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Breast cancer, the most frequent malignancy in women worldwide, is a heterogeneous
group of diseases, characterized by distinct molecular aberrations. In precision medicine,
radiation oncology for breast cancer aims at tailoring treatment according to tumor biology
and each patient’s clinical features and genetics. Although systemic therapies are
personalized according to molecular sub-type [i.e. endocrine therapy for receptor-
positive disease and anti-human epidermal growth factor receptor 2 (HER2) therapy for
HER2-positive disease] and multi-gene assays, personalized radiation therapy has yet to
be adopted in the clinical setting. Currently, attempts are being made to identify
prognostic and/or predictive factors, biomarkers, signatures that could lead to
personalized treatment in order to select appropriate patients who might, or might not,
benefit from radiation therapy or whose radiation therapy might be escalated or de-
escalated in dosages and volumes. This overview focuses on what has been achieved to
date in personalized post-operative radiation therapy and individual patient radiosensitivity
assessments by means of tumor sub-types and genetics.

Keywords: breast cancer, personalized medicine, precision medicine, radiation oncology, biomarkers, molecular
subtypes, gene profiles, genetic assay
INTRODUCTION

Breast cancer is the most frequent malignancy in women worldwide. On the basis of clinical level 1
evidence, current international guidelines recommend adjuvant systemic and radiation treatments,
as well as the radiation therapy (RT) volumes to be irradiated, dose delivery and fractionation
schedules after breast conserving surgery (BCS) and mastectomy. Personalized approaches are
needed as, rather than one disease with varying histological features and clinical behavior, breast
cancer is a heterogeneous group of diseases, characterized by distinct molecular aberrations (1).
Personalized medicine, which accurately assesses risk factors for tumor recurrence or progression at
all care stages from diagnosis to surgery, therapy and follow-up, already dictates choice of systemic
therapy for breast cancer patients. Endocrine therapy (ET) is prescribed for hormonal receptor-
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positive disease and anti-human epidermal growth factor
receptor 2 (HER2) therapy for HER2-positive disease. In early-
stage disease, multi-gene assays (i.e. Oncotype DX® Breast
Recurrence Score (RS) (Genomic Health Inc., Redwood City,
CA, USA), MammaPrint® (Agendia BV, Amsterdam,
Netherlands), Prosigna® (PAM50; NanoString Technologies
Inc, Seattle WA, USA), EndoPredict® (Myriad Genetics Inc,
Salt Lake City, UT, USA), Breast Cancer Index® (BCI)
(NeoGenomics Laboratories, Fort Myers, FL, USA) (2–4) may
be offered as prognostic tools to estimate the risk of distant
recurrence. Their results may lead to tailored adjuvant systemic
therapies i.e. prolonged ET, ET alone or chemotherapy before ET
(2, 4–7). Finally, studies are investigating the potentialities of
immunotherapy in the adjuvant setting in triple negative (TN)
disease (8).

Unlike systemic therapy, fully personalized RT has yet to be
adopted in the clinical setting (9) as standard clinical-
pathological parameters like patient’s age, tumor size, nodal
involvement, margin width, hormone receptor status, tumor
grade, lymphovascular invasion still drive adjuvant RT.
Current treatment planning includes contouring patient-
specific target volumes and organs at risk of toxicity while
beam angles, shapes, and energies are individually defined
so that personal dose-volume histograms are selected to ensure
an optimal treatment choice and delivery for each patient.
Advanced RT techniques such as IMRT, VMAT, or
tomotherapy result in better dose homogeneity within the
target volume and allow for a reduction of higher doses to the
organs at risk (e.g., heart, lungs) (10). Despite these advantages,
modulated RT techniques are still not considered standard
of care and, consequently, are reserved for selected cases,
such as when regional nodes need to be irradiated, breasts are
voluminous and when patients present an unfavorable anatomy.
Research is advancing into proton irradiation for selected
patients as these particles deliver the dose to a specified depth,
thus lowering the risk of cardiac and pulmonary toxicity (11–21).
Even though there has been a clear increase in proton facilities
in recent years, availability remains scarce, evidence supporting
its clinical use is limited, and costs are high (22, 23). Another
fast-growing research area in radiation oncology is radiomics
which uses data-characterization algorithms to extract features
from radiological images, detect patterns, and uncover cancer
characteristics as images contain much more information than
perceived by the imaging interpreter or the clinician. In the field
of breast cancer, interest in radiomics has grown significantly in
recent years, as clinicians attempt to elucidate intrinsic biological
factors and discover how they shape therapeutic responses.
Linking radiomics information to disease stratification,
prognosis, and therapeutic response could provide valuable
information for personalized therapy (24–26) but, unfortunately,
to date no study has linked radiomics information with
RT outcomes.

