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Diffuse large B-cell lymphoma (DLBCL) is an extremely heterogeneous tumor entity, which
makes prognostic prediction challenging. The tumor microenvironment (TME) has a
crucial role in fostering and restraining tumor development. Consequently, we
performed a systematic investigation of the TME and genetic factors associated with
DLBCL to identify prognostic biomarkers for DLBCL. Data for a total of 1,084 DLBCL
patients from the Gene Expression Omnibus database were included in this study, and
patients were divided into a training group, an internal validation group, and two external
validation groups. We calculated the abundance of immune–stromal components of
DLBCL and found that they were related to tumor prognosis and progression. Then,
differentially expressed genes were obtained based on immune and stromal scores, and
prognostic TME‐related genes were further identified using a protein–protein interaction
network and univariate Cox regression analysis. These genes were analyzed by the least
absolute shrinkage and selection operator Cox regression model to establish a seven-
gene signature, comprising TIMP2, QKI, LCP2, LAMP2, ITGAM, CSF3R, and AAK1. The
signature was shown to have critical prognostic value in the training and validation sets
and was also confirmed to be an independent prognostic factor. Subgroup analysis also
indicated the robust prognostic ability of the signature. A nomogram integrating the
seven-gene signature and components of the International Prognostic Index was shown
to have value for prognostic prediction. Gene set enrichment analysis between risk groups
demonstrated that immune-related pathways were enriched in the low-risk group. In
conclusion, a novel and reliable TME relevant gene signature was proposed and shown to
be capable of predicting the survival of DLBCL patients at high risk of poor survival.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous tumor
entity with a striking degree of genetic and clinical heterogeneity.
Although more than half of DLBCL patients may achieve long-
term remission, the disease remains a major clinical challenge,
with approximately 30% of patients not being cured (1, 2). The
heterogeneity of the tumor, in particular, poses a major barrier to
understanding the genetic basis of the disease and its response to
therapy (3). Therefore, there is an urgent need to identify new
individual prognostic and risk-stratified biomarkers.

In recent years, the role of the tumor microenvironment
(TME) in tumorigenesis has gradually been discovered (4).
Studies have revealed that tumor cells are targets of the
immune system in the early stages of tumor development;
however, over time, these cells begin to resist the innate
immune response and then gradually weaken and adapt to it
(5–7). Thus, a better understanding of the interactions between
the TME and the immune response may provide new approaches
to improve the efficiency of current immunotherapies, especially
immune checkpoint inhibitor and chimeric antigen receptor
(CAR) T cell therapies (8). Several studies have considered the
latent role of the TME in the occurrence and development of
DLBCL, but their results were controversial (9).

In the era of rituximab and immunotherapy, the ability of the
International Prognostic Index (IPI) to predict the prognosis of
individual DLBCL patients has decreased (10). A better
understanding of the interactions between the TME and IPI
scores may provide new approaches to improve response rates to
current treatment strategies. Thus, incorporating a prognostic
factor from the TME into the existing IPI system would help
greatly in the development of prognostic stratification of DLBCL.
Here, we propose a compound prognostic nomogram combining a
TME-related prognostic model with clinical features. This
approach provides a basis for better understanding the molecular
mechanisms underlying the prognoses of DLBCL patients.
MATERIALS AND METHODS

Data Sources
Gene expression profiling and clinical data of patients with
DLBCL were obtained from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). Data
series were downloaded in a normalized expression matrix file
format and were used directly for the analyses. Patients in the
GSE31312 dataset were randomly divided into a training group
(N = 282) and an internal validation group (N = 188) in a 6:4
ratio. In addition, two DLBCL microarray datasets were used for
validation, including 414 DLBCL patients from the GSE10846
dataset and 200 DLBCL patients from the GSE11318 dataset.

