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A.C.Camargo Cancer Center, Brazil

Reviewed by:
Goutam Chowdhury,

Independent Researcher, Greater
Noida, India

Shereen Elazzazy,
Hamad Medical Corporation, Qatar

*Correspondence:
Xiaojuan Wu

xiaojuanwu0709@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Women's Cancer,
a section of the journal
Frontiers in Oncology

Received: 21 September 2020
Accepted: 27 January 2021

Published: 12 April 2021

Citation:
Zhang J, Hu J, Li W, Zhang C,

Su P, Wang Y, Sun W, Wang X,
Li L and Wu X (2021) Rapamycin

Antagonizes BCRP-Mediated Drug
Resistance Through the PI3K/Akt/

mTOR Signaling Pathway in
mPRa-Positive Breast Cancer.

Front. Oncol. 11:608570.
doi: 10.3389/fonc.2021.608570

ORIGINAL RESEARCH
published: 12 April 2021

doi: 10.3389/fonc.2021.608570
Rapamycin Antagonizes
BCRP-Mediated Drug Resistance
Through the PI3K/Akt/mTOR
Signaling Pathway in mPRa-Positive
Breast Cancer
Jing Zhang1,2†, Jing Hu1,2†, Weiwei Li1,2, Chunyan Zhang1, Peng Su1,2, Yan Wang1,2,
Wei Sun1,2, Xiao Wang1,2, Li Li1,2 and Xiaojuan Wu1,2*

1 Department of Pathology, School of Basic Medical Sciences, Shandong University, Jinan, China, 2 Department of
Pathology, Qilu Hospital, Shandong University, Jinan, China

Purpose:Overexpression of breast cancer (BCa) resistance protein (BCRP) is detected in
approximately 30% of BCa cases. BCRP indicates a poor response to chemotherapy,
and it has become a classic target to overcome drug-resistant tumor cells. In this study,
we aimed to explore the mechanism of BCRP overexpression and a strategy to reverse
this overexpression in invasive BCa.

Methods: BCRP expression in BCa tissues was determined by immunohistochemistry.
GSE25066 was downloaded from the NCBI GEO database. Western blot was used to
determine the expression of key molecules in vitro. Cell counting kit-8 assays were used to
assess the drug response of BCa cells.

Results: Our results suggested that BCRP is an independent risk factor for BCa. We
further established that upon 17a-PG binding, membrane progesterone receptor a
(mPRa) promoted BCRP expression via the PI3K/Akt/mTOR signaling pathway. mPRa
physically interacted with p-Akt1 S473. Moreover, rapamycin, an inhibitor of mTOR
complex 1 (mTORC1), downregulated BCRP expression and enhanced the effects of
particular drugs, including doxorubicin and paclitaxel.

Conclusion: BCRP is a potential biomarker of poor prognosis in BCa. BCRP expression
is regulated by 17a-PG in mPRa-positive BCa cells through the PI3K/Akt/mTOR signaling
pathway. Rapamycin might enhance the therapeutic effect of chemotherapy agents in
mPRa-positive MDA-MB-453/BCRP cells and might be a therapeutic option for mPRa-
positive invasive BCa with BCRP overexpression.

Keywords: breast cancer, drug resistance, BCa resistance protein (BCRP), membrane progesterone receptor
alpha, PI3K/Akt/mTOR, rapamycin, targeted therapy
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INTRODUCTION

Chemotherapy is considered to be a vital treatment strategy in
invasive breast cancer (BCa). However, de novo or acquired drug
resistance remains the major obstacle of treatment. The human
BCa resistance protein (BCRP) localizes to the plasma
membrane and pumps a variety of endogenous and exogenous
compounds out of the cell. Due to its function, BCRP plays a
critical role in BCa drug resistance by increasing the cellular
excretion of chemotherapeutics (1–3).