Since not all patients with breast cancer benefit from RT, and
its benefit is not equal across risk groups, a current challenge is to
identify suitable candidates as no specific biomarkers are
available to guide decision-making. In order to improve cure
Frontiers in Oncology | www.frontiersin.org 2
and survival rates and/or reduce toxicity, attention is focused at
present on identifying prognostic and/or predictive factors,
biomarkers, signatures so as to aid decision-making in whether
or not to administer RT and escalate or de-escalate dosages and
volumes. Research is currently investigating protein or
phenotypic markers, molecular sub-types, new classifiers, and
genomic signatures in attempts to decipher the tumor’s genetic
fingerprint or surrogate sub-type and associated risk of local or
loco-regional relapse (LR, LLR) which may determine post-
operative RT. This overview hopes to throw some light on the
topic by reviewing studies on radiosensitivity as assessed by
tumor sub-types and genetics (Figure 1).
SOURCES OF INFORMATION

From May 2020 to September 2020, Pubmed and the Cochrane
library were searched for relevant literature.
BIOLOGY-DRIVEN PERSONALIZED
ADJUVANT RADIATION THERAPY

As outcomes vary greatly after BCS and mastectomy, clinical
studies have been conducted since the beginning of this century
to establish the impact of molecular sub-types on LR, LRR,
distant metastases (DM), and overall survival (OS) and their
links with well-known risk factors for relapse, type of surgery,
and RT.

Assessing Whether Tumor Molecular Sub-
Type Is Associated With Outcome
One of the earliest studies enrolled 482 patients (24% TN) treated
with BCS and RT from 1980 to 2003; 75% were node negative
and outcomes were analyzed at a median follow-up of 7.9 years.
Compared with all other molecular sub-types, TN did not
correlate with local control; TN patients had significantly
worse distant metastasis-free survival and cause-specific
survival (27). Another study of 1,601 patients [180 TN (11.2%)
vs all others] confirmed that no significant difference emerged in
local recurrence rates. TN was associated with a shorter median
time to local recurrence (2.8 vs 4.2 years) and was linked to a
significantly worse probability of being distant recurrence-free
and breast cancer specific survival free (28).

Other retrospective studies showed that sub-type was a
prognostic factor for outcome. In a series of 793 patients who
were treated with BCS followed by RT from 1998 to 2001, all
other sub-types were compared with Luminal A (595/793; 75%).
Multivariate analysis showed that the adjusted hazard ratio of LR
was 7.1 for basal type tumors and 9.2 for HER2-positive. In
univariate analysis the adjusted hazard ratio for distant
metastases was 3.9 for Luminal B, 4.6 for Basal Subtype and
5.3 for HER2-positive. However, after adjusting for tumor grade
and size, number of positive nodes and use of systemic therapy,
only Luminal B and the basal groups showed a significantly
greater risk of distant metastases (29).
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A meta-analysis of 22 studies with 15,312 patients who were
treated with BCS or mastectomy ± post-operative RT showed that
TN tumors were associated with a higher risk of LRR andDM than
all other sub-types pooled together. In separate analyses, TN was
linked to a higher risk of LRR and DM than the luminal subtypes
but to a lower risk than the HER2 sub-type even though OS was
the same (30). Another meta-analysis of 15 studies in which 21,645
patients had been treated with BCS (88.3% also received post-
operative RT), confirmed the TN sub-type had the highest
recurrence risk of all (31). Table 1 (32–42) reports results from
other studies that were not analyzed in these two meta-analyses.