Generation and Analysis of ImmuneScore,
StromalScore, and ESTIMATEScore
The ESTIMATE (Estimation of STromal and Immune cells in
MAlignant Tumors using Expression data) package in R version
Frontiers in Oncology | www.frontiersin.org 2
3.6.3 was used to evaluate the abundance of immune and stromal
components of the TME from expression data (11). We obtained
three scores, ImmuneScore, StromalScore, and ESTIMATEScore,
which respectively represent the immune abundance, the stromal
abundance, and the sum of both in the TME; for instance, a
higher ImmuneScore means a higher abundance of immune
components in the TME.

Identification of Differentially
Expressed Genes
To obtain DEGs between high- and low-scoring samples,
microarray data from GEO were analyzed using NCBI GEO2R
(https://www.ncbi.nlm.nih.gov/geo/geo2r/). 470 patients with
GSE31312 were divided by the median of ImmuneScore
(StromalScore), and the high and low ImmuneScore
(StromalScore) groups were obtained, respectively. Based on
comparisons of the high- and low-scoring groups, Adj. P <0.05
and fold change >1.05 were set as the thresholds for DEG
identification to obtain differential immune and stromal genes.
We then took the intersection of immune differential genes and
stromal differential genes. The DEGs were visualized using
heatmaps (https://software.broadinstitute.org/morpheus/) and
Venn plots (http://bioinformatics.psb.ugent.be/webtools/Venn/).

Functional Enrichment Analyses
DAVID (https://david.ncifcrf.gov/summary.jsp), an online tool
for gene functional enrichment, was used for gene ontology (GO)
analysis (with respect to cellular component, molecular function,
and biological process) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis of the 183 DEGs shared
between the ImmuneScore groups and the StromalScore groups.
The results were displayed using the ggplot2 R package. P <0.05
was considered statistically significant.

Gene set enrichment analysis (GSEA) was performed using
the gsea-4.0.3 software downloaded from https://www.gsea-
msigdb.org/gsea/index.jsp to explore whether immune
pathways were significantly different between the high-risk and
low-risk groups.

Protein–Protein Interaction Network
Construction and Univariate Cox
Regression Analysis
The PPI network was obtained from the STRING database
(https://string-db.org/) and reconstructed with version 3.7.2 of
Cytoscape. Univariate Cox analysis of overall survival (OS) was
used to determine the relationships between expression of 183
DEGs and prognosis. In order to obtain the most critical and
meaningful genes to construct the model, we used a method
from Bi et al. (12) to further screen the genes. In the PPI
network, we kept the core gene located in the center by
eliminating genes with fewer peripheral nodes. In univariate
Cox regression, the smaller the p-value, the more significant the
prognosis. Therefore, the sharing factors between the degree of
the nodes ≥3 in PPI and the p <0.0001 of univariate Cox
regression analysis were carried out.
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Generation of the Risk Prediction Model
The training dataset GSE31312 was used to establish the TME
risk model. The R package “glmnet” was used for least absolute
shrinkage and selection operator (LASSO) Cox regression
analysis. A risk formula for predicting prognosis was
established by LASSO Cox regression analysis. Then, we
calculated the individualized risk score of each patient by
dividing all patients into high-risk and low-risk groups using
the median risk score as the cut-off value. Kaplan–Meier survival
analysis and log-rank test were used to evaluate the difference in
OS between the high- and low-risk groups. Time-dependent
receiver operating characteristic (ROC) curves were plotted to
evaluate prognostic value (13). The analysis was performed using
SangerBox (http://sangerbox.com/Tool).

Univariate and Multivariate Cox
Regression for IPI Components and the
Seven-Gene Signature
To assess whether the risk prediction model could be used as an
independent prognostic indicator for DLBCL patients, univariate
and multivariate Cox regression analyses were performed with
SPSS 26.

Construction and Validation of the
Nomogram
A nomogram integrating IPI components and the seven-gene
model was established based on the GSE31312 cohort to assess
the probability of 1-, 3-, and 5-year individualized OS via the rms
R package (https://cran.r-project.org/web/packages/rms/). In
addition, the discriminatory ability of the nomogram was
graphically evaluated using a calibration map.

