptosis, senescence, and DNA repair (61, 62), suggesting
that the p53 signaling pathway is also involved in the cell
cycle. It was reported that p53 gene mutations may contribute
to the development of sporadic HB (63). Moreover, hepatic p53
expression could cause lysis of implanted hepatoblastoma cells in
a chimeric mouse (64). Although p53 may play a crucial role in
HB development, the specific mechanism needs further studies.
Taken together, based on the GO and KEGG analyses, we suggest
that targeting the cell cycle could be a potential strategy for HB
therapy. Compared with the traditional clinical manifestations,
imaging, AFP and other diagnostic methods, our study
considered the underlying genetic dysregulations. Genes are
more objective and stable; thus, they may not be beneficial for
early diagnosis.
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CONCLUSION

In the present study, we established a 114 genes random forest
classifier for HB and identified 10 core genes. These 10 core genes
are closely related to the progression and prognosis of cancers
and thus are also potential therapeutic targets. Our classifier
model and the identified core genes may give novel insight into
the diagnosis and development of therapeutic options for HB.
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