In summary, even though TN and HER2-positive tumors
were reported to have the worst prognosis and Luminal A
tumors the best, while Luminal B tumors were variable,
intrinsic study limitations need to be kept in mind when
considering the links between tumor sub-type and prognosis as
several methodological flaws could have impacted on the results.
All studies were retrospective, subgroup definitions were not
always the same, negative estrogen receptor (ER) and
progesterone receptor (PR) status was not standardized (<10 or
<1%), no guidelines were available to test for HER2-positive
disease, HER2-positive status at immunohistochemistry was
considered negative when not investigated by fluorescence in
situ hybridization (FISH). Luminal B were usually ER-positive,
PR-positive, and HER2-positive, Ki-67 was rarely considered and
G3 was sometimes used as its surrogate. Finally, some studies
were conducted before trastuzumab was available for HER2-
positive disease. As many of these biases have now been
Frontiers in Oncology | www.frontiersin.org 3
overcome and trastuzumab administration is standard for
HER2-positive tumors, future results are expected to illustrate
correlations between outcomes and molecular sub-types better.

Assessing Tumor Molecular Sub-Type,
Standard Risk Factors, and Outcome
One major issue was, and still is to a certain extent, whether
outcome was linked to tumor sub-type as well as to well-known
risk factors. When compared with histology, tumor size, and
margin status, biological sub-types did not emerge as significant
risk factors for LRR in a multivariate analysis of 1,994 patients
(45% of luminal HER2 and 53% of HER2-positive received
trastuzumab) (38). On the other hand, HER2 and TN subtypes
appeared to be risk factors for time to LR, together with older age
at diagnosis and RT dose to the whole breast in a multivariate
analysis of 1,434 patients treated with BCS andWBI (43). HER2-
positivity, TN and Luminal B sub-types, number of positive
lymph nodes, and younger age emerged as risk factors for LR in
2,233 patients (42). Multivariate analysis showed that hormonal
receptor-positive/HER2-positive, hormonal receptor-negative/
HER2-negative phenotypes, and number of positive nodes
were associated with shorter LRR-free survival in 819 patients
who did not receive post-mastectomy RT. Age over 50 years was
associated with longer LRR-free survival (36).

Despite apparent divergencies as studies did not analyze the
same risk factors, these results throw light on the difficulties in
achieving definitive evidence of the impact of molecular sub-type
upon outcomes.
FIGURE 1 | Flow chart of the present overview’s topics.
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TABLE 1 | Studies assessing whether tumor molecular sub-type is associated with outcome which were not included in the metanalyses.

Author N° patients Surgery/RT Follow-up Outcomes and Results

Billar et al. (32) 1,061 BCS/Mastectomy ± RT 31 months LRR
TN         5:7%

HER2+ 2:9%

ER +      1:0%
g (p = 0:001)

Panoff et al. (33) 582 Mastectomy + RT 44.7 months 5-y LRR
TN vs other combinations 11.8 vs 3.9% (p < 0.001)

van der Hage et al. (34) 549 <40 y
341 <40 y and N0

BCS/Mastectomy 11 years OS (549 pts)
Basal vs Luminal A HR 0.50 (95% CI 0.29–0.86)
Basal vs HER2 HR 0.42 (95% CI 0.17–1.04)
Basal vs Luminal B HR 0.92 (95% CI 0.56–1.48)
OS (341 pts)
Basal vs Luminal A HR 0.22 (95% CI 0.08–0.60)
Basal vs HER2 HR 0.25 (95% CI 0.03–1.85)
Basal vs Luminal B HR 0.87 (95% CI 0.48–1.59)

Wang et al. (35) 2,118 BCS/Mastectomy ± RT 67.9 months OS
Luminal A  94:2%

Luminal B 92:6%

HER2+ 88:7%

Basal − like 87:9%

g (p = 0:001)

RFS
Luminal A  87:3%

Luminal B 84:3%

HER2+ 80:9%

Basal − like  79:1%

g (p < 0:001)

Dominici et al. (36) 819 Mastectomy + RT 58 months 5-y LRR
Hormonal Receptor + =HER2 −     1%

Hormonal Receptor + =HER2 +  6:5%

Hormonal Receptor − =HER2 +     2%

Hormonal Receptor − =HER2 −  10:9%

g (p < 0:01)

Tseng et al. (37) 5,673 Mastectomy + RT 50.1 months 5-y cumulative LRR

Luminal A               0:99%

Luminal B          2:20%

HER2 without TR    3:60%

HER2 with TR    0:26%

TN             5:25%

g (p < 0:001)

Truong et al. (38) 1,994 Mastectomy 4.3 years 5-y LRR-free survival

Luminal A           1:8%

Luminal B           1:8%3:1%

Luminal HER2     1:7%

HER2+                1:9%

TN               1:9%

g (p = 0:81)