CIBERSORT and Tumor-Infiltrating
Immune Cell Profile
We used the CIBERSORT computational method to estimate the
abundance distribution of TICs in GSE31312. The abundance of
22 immune cells was detected by t-test to observe the differences
among risk groups. All analyses were performed with R (version
3.6.3, https://www.r-project.org/).
RESULTS

Identification of Scores Associated With
Survival and Clinical Features
The clinical information of DLBCL patients from the GSE31312,
GSE10846, and GSE11318 datasets is summarized in Table 1. To
determine the correlations of ImmuneScore, StromalScore, and
ESTIMATEScore with clinical features of DLBCL, clinical data
from the GSE31312 dataset were analyzed. As shown in Figure
1A, the high-scoring group had longer OS than the low-scoring
group for ImmuneScore, StromalScore, and ESTIMATEScore.
Significant differences in ImmuneScore, StromalScore, and
ESTIMATEScore were found at different stages of DLBCL by
Kruskal–Wallis rank sum test (Figure 1B). On average, stage IV
ranked the lowest among all stages with respect to ImmuneScore,
Frontiers in Oncology | www.frontiersin.org 3
StromalScore, and ESTIMATEScore (Figure 1B). Moreover, the
scores showed a negative correlation with IPI scores by Kruskal–
Wallis rank sum test (Figure 1C). Taken together, these results
show that the immune and stromal components of the TME are
related to prognosis and progression of DLBCL.
DEGs AND ENRICHMENT ANALYSIS

To gain insight into the role of the TME in DLBCL, we divided
patients into high-scoring and low-scoring groups according to
the median ImmuneScore (StromalScore). The number of
patients in the high ImmuneScore group who also had a high
StromalScore group was 147, and the number of patients in the
low ImmuneScore group who also had a low StromalScore group
was also 147. Therefore, 294 patients had consistent
ImmuneScore and StromalScore subgroups, representing 62.5%
of all patients (Supplementary Table S1). We next investigated
the changes in immune (or stromal) score-related DEGs between
high-scoring and low-scoring samples. A total of 865
ImmuneScore-related DEGs were identified among which 836
genes were upregulated and 29 genes were downregulated
(Figure 2A). Similarly, there were 597 StromalScore-related
DEGs, including 569 upregulated and 28 downregulated genes
(Figure 2A). A Venn diagram was used to depict the co-up/
TABLE 1 | The clinical characteristics of the DLBCL patients from GEO.

Characteristics GSE31312
(N = 470)

GSE10846
(N = 414)

GSE11318
(N = 200)

Age
<=60 200 (42.55) 188 (45.41) 69 (34.5)
>60 270 (57.45) 226 (54.59) 94 (47)
NA 37 (18.5)
Gender
Male 271 (57.66) 224 (54.11) 110 (55)
Female 199 (42.34) 172 (41.55) 90 (45)
NA 18 (4.34)
Subtype
GCB 227 (48.30) 183 (44.20) 70 (35)
ABC 199 (42.34) 167 (40.34) 73 (36.5)
NA 44 (9.36) 64 (15.46) 57 (28.5)
Stage
I–II 220 (46.81) 189 (45.65) 75 (37.5)
IIII–IV 229 (48.72) 217 (52.42) 87 (43.5)
NA 21 (4.47) 8 (1.93) 38 (19)
ECOG
<2 374 (79.57) 296 (71.50) 122 (61)
≥2 96 (20.43) 93 (22.46) 39 (19.5)
NA 25 (6.04) 39 (19.5)
LDH
Normal 148 (31.50) 173 (41.78) 69 (34.5)
Elevated 278 (59.14) 178 (43.00) 78 (39)
NA 44 (9.36) 63 (15.22) 53 (26.5)
Extranodal sites
<2 194 (41.28) 238 (57.49) NA
≥2 276 (58.72) 145 (35.02)
NA 31 (7.49)
IPI score
<2 169 (35.96) NA NA
≥2 255 (54.25)
NA 46 (9.79)
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downregulated genes associated with the different score groups
(N = 183, Figure 2B, Supplementary Table S2). Enrichment
analyses showed that these DEGs were related to immune-
related GO terms, including immune response and
informatory response (Figure 2C, Supplementary Table S3).
KEGG pathway analyses also indicated that the genes were
mainly involved in cytokine-cytokine receptor interaction
pathways (Figure 2D, Supplementary Table S3).