Female sex hormones play key roles in the pathogenesis of
BCa. We have reported that progesterone receptor (PR) and
estrogen receptor a (ERa) modulate the expression of BCRP,
and overexpression of BCRP promotes BCa metastasis (4). This
phenomenon partially depends on the classic genomic pathway
of steroid nuclear receptor signaling. In addition, all types of
steroid hormones have been reported to have rapid, nongenomic
effects that occur at the cell membrane or mitochondria (5).
Studies have shown that steroid hormones induce rapid effects
though several signaling pathways, including the EGFR and
MAPK pathways (5–7). Steroid hormone receptors interact
with multiple signaling molecules modeling their activation state.

We focused on the nongenomic signaling of PRs. There are
three isoforms of membrane progesterone receptors (mPRs) in
humans, mPRa, mPRb, and mPRg; mPRa is the predominant
subtype in invasive BCa and in BCa cell lines (8). We previously
reported a positive correlation between mPRa protein expression
and lymph node metastasis, suggesting that mPRa is a potential
mediator of invasive BCa progression. We also revealed that mPRa
promotes breast cancer invasion though matrix metalloprotein
(MMP9) by activating the PI3K/Akt signaling pathway (9).

However, the role of mPRa in BCa drug resistance is still
elusive. Moreover, its effect on BCRP expression through the
rapid, nongenomic signaling pathway has not been reported.
This investigation focused on the mechanism by which 17a-PG
regulates BCRP expression through the nongenomic pathway.
MATERIALS AND METHODS

Patients and Tissue Samples
In the present research, we obtained a total of 215 invasive BCa
samples from the Department of Pathology, Qilu Hospital of
Shandong University. Among them, 103 cases from 2007 to 2008
were followed up. Overall survival (OS) referred to the interval
from initial treatment until recurrence, metastasis, or death.
Other 112 BCa samples were from 2012 to 2014. There was no
significant difference in clinicopathological parameters between
the two cohorts (Supplementary Table 1). This study was
approved by the Shandong University Medical Research Ethics
Committee (approval number 201401016), and written informed
consent was obtained from each patient in accordance with the
Declaration of Helsinki. Survival analysis of BCRP were proceed
with 103 BCa samples from 2007 to 2008. Correlation analysis of
mPRa, p-Akt1 S473, and BCRP were proceed with a total of 150
BCa samples containing 38 samples from 2007 to 2008 and 112
samples from 2012 to 2014.
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Immunohistochemistry
IHC was performed as previously described (10). The slides were
incubated with primary antibodies against mPRa (ab75508,
1:500, Abcam), phosphorylated Akt1 (p-Akt1 S473; #4060,
1:500, CST), or BCRP (ab3380, 1:40, Abcam) for 2 h at RT. A
semiquantitative scale combining staining intensity and the
percentage of positive cells was used to grade protein
expression; staining was scored from 0 to 3 (0 = no expression;
1 = weak; 2 = moderate; and 3 = strong), as was the percentage of
positive cells (0 < 10%; 1 = 10%–40%; 2 = 40%–70%; and 3 ≥
70%). Normal breast tissues were used as a positive control.
Slides were evaluated and scored by two pathologists separately.
Cell Culture and Reagents
The human (BCa) cell lines MDA-MB-453 andMDA-MB-231 were
obtained from American Type Culture Collection (Rockville, MD,
USA) and cultured following the manufacturer’s recommendations.
MDA-MB-453 and MDA-MB-231 cells are negative for nuclear
progesterone receptor (nPR). The cell counting kit-8 (CCK8) was
purchased from BestBio Biotechnology (Shanghai, China).