(Continued)
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Assessing Type of Surgery, Tumor
Molecular Sub-Type, Post-Operative RT,
and Outcome
Current evidence suggests type of surgery should not vary with
tumor molecular subtype in an attempt to improve outcomes. A
systematic review of 15 studies enrolled 12,592 patients. After
BCS and post-operative RT in 7,176 patients, luminal tumors
were linked to a lower risk of LRR than HER2-positive and TN
tumors; the risk was higher in HER2-positive than in TN tumors.
After mastectomy in 5,416 patients, followed by RT in 44%,
luminal tumors had a lower risk of LRR than HER2-positive and
TN tumors, both of which had similar risks. In five of these 15
studies with comparable data for patients who underwent
mastectomy or BCS followed by RT, LRR was independent of
surgery in TN tumors and was lower after mastectomy in
luminal and HER2-positive subtypes (44). In another meta-
analysis 8/22 studies compared recurrence rates after BCS and
mastectomy in patients with TN tumors, showing the LRR and
DM rates were significantly lower after BCS (30). Biases such as
retrospective studies, different disease stages and follow-up
times, old and/or unspecified schemes of adjuvant systemic
therapies, trastuzumab administration to very few patients, and
few events in some series, precluded drawing conclusions on the
best surgical approach according to sub-type.

Although the next challenge was to determine whether post-
operative RT impacted upon outcomes, reports of its benefits
Frontiers in Oncology | www.frontiersin.org 5
were divergent because no study was designed to link post-
operative RT, outcomes, and different sub-types. In a
retrospective analysis of 2,118 primary operable breast cancer
with diverse subtypes, post-operative RT impacted significantly
on relapse-free survival only in the Luminal A sub-type (35).
BCS + RT were associated with a significantly lower risk of LRR
than mastectomy alone in T1-2N0 TN breast cancer patients but
post-mastectomy RT nullified this difference (45).

Other studies investigated whether tumor sub-type was
predictive of RT benefit after mastectomy. In trials 82 b and c,
the Danish Breast Cancer Cooperative Group (DBCG)
randomized 3,083 high-risk breast cancer patients to post-
mastectomy RT or not. Bio-pathological features were analyzed
in 1,000 by staining tissue microarray sections for ER, PR, and
HER2. At a median follow-up of 17 years for surviving patients,
post-mastectomy RT significantly reduced the probability of LRR
in receptor-positive and HER2-negative tumors, receptor-
negative and HER2-positive tumors and TN tumors but was
associated with significantly better OS only when tumors were
hormonal receptor positive and HER2-negative (46). In a merged
analysis of the British Columbia and DBCCG 82b trials on
premenopausal patients, post-mastectomy RT significantly
lowered LRR in Luminal A tumors and, to a lesser extent, in
basal-like tumors. The small cohort may account for the lack of
significance in the other sub-types (47). In a US national
comprehensive cancer network report, post-mastectomy RT
TABLE 1 | Continued

Author N° patients Surgery/RT Follow-up Outcomes and Results

5-y DR
Luminal A           1:8%

Luminal B           5:0%

Luminal HER2     2:4%

HER2+                1:1%

TN                       9:6%

g (p < 0:001)

Gangi et al. (39) 1,851 BCS ± RT 60 months 5-y LRR
TN vs luminal A HR 1.4 (95% CI, 0.6–3.3)
TN vs luminal B HR 1.6 (95% CI, 0.5–5.2)
TN vs HER2 HR 1.1 (95% CI, 0.2–5.2)

Liu et al. (40) 501 BCS ± RT 10 years 10-y IBR

Luminal A      25:2%

Luminal B     10:5%

other              21:3%

g (p < 0:001)

Bergen et al. (41) 571 ≥65 y NA 38 months DRR

HER2+ 36:1%

TN         25:4%

Luminal 14:5%
g (p < 0:001)

Braunstein et al. (42) 2,233 BCS ± RT 106 months LR
Luminal A vs Luminal-B (HR 2.64, p = 0.001)
Luminal A vs Luminal HER2 (HR 0.93, p = 0.90)
Luminal A vs HER2+ (HR 5.42, p < 0.001)
Luminal A vs TN (HR 4.33, p < 0.001)
BCS, breast conserving surgery; RT, radiotherapy; LRR, loco-regional relapse; TN, triple negative; OS, overall survival; RFS: relapse-free survival; TR, trastuzumab; IBR, ipsilateral breast
relapse; DRR, distant recurrence rate; LR, local relapse.
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was administered to 30% of 5,673 patients with stage I-III breast
carcinoma. Its effect on LRR was greater in Luminal A than B
while it had no significant effect on TN patients or in the HER2-
positive group who did not receive trastuzumab (37).