Sharing of PPI Network and Univariate
Cox Regression
A total of 183 DEGs were used to construct the PPI network,
which is shown in Figure 3A. Univariate Cox regression was
performed on 183 genes, and the genes with p <0.0001 were
selected (Figure 3B). Then, intersection analysis was performed
between the degree of the nodes ≥3 in the PPI and p <0.0001,
resulting in 18 overlapping genes (Figure 3C).

Construction of a Risk Prediction Model
Based on the TME
According to the characteristics of variable selection and
regularization, LASSO Cox regression was used to determine
the optimal weight coefficient for the prognostic TME-related
Frontiers in Oncology | www.frontiersin.org 4
genes. Using one standard error of the best penalty parameter l
value and 1,000-fold cross-validation (Figure 4A), we obtained a
seven-gene prognostic signature from the 18 genes
identified above (Figure 4B). The left line indicated the
optimal values by l.min criteria (Figure 4B). Then, coefficient
values were extracted, and the coefficients of the seven genes
were multiplied by their mRNA expression levels to
calculate individual risk scores using the following
formula: Risk score = the mRNA expression level of CSF3R*
(−0.06993781) + the mRNA expression level of QKI*
(−0.76400334) + the mRNA expression level of LAMP2*
(−2.14079252) + the mRNA expression level of TIMP2*
(−0.98332426) + the mRNA expression level of LCP2*
(−1.23980147) + the mRNA expression level of AAK1*
(−0.46856491) + the mRNA expression level of ITGAM*
(−0.20720812). Patients from the training group were divided
into high-risk and low-risk groups based on the median risk score.
The distributions of risk scores, survival status, and expression
levels in the training set are presented in Figure 4C. Time-
dependent ROC curve analysis showed that during 1-, 3-, and 5-
year follow-up, the area under the curve (AUC) values were 0.71,
0.68, and 0.67 (Figure 4D). Survival analysis showed that patients
in the high-risk group had significantly shorter median OS
A

B

C

FIGURE 1 | Relationship of scores with the survival and important clinical factor of patients with DLBCL. (A) Kaplan–Meier analysis for DLBCL patients grouped by
ImmuneScores, StromalScores and ESTIMATEScore, and the differences between the two curves were determined by the logrank test. (B) The distribution of
ImmuneScores, StromalScores and ESTIMATEScore in stages using Kruskal–Wallis rank sum test. (C) The distribution of ImmuneScores, StromalScores and
ESTIMATEScore in IPI scores using Kruskal–Wallis rank sum test.
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compared with the low-risk group (hazard ratio (HR) = 4.63; 95%
confidence interval (CI) = 2.85–7.54; p < 0.0001; Figure 4E).