The plasmid pEGFP/C-BCRP harboring full-length BCRP
cDNA was constructed and stored in our laboratory; this
plasmid was transfected into MDA-MB-453 and MDA-MB-
231 cells to establish the MDA-MB-453/BCRP and MDA-MB-
231/BCRP stable cell lines as previously reported (11). The siAkt
was purchased from GenePharma (Shanghai, China) and Akt
inhibitor of perifosine was obtained from MedChemExpress
(Shanghai, China).
Western Blotting
Western blot was performed as previously described.10 The
membranes were incubated overnight with antibodies against PI3K
(#YT3713, 1:500, ImmunoWay), phosphorylatedPI3K(p-PI3KY467/
199; #YP0224, 1:500, ImmunoWay), mTOR (#YT2915, 1:500,
ImmunoWay), phosphorylated mTOR (p-mTOR S2448; #YP0176,
1:500, ImmunoWay), Akt1 (#2920, 1:1,000, CST), phosphorylated
Akt1 (p-Akt1 S473; #4060, 1:1,000, CST), phosphorylated 4E-BP1
(p-4E-BP1 Ser65; #9451, 1:1,000, CST), mPRa (ab75508, 1:1,000,
Abcam), BCRP (ab3380, 1:500, Abcam), and b-actin (TB346894,
1:1,000, ZSGB-Bio). Immunoreactivity was visualized using an
enhanced chemiluminescence kit (Millipore, Darmstadt,
Germany). ImageJ was used for quantitative analysis.
Coimmunoprecipitation
Cells in 10 cm2 plates were lysed in ice-cold RIPA lysis buffer.
Lysates containing 500 mg of total protein were incubated with
specific antibodies (2 mg) for 18 h at 4°C with constant rotation.
Then, 20 ml of protein A+G agarose beads was added to bind the
protein-antibody complexes, and the mixtures were incubated at
4°C overnight, followed by centrifugation at 2,500 rpm for 5 min
at 4°C. The supernatants were discarded, and the precipitates
were washed five times with PBS. After the final wash, the
precipitates were pelleted by centrifugation and boiled in SDS
sample buffer for western blot analysis. IgG was used as a
negative control.
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Statistical Analysis
Data analysis was performed with SPSS version 18.0. The
correlations between BCRP expression and the clinicopathological
parameters as well as among mPRa, p-Akt1 and BCRP expressions
were evaluated by the Pearson chi-square tests.

The correlations between BCRP expression and overall
survival curves were plotted by the Kaplan–Meier method and
compared with the log-rank test. Univariate and multivariate
Cox regression analyses were used to evaluate survival data.
Statistical significance was considered when P values were <0.05.
RESULTS

Determination of the Prognostic
Significance of BCRP in Invasive BCa
BCRP expression in primary BCa was evaluated by IHC. Patient
characteristics are shown in Table 1. Univariate and multivariate
analyses with Cox proportional hazards regression models
were used to explore the associations between BCRP
Frontiers in Oncology | www.frontiersin.org 3
expression and OS. As shown in Table 2, the univariate
analysis suggested that BCRP expression, tumor grade and
lymph node metastasis (LNM) were significantly correlated
with the OS of BCa patients (Table 2, P<0.05). Multivariate
analysis showed that BCRP expression was an independent
prognostic predictor for OS (HR=4.102, 95% CI: 1.395–
12.061). Kaplan-Meier plots of OS relative to BCRP expression
are shown in Figure 1A. We further explored the significance of
BCRP expression in LNM-positive BCa patients. Kaplan-Meier
analysis showed that BCRP expression was negatively related to
OS in LNM-positive patients (Figure 1B). Similar results were
obtained with the data in GSE25066 (Figure 1C).

Regulation of BCRP Expression by 17a-PG
To elucidate the mechanism regulating BCRP expression in BCa,
we treated BCa cells with 17a-PG, a selective agonist of mPRa.
As shown in Figure 2, the expression of BCRP in mPRa-positive
MDA-MB-453/BCRP cells (Figure 2A) was upregulated by 17a-
PG in a dose-dependent manner, with EGF as a control (Figure
2B). There was no detectable change in mPRa-negative MDA-
MB-231/BCRP cells (data not shown). These data suggest that
the induction of BCRP expression by 17a-PG is dependent on
mPRa status.

Interaction Between mPRa and p-Akt1
S473 in MDA-MB-453/BCRP and MDA-
MB-231/BCRP Cells
We previously showed that mPRa and p-Akt1 S473 are positively
correlated in invasive BCa. This correlation leads to the hypothesis
that 17a-PG might regulate BCRP expression though PI3K/Akt/
mTOR signaling. To explore the interactions between mPRa and
p-Akt1 S473, we used antibodies against mPRa and p-Akt1 S473
to immunoprecipitate proteins from total cell lysates of MDA-
MB-453/BCRP and MDA-MB-231/BCRP cells and subsequently
confirmed the identity of the immunoprecipitated proteins by
western blot. The results showed an interaction between mPRa
and p-Akt1 S473 in MDA-MB-453/BCRP cells (Figure 3A) but
not in MDA-MB-231/BCRP cells (Figure 3B).