Internal Validation of our Signature in
GSE31312 Cohort
To verify the robustness of the seven-gene prognostic signature,
we used the signature to calculate individual risk scores and
divided patients from the GSE31312 cohort into high-risk
and low-risk groups using the same cutoff value determined in
the training set. The distributions of risk scores, survival status,
and expression levels were consistent with those obtained in
the training set (Supplementary Figure S1A). The verification
results demonstrated that the AUC values were 0.71, 0.68,
and 0.61 during 1-, 3-, and 5-year follow-up, respectively
(Supplementary Figure S1B). The prognosis of the low-risk
group was significantly better than that of the high-risk group
(HR = 4.1; 95% CI = 2.3–7.33; p = 0.001; Supplementary Figure
S1C). Finally, we also applied the seven-gene signature to all
GSE31312 samples and found that the relationships between the
distributions of risk scores, survival status, and expression levels
were again consistent with those obtained in the training set
Frontiers in Oncology | www.frontiersin.org 5
(Supplementary Figure S2A). Time-dependent ROC curve
analysis showed that in predicting 1-, 3-, and 5-year OS, the
AUC values were 0.71, 0.68, and 0.65, respectively, indicating an
acceptable degree of distinction (Supplementary Figure S2B).
Similarly, the prognosis of the low-risk group was significantly
better than that of the high-risk group (HR = 4.45; 95% CI =
3.07–6.47; p < 0.0001; Supplementary Figure S2C). Thus, the
model effectively provided prognostic classifications within the
GSE31312 dataset.

External Validation of our Signature in
GSE10846 and GSE11318 Cohorts
The seven-gene prognostic signature was validated in the
GSE10846 and GSE11318 datasets. The results are presented in
Figure 5 as Kaplan–Meier curves. Consistent with the above
findings, there were significant differences in survival outcomes
among different risk groups in both GSE10846 (HR = 1.96; 95%
CI = 1.42–2.7; p < 0.0001; Supplementary Figure S1D) and
GSE11318 (HR = 1.66; 95% CI = 1.14–2.42; p = 0.008;
Supplementary Figure S1E). Thus, the signature was predictive
in both internal and external datasets.
A

C D

B

FIGURE 2 | Heatmaps, Venn plots, and enrichment analysis. (A) The DEGs heatmaps are obtained by comparing the high score group and the low group in
Immunescores and Stromalscores. (B) Venn diagram shows that there are 181 co-up-regulated gene and 2 co-down-regulated genes. (C, D): GO (C) and KEGG
(D) analysis for 183 TME-related DEGs. number: Number of genes enriched. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Validation of the Seven-Gene Signature
Using Clinical Parameters and Patient
Outcomes
To further understand the relationship between the seven-gene
signature and other clinical data, including pathologic subtype,
clinical stage, and IPI score, we performed survival analysis using
clinical parameters. The results demonstrated that low-risk
patients had significantly favorable OS compared to high-risk
patients with the activated B-cell-like (ABC) subtype of DLBCL
(p = 0.0014; HR = 2.04; 95% CI = 1.31–3.19; Figure 5A). Similar
results were obtained in germinal center B-cell-like (GCB)
patients (p < 0.0001; HR = 2.85; 95% CI = 1.7–4.48; Figure
5B). An analogous result was also obtained in patients at
different stages; the low-risk group had a favorable prognosis
compared with the high-risk group (Figures 5C, D). Moreover,
patients in the low-risk group had significantly favorable OS
compared with high-risk patients in both the IPI<2 group and the
IPI≥2 group (Figures 5E, F). These results demonstrate the
independent predictive ability of our signature in clinical applications.
Frontiers in Oncology | www.frontiersin.org 6
Univariate and Multivariate Cox
Regression for IPI Components and the
Risk Prediction Model
To evaluate whether the risk prediction model could be used as
an independent prognostic index for DLBCL patients, analyses
were performed to identify the factors affecting the prognosis of
DLBCL patients. These analyses were performed only on the
datasets that included clinical IPI components data (GSE31312
and GSE10846), and the results showed that the seven-gene
signature was an independent prognostic factor in these datasets
(Table 2).

Construction and Validation of the
Nomogram
A nomogram was established to forecast 1-, 3-, and 5-year
survival based on IPI components and the seven-gene model
(Figure 6A). The nomogram demonstrated that high total points
predicted worse survival. The calibration chart showed an
acceptable agreement between the predicted survival rate and
A B

C

FIGURE 3 | The sharing of PPI Network and Univariate COX Regression. (A) 183 TME-related DEGs were used to construct PPI network. (B) 183 DEGs was
analyzed by univariate cox analysis, selecting the top significant factors with p < 0.0001. (C) 18 factors of overlap are obtained by venn map. PPI, Protein–protein
interaction network.
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A B

C D

E

FIGURE 4 | Construction of the prognostic signature. (A, B) Using 18 genes to perform a LASSO COX regression (A) and obtaining the seven-gene prognostic
signature (B). (C) The distribution of risk scores, the survival status of patients, and expression levels in training set were presented. (D) The time-dependent ROC
curve and AUC of the signature. (E) Kaplan–Meier plots of overall survival between high- vs low-risk groups in training set by the logrank test. LASSO, Least absolute
shrinkage and selection operator; ROC, Receiver operating characteristic curve; AUC, Area under curve.
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A

B

C

D

E

F

FIGURE 5 | Validation of seven-gene signature in significant clinical subgroups. (A, B) Kaplan–Meier plots of overall survival between high and low risk groups in
ABC subtype (A) and GCB subtype (B) by the logrank test. (C, D): Kaplan–Meier plots of overall survival between high- and low-risk groups in stages I–II (C) and III-
IV (D) by the logrank test. (E, F) Kaplan–Meier plots of overall survival between high- and low-risk groups in IPI<2 (E) and IPI≥2 (F) by the logrank test.
TABLE 2 | Univariable and multivariable Cox regression analysis in DLBCL.

Variable Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

GSE31312
Our signature 2.603 1.878–3.608 0.000 2.954 2.058–4.24 0.000
Age (>60 vs. <=60 years) 1.849 1.336–2.56 0.000 1.871 1.319–2.655 0.000
ECOG (>=2 vs. <2) 2.036 1.46–2.84 0.000 1.617 1.107–2.363 0.013
Stage (III/IV vs. I/II) 2.337 1.687–3.237 0.000 2.08 1.406–3.077 0.000
LDH (Elevated vs. Normal) 2.129 1.452–3.121 0.000 1.496 1.003–2.231 0.048
Extranodal sites (>=2 vs. <2) 2.202 1.596–3.037 0.000 1.519 1.053–2.192 0.025
GSE10846
Our signature 1.957 1.42–2.698 0.000 2.275 1.559–3.32 0.000
Age (>60 vs. <=60 years) 2.209 1.59–3.069 0.000 2.292 1.587–3.309 0.000
ECOG (>=2 vs. <2) 2.835 2.049–3.921 0.000 2.082 1.413–3.067 0.000
Stage (III/IV vs. I/II) 1.834 1.326–2.537 0.000 1.481 1.022–2.147 0.038
LDH (Elevated vs. Normal) 2.67 1.87–3.812 0.000 1.836 1.244–2.711 0.002
Extranodal sites (>=2 vs. <2) 1.927 1.144–3.246 0.014 1.095 0.575–2.085 0.782
Frontiers in Oncology | www.frontiersin.or
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the actual survival rate, indicating that our proposed nomogram
has stability in predicting DLBCL patient prognosis in clinical
practice (Figures 6B–D).