Activation of PI3K/Akt/mTOR Signaling
by 17a-PG in MDA-MB-453/BCRP Cells
To further prove whether the PI3K/Akt/mTOR signaling
pathway is involved in the 17a-PG action in mPRa-positive
TABLE 1 | Clinicopathological characteristics of 103 patients with follow up in
the present study.

Variable Count Percentage (%)

Age
≤ 65 90 87.4
> 65 13 12.6
Grade
I–II 68 66.0
III 35 34.0
LNM
Negative 46 44.7
Positive 57 55.3
ER
Negative 36 35.0
Positive 67 65.0
PR
Negative 32 31.1
Positive 71 68.9
HER2
Negative 84 81.6
Positive 19 18.4
BCRP
Negative 62 60.2
Positive 41 39.8
TABLE 2 | Univariate and multivariate analysis for overall survival (Cox proportional hazards regression model).

Variable Univariate analysis Multivariate analysis

P HR CI (95%) P HR CI (95%)

Age 0.407 2.356 0.3–17.8911

Grade 0.015 3.512 1.275–9.668 0.29 1.858 0.59–5.847
LN 0.02 11.018 1.448–83.808 0.043 9.412 1.073–82.532
BCRP 0.024 3.395 1.1799.779 0.010 4.102 1.395–12.061
ER 0.061 0.387 0.144–1.043

PR 0.548 0.732 0.265–2.024
HER2 0.412 1.607 0.518–4.983
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cells, the cells were treated with 1,000 mM 17a-PG for 0, 10, 20,
30, and 60 min. Expression levels of PI3K, p-PI3K Y467/199,
Akt1, p-Akt1 S473, mTOR, and p-mTOR S2448 were detected in
fresh protein samples by western blot analysis. As revealed in
Figures 3C, D, the levels of phosphorylated signaling molecules
were markedly upregulated compared with the total levels of
each protein at 20 min after 17a-PG treatment. While after
treatment the cells with Akt specific inhibitor perifosine or
Frontiers in Oncology | www.frontiersin.org 4
siRNA targeted at Akt, the expressions of p-4E-BP1 and BCRP
were both decreased (Figures 3E, F). These data suggest that
17a-PG might induce rapid effects, such as the regulation of
BCRP expression, through activation of the PI3K/Akt/mTOR
pathway in mPRa-positive MDA-MB-453/BCRP cells.

Positive Correlations Among mPRa,
p-Akt1 S473, and BCRP in BCa Tissue
We next examined whether p-Akt1 S473 and the mPRa-mediated
regulation of BCRP are physiologically relevant in human breast
tissues. We verified the correlations among mPRa, p-Akt1 S473
and BCRP in primary breast invasive cancer by IHC. Notably,
BCRP overexpression was significantly associated with mPRa
(P=0.002) and p-Akt1 S473 (P=0.048) by IHC in our cohort.
Representative images are shown in Figure 4. The positive
correlation is shown in Table 3.

Effect of Rapamycin on BCRP Expression
To further confirm the above hypothesis, BCRP expression was
assessed in MDA-MB-453/BCRP cells following treatment with
rapamycin, a selective antagonist of mTOR signaling. As indicated
in Figure 5A, BCRP overexpression was suppressed by rapamycin
in dose-dependent manner in mPRa-positive MDA-MB-453/
BCRP cells. This finding suggests that BCRP expression depends
on activation of the PI3K/Akt/mTOR signaling pathway.