Immune-Infiltrating Cells and GSEA in
Different Groups
In order to further verify the relationship between TME and
DLBCL, we used CIBERSORT to analyze the proportions of 22
immune-infiltrating cells in GSE31312 samples between different
risk groups. Figure 7A shows the compositions of immune cells
in 470 patients, and Figure 7B shows the differences in the
proportion of each immune cell type between the high-risk and
low-risk groups. The results showed that 12 types of immune-
infiltrating cells were correlated with the risk group. Specifically,
the proportions of naïve B cells, memory B cells, regulatory T
cells, resting natural killer (NK) cells, and monocytes were
significantly higher in the high-risk group compared with the
low-risk group, whereas the proportions of CD8+ T cells,
activated CD4+ memory T cells, gamma delta T cells, activated
NK cells, M1 macrophages, M2 macrophages, and neutrophils
were significantly lower (Figure 7B). These results further
confirmed that the prognostic signature was related to the
immune activity of the TME. GSEA was used to probe the
potential mechanism for the two risk groups to identify
the enriched KEGG pathway. Two immune-related pathways
were enriched in the low-risk group: intestinal immune network
for IgA production and primary immunodeficiency diseases
Frontiers in Oncology | www.frontiersin.org 9
(Figures 7C, D), and the rest of the enrichment results are
shown in the Supplementary Figure S1. The immune pathway
of the intestinal immune network for IgA production is
associated with central deficits in the pathogenesis of the
disease (14). Primary immunodeficiency is a pathway
associated with primary immunodeficiency (15). These results
suggest that the prognosis of DLBCL may be closely related to
immune regulation in the TME.
DISCUSSION

DLBCL is characterized by a heterogeneous tumor entity with
variable therapeutic outcomes. Risk stratification and prognosis
of DLBCL patients remain challenges for clinicians and
researchers (1, 16). In the rituximab era, IPI, R-IPI, and
NCCN-IPI risk scores are calculated using easily obtained
clinical features that are part of standard diagnostic
procedures. However, all three scoring systems fail to identify a
very high-risk group with long-term OS clearly below 50% (10).
Moreover, the progression of a tumor is affected not only by its
intrinsic characteristics but also by the extrinsic TME. Immune
system accumulation and immune cell infiltration could have a
profound impact on carcinogenesis and prognosis (17). There is
also increasing evidence that the microenvironment has an
important role in predicting tumor progression and prognosis
(17, 18). Consequently, screening for a gene prognostic signature
A

B C D

FIGURE 6 | A nomogram Based on the seven-gene prognostic signature. (A) Construction of a nomogram to forecast 12-, 36-, and 60-month survival by the IPI
components & the seven-gene model. (B–D) The calibration chart shows that the predicted survival rate is consistent with the actual survival rate for 12 months (B),
36 months (C), and 60 months (D). IPI, International Prognostic Index.
February 2021 | Volume 11 | Article 614211

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Pan et al. TME-Based Prognostic Model for DLBCL
that adequately reflects the TME would be of great significance
for individualized prevention and treatment of DLBCL patients
(16, 19). In this study, we established seven prognostic gene
markers which robustly and reliably predicted an individualized
immune prognostic model for DLBCL patients on the basis of
immune genes. The seven-gene prognostic signature was
combined with IPI components to build a composite
prognostic nomogram, which was capable of accurate
prediction and showed positive net benefit in DLBCL.

The seven genes in our signature were TIMP2, QKI, LCP2,
LAMP2, ITGAM, CSF3R, and AAK1. Although these genes are
differentially expressed in immune cells or stromal cells, the
expression of these genes in normal germinal center B cells
and in a subset of DLBCL is uncertain, and our sequencing
data comes from tumor tissues, so we cannot distinguish
whether the expression level is caused by stromal or tumor
components. High expression of TIMP2 has been reported to
inhibit matrix metalloproteinases to produce anti-tumor activity
(20). TIMP2 was also demonstrated to interact with multiple
integrin pathways and is involved in angiogenesis in gastric
cancer (21). LCP2 encodes a protein of 533 amino acids that
participates in T cell activation and increases the activity of the
IL-2 gene promoter through its transient overexpression (22).
Frontiers in Oncology | www.frontiersin.org 10
High expression of LCP2 is associated with better outcomes in
DLBCL patients (17, 18). CSF3R is closely related to prognosis
of patients with chronic neutrophilic leukemia or atypical
chronic myeloid leukemia and thus represents a potentially
useful criterion for disease diagnosis (23). QKI gene encodes
an RNA-binding protein that regulates the functions of diverse
mRNAs, which play critical parts in tumorigenesis through
inactivation of tumor suppressor genes in multiple tumors (24,
25). LAMP2 is essential for maintaining the structural integrity
of the lysosomal compartment and relocalizes to the cell surface
of some highly metastatic tumor cells. LAMP2 has been
functionally validated as an essential mediator of drug
resistance and tumor recurrence in hematological diseases (26–
28). ITGAM and AAK1 have not been previously reported to
be related to cancer, and our study is the first to suggest that
they could be used as new prognostic markers of DLBCL.
Furthermore, the GSEA results showed that enrichment of the
seven-gene signature was significantly correlated with immune-
related signaling pathways, indicating that this model has
potential clinical applications in predicting survival outcomes
of patients.

Zamani-Ahmadmahmudi et al. constructed an independent
seven-gene prognostic signature that could distinguish low-risk
A C

B D

FIGURE 7 | Immune-Infiltrating Cells and GSEA in Difference of Groups. (A) The landscape of immune cell infiltration of DLBCL patients in GSE31312. (B) the
difference of 22 immune-infiltrating cells in GSE31312 samples among risk groups. (C, D) GSEA was performed between high-risk and low-risk groups based on the
seven-gene signature. (*p < 0.05; **p < 0.01; ***p < 0.001).
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patients with DLBCL from high-risk ones (29). In our study, we
not only constructed a risk prediction model for the prognosis of
DLBCL patients, but we also explore the relationship between
TME and DLBCL. The results showed that immune and stromal
components in the TME were negatively correlated with the
prognosis of DLBCL patients. Our TME-related seven-gene
prognostic signature was shown to have strong predictive
power and to represent an independent prognostic factor. In
the era of immune targeting, distinguishing high-risk patients
from the perspective of TME can inform clinical decisions and
lead to better outcomes.

Although our TME-based prognostic model was shown to
predict tumor prognosis in a large sample, this study had some
limitations. First, owing to the retrospective design and the
unavailability of control group samples in the GEO databases,
the results were biased to some extent. Thus, a well-designed,
prospective, international, multicenter clinical trial is needed to
verify our findings in the future. In addition, further functional
research is warranted to explore the molecular functions of the
identified immune genes during DLBCL progression.

In conclusion, we established for the first time a TME-related
prognostic signature in DLBCL patients, which is a promising
prognostic model when combined with clinical IPI components.
The results presented here not only help to clarify immune
responses in the DLBCL microenvironment but also indicate
new clinical applications for immune therapy and individualized
therapy in patients with DLBCL.
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Supplementary Figure 1 | Validation of the prognostic signature. (A) The
distribution of risk scores, the survival status of patients, and expression levels in
internal validation set were presented. (B) The time-dependent ROC curve and AUC
in internal validation set. (C) Kaplan-Meier plots of overall survival between high- vs
low-risk internal validation groups by the logrank test. (D) Kaplan–Meier plots of
overall survival between high- and low-risk groups in GSE10846 by the logrank test.
(E) Kaplan–Meier plots of overall survival between high- and low-risk groups in
GSE11318 by the logrank test. ROC, receiver operating characteristic curve; AUC,
area under curve.

Supplementary Figure 2 | Validation of the prognostic signature in all GSE31312
tumor samples. (A) The distribution of risk scores, the survival status of patients,
and expression levels were presented. (B) The time-dependent ROC curve and
AUC in all GSE31312 patients. (C) Kaplan–Meier plots of overall survival between
high- and low-risk groups in GSE31312 by the logrank test. ROC, receiver
operating characteristic curve; AUC, area under curve.

Supplementary Table 1 | ImmuneScores, StromalScores, and
ESTIMATEScore.

Supplementary Table 2 | The list of 183 DEGs.

Supplementary Table 3 | The results of the gene enrichment analysis.

Supplementary Picture 1 | GSEA enrichment results.
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