Effect of Rapamycin on Sensitivity of
MDA/MB-453/BCRP Cells to Doxorubicin
and Paclitaxel
To clarify the importance of the PI3K/Akt/mTOR signaling
pathway in BCRP-mediated drug resistance in mPRa-positive
BCa, we examined the survival rate of rapamycin-treated MDA-
MB-453/BCRP cells. Compared with MDA-MB-453/BCRP cells
treated with 17a-PG alone, the relative survival of MDA-MB-
453/BCRP cells treated with 17a-PG combined with rapamycin
on doxorubicin or paclitaxel decreased ~15.5-fold and ~58.9-
fold, respectively (Figures 5B, C). All of these findings confirmed
that 17a-PG promotes BCRP expression through the PI3K/Akt/
mTOR signaling pathway and that rapamycin significantly
enhances the chemosensitivity to doxorubicin and paclitaxel by
A B C

FIGURE 1 | BCRP was related to poor prognosis of BCa. (A) The correlation between BCRP expression in BCa tissue and overall survival (n = 103, p = 0.016,
Kaplan-Meier survival analysis, log-rank test). (B) The correlation between BCRP expression in BCa tissue and overall survival among patients with lymph node
metastasis (n = 57, p = 0.010, Kaplan-Meier survival analysis, log-rank test). (C) The correlation between BCRP expression in BCa tissue and overall survival among
patients with lymph node metastasis from GSE25066 (n = 351, p = 0.015, Kaplan-Meier survival analysis, log-rank test).
A

B

FIGURE 2 | BCRP was regulated by 17a-PG in mPRa-positive BCa cells.
(A) Western blot analysis of mPRa expression in MDA-MB-231/BCRP and
MDA-MB-453/BCRP cells. (B) BCRP protein expression in response to
treatment with different concentrations of 17a-PG and EGF for 24 h. The data
shown in the histogram are the mean ± SD of three independent
experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
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A

B

D

E F

C

FIGURE 3 | 17a-PG activated PI3K/Akt/mTOR signaling through the interaction between mPRa and p-Akt1 S473. (A, B) Interaction between mPRa and p-Akt1
S473 in MDA-MB-453/BCRP (A) and MDA-MB-231/BCRP (B) cells. Samples (500 mg) were subjected to CoIP using an anti-mPRa antibody (5 mg) and anti-p-Akt1
antibody (5 mg). Immunoprecipitated lysates were then analyzed by western blotting using anti-p-Akt1 and anti-mPRa antibodies. (C, D) PI3K/Akt/mTOR signaling in
response to 17a-PG in MDA-MB-453/BCRP cells. The cells were starved for 48 h and then treated with 1,000 nM 17a-PG for 0, 10, 20, 30, and 60 min. Western
blotting was performed to check the activation of PI3K, Akt1, and mTOR. (D) The data shown in the histogram are the mean ± SD of three independent
experiments. *P < 0.05, **P < 0.01, ***P < 0.001. (E, F) The rescue test of PI3K/Akt/mTOR signaling in response to 17a-PG in MDA-MB-453/BCRP cells. The cells
were starved for 48 h and then treated with 1,000 nM 17a-PG combined with siAkt or perifosine. Western blotting was performed to check the activation of p-4E-
BP1 and expression of BCRP. (F) The data shown in the histogram are the mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001.
FIGURE 4 | BCRP expression was positively related to mPRa and p-Akt1 S473 in breast tissue. Representative BCa specimens positive for mPRa, p-Akt1 S473,
and BCRP, as detected by IHC. Photographs were taken at ×400 magnification. Invasive BCa positive for mPRa (left), p-Akt1 S473 (middle), and BCRP (right). Note
that in BCa, mPRa and BCRP were detected at the membrane and/or in the cytoplasm, while p-Akt1 S473 was mainly detected in the cytoplasm.
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blocking this pathway in mPRa-positive MDA-MB-453/
BCRP cells.
DISCUSSION

Chemoresistance is a critical challenge of BCa treatment.
However, the underlying molecular mechanisms are not yet
clear. An increasing number of studies have focused on the
reversal of multidrug resistance. Our previous studies
systemically demonstrated the mechanisms of the key
mediators MDR1 and BCRP of BCa chemoresistance and
proposed a reversal strategy (12, 13). In the current work, we
found that rapamycin could reverse the chemoresistance
mediated by BCRP. Mechanistically, we revealed that 17a-PG
activated BCRP expression though PI3K/Akt/mTOR signaling
by a physical interaction between mPRa and p-Akt S473.
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BCRP belongs to the ATP-binding cassette (ABC) family.
The ABC transporters remove substrates from cells against
a concentration gradient. Three transporters have been
implicated in drug resistance, including the P-glycoprotein
efflux pump (P-gp) encoded by the ABCB1 gene, the
multidrug resistance-associated protein-1 (MRP-1) encoded by
the ABCC1 gene, and BCRP encoded by the ABCG2 gene (14).
BCRP is a transmembrane protein located on the apical
membrane of epithelial cells such as those of the intestine,
liver, kidney, and syncytiotrophoblast, and it transports
xenobiotic and endogenous substrates out of cells (15).
Normally, BCRP plays a critical role in protecting the
organism against exposure to xenobiotics and endogenous
chemicals. However, BCRP expression in certain cancers, such
as BCa, lung cancer, gastric cancer and leukemia, is likely a
reflection of a drug-resistant phenotype (16–18). Considerable
efforts have been devoted to determining the role of BCRP in
drug resistance in BCa (18). However, the effect of BCRP on
survival remains controversial. We believe that the discrepant
outcomes might be due to the shorter follow-up time or the small
number of cases included in this study. Furthermore, the status
of nuclear estrogen receptor (nER), nPR, C-erbB-2, Ki-67, and
LNM also plays a vital role in determining the prognosis of
invasive BCa.

Apart from the genomic pathway, nongenomic steroid
signaling, including by PG, is usually regulated through
membrane- or cytoplasmic-localized classic steroid receptors,
TABLE 3 | Expression of mPRa, p-Akt1, and BCRP in invasive breast cancer.

n BCRP P-value

positive negative

mPRa positive 63 28 35 0.009
negative 87 21 66

p-Akt1 positive 67 29 38 0.048
negative 83 22 61
A B

C

FIGURE 5 | Rapamycin reversed 17a-PG-mediated BCRP expression and drug resistance. (A) The concentration-dependent inhibition of BCRP expression by
rapamycin. The cells were incubated with 0, 5, 10, or 20 ng/ml rapamycin for 24 h. Relative expression data are shown in the histogram with b-actin as the loading
control. The results are from three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001. (B, C) The survival rate of MDA/MB-453/BCRP cells exposed to
doxorubicin (B) and paclitaxel (C) combined with rapamycin, as determined by CCK-8 assays. Cells were seeded in 96-well plates at 5 × 103 cells per well, and
both cell lines were preincubated with rapamycin for 24 h. Then, the cells were treated with a concentration gradient of doxorubicin and paclitaxel for another 48 h.
The points indicate the percentage relative to control MDA-MB-453 cells. Data are the mean of triplicate determinations, and the SD is indicated by the bars.
*P < 0.05, **P < 0.01, ***P < 0.001.
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such as mPRs (19). There has been new insight into the roles of
PG based on the identification of mPRs in triple-negative BCa,
which lacks nER, nPR, and C-erbB-2 and is insensitive to
antihormone and/or targeted anti-C-erbB-2 therapies (20).
Progestin can rapidly initiate the PI3K/Akt, Src/Ras/MAPK or
JAK2/Stat3 signaling pathway in BCa and mammary epithelial
cells, suggesting that mPR is a potential mediator of nongenomic
cellular signaling pathways (21–23). mPRs belong to the
progestin and adipoQ receptor (PAQR) family, which contains
three isoforms in human, mPRa, mPRb, and mPRg (24, 25).
Knowledge of the mechanism of mPRa in BCa development and
progression has gradually accumulated (26, 27), but its precise
role in drug resistance is still unclear.

To explore the mechanisms underlying chemoresistance
induced by mPR expression in BCa, we selected mPRa and
BCRP for further observation. In our previous research, we found
that PG negatively regulated BCRP expression by genomic signaling
through nPR. 17a-PG is a selective mPRa agonist and affirms the
existence of functional mPRa in cell lines. Further research
confirmed that 17a-PG treatment could upregulate BCRP
expression through rapid activation of the PI3K/Akt/mTOR
signaling pathway in a dose-dependent manner in MDA-MB-
453/BCRP cells. Although the relationship between mPRa and
the PI3K/Akt signaling pathway has been confirmed (28), no
previous reports have shown the interaction between mPRa and
BCRP in this pathway. Akt1 is the central member of the PI3K/Akt/
mTOR signaling pathway (29). Furthermore, the interaction
between mPRa and p-Akt1 S473 was confirmed, suggesting that
mPRa regulates BCRP expression though PI3K/Akt/mTOR
signaling. The significant association between mPRa and BCRP
in BCa tissues further confirmed this regulation.

Neoadjuvant therapy aims to shrink the primary neoplasm
for subsequent surgical removal. nER, nPR, and C-erbB-2 are
commonly identified as indications for neoadjuvant therapy.
PI3K/Akt/mTOR signaling pathway activation is involved in
resistance to endocrine therapy and cytotoxic therapy in
hormone receptor positive BCa (30). However, the extranuclear
hormone receptor status remains to be elucidated. In this research,
we found that in comparison with single agent 17a-PG treatment,
the combination of an mTOR complex 1 (mTORC1) inhibitor
with PG could sensitize mPRa-positive BCa to doxorubicin
and paclitaxel.

Rapamycin, a macrocyclic lactone isolated from Streptomyces
hygroscopicus, was the first rapalog investigated in the clinic (31);
it binds to FKBP12, inhibits the mTORC1 complex and blocks
mTOR signal transduction in cell growth and proliferation (32).
In recent years, the roles of mTOR inhibitors have been
extensively studied for their safety and effectiveness. However,
the disadvantage of mTOR inhibitors is that they are unlikely to
be useful as single agents in most malignancies. Combining this
kind of agent with conventional cytotoxic medicines or other
targeted therapies has been suggested as a potentially effective
way to improve cure rates. Combined treatment with PI3K/Akt/
mTOR pathway inhibitors and neoadjuvant agents was found to
potentially increase chemosensitivity in ER-positive BCa (33). In
this research, we focused on whether the combination of
Frontiers in Oncology | www.frontiersin.org 7
rapamycin with chemotherapy improves the sensitivity of
mPRa-positive BCa to chemotherapy. We observed that the
upregulation of BCRP was inhibited by rapamycin in a dose-
dependent manner. Treatment with rapamycin increased
chemosensitivity and reversed BCRP-induced drug resistance
in mPRa-positive BCa cells.

These data are in line with previous reports by other groups,
including one report that imatinib inhibits BCR–ABL in resistant
K562 leukemic cells through posttranscriptional regulation of
BCRP expression via the PI3K/Akt signaling pathway (34).

From above, studies have shown that BCRP overexpression is
one of the markers of poor prognosis in breast cancer. Its
expression in subtype of luminal breast cancer was higher than
that of triple negative breast cancer (TNBC). While there was no
significant difference between HER2 positive breast cancer and
TNBC. Luminal type patients can choose endocrine therapy or
chemotherapy. While HER2 over-expression is the main drive in
breast cancer and anti-HER2 drugs are the main type of therapy
for these patients. But TNBC has limited treatment options. At
present, traditional chemotherapy is still the main treatment and
the curative effect is not very well. In this study, we elaborated the
mechanism of rapamycin on sensitizing doxorubicin and
paclitaxel in cells of TNBC with mPRa positive, which might
provide experimental basis for chemotherapy. But we did not
observe the effect in HER2 overexpression breast cancer cells
with mPRa positive. This is the limitation of this experiment and
we will increase the subtypes of breast cancer cell lines in future
research to further observe the mechanism of rapamycin on anti-
HER2 drugs.
CONCLUSION

BCRP is a potential biomarker for poor prognosis in primary
invasive BCa that might be modulated by mPRa through
nongenomic regulation via the PI3K/Akt/mTOR signaling
pathway. Combining an mTORC1 inhibitor with chemotherapy
agents sensitizes cells to conventional chemicals and might improve
their effectiveness, which may shed light on the use of an mTORC1
inhibitor to overcome resistance in mPRa-positive BCa.
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