After BCS a 6- immunohistochemistry-marker subtyping
panel analyzed tissue samples from 501/769 node negative
patients. They were enrolled in the Toronto-British Columbia
randomized clinical trial to receive tamoxifen or tamoxifen plus
RT. RT significantly reduced the cumulative incidence of LRR in
high-risk sub-types but not in Luminal A and B tumors due to,
perhaps, the few relapses in these subgroups. Although patients
with luminal tumors benefitted less from RT than other sub-
types, the interaction between RT and sub-type was not
significant (40). Different results for 958 tumors emerged from
the Swedish Breast Cancer Group 9 Radiotherapy (SweBCG91-
RT) trial which used immunohistochemistry and in situ
hybridization of tissue microarrays. One thousand three
patients with node-negative, stage I and II breast cancer were
randomly assigned to BCS with or without RT; only 8% received
systemic adjuvant therapy. RT significantly reduced the
cumulative incidence of LR as a first event within 10 years for
Luminal A and B–like tumors. No significant effect was seen on
HER2-positive or TN tumors, the latter perhaps because very few
patients had this sub-type. Death from any cause was not
improved by RT in any sub-type but breast cancer-related
mortality was reduced in TN tumors (48).

Overall, RT significantly reduced the risk of LRR in
mastectomized Luminal A patients, but its impact was less
clearly defined after BCS (35, 40, 46–48). Disease stage may
account for these divergencies, as mastectomized patients had
high-risk lymph node positive disease (46, 47) while BCS patients
had T1-2N0 disease (40, 48). Differences in cohort size, number
of events, and administration of adjuvant systemic therapy may
also have played roles in BCS outcomes.
GENOMIC-DRIVEN PERSONALIZED IN
ADJUVANT RADIATION THERAPY

Genomic analysis appears to be a potentially powerful tool to
improve risk stratification and personalize approaches to RT, as
individual gene profiles may overcome the limitations of bio-
pathological markers of molecular sub-types and might succeed
where other approaches have not. Molecular signatures may,
however, be unable to account for the complexity of the radiation
response due to the heterogeneous biology of breast cancer.
Furthermore, translating laboratory-derived molecular signatures
into standardized, clinically available tests is a complex task.

Assessing Genomic Profiling/Classifiers,
Risk Stratification, and Radiosensitivity
DNA microarray analysis of the primary tumor was performed
in 94 patients who underwent mastectomy without RT, some of
whom developed LRR after a minimum 3-year follow-up. Two
distinct gene expression profiles with, respectively, 258 and 34
genes, emerged as significant predictors of LRR. Multivariate
Frontiers in Oncology | www.frontiersin.org 6
analysis revealed that besides ER status, the genomic predictive
index was the only other independent prognostic factor of LRR
and might potentially be used to select patients for post-
mastectomy RT (49).

To identify genes which could predict whether post-
mastectomy RT would reduce LRR, frozen tumor tissue
specimens were analyzed from 191 high-risk mastectomized
patients who were randomized to RT or not. Gene-expression
analysis identified seven genes and a weighted gene-expression
index (DBCG-RT profile) was able to separate patients into high
and low LRR risk groups. It might identify patients who are most
likely to benefit from post-mastectomy RT as it impacted
significantly on the risk of LRR only in high-risk patients (50).

In gene expression profiling, the wound-response signature,
70-gene prognosis profile and a hypoxia-induced profile had
been shown to predict metastasis-free survival and OS. They
were investigated as LR predictors in 295 patients who received
BCS followed by whole breast irradiation (WBI). Only the 512
gene “wound” signature distinguished low- from high-risk
patients (51). Hierarchical cluster analysis found the two main
clusters were not linked to LR in 165 primary invasive breast
cancers who were treated with BCS followed by WBI, 56 of
whom (34%) were relapsing premenopausal patients with pT1 or
pT2 disease. Although molecular sub-types and chromosomal
instability signatures were associated with LR (52) they were not
validated in a larger, independent data set (53).

ther approaches aimed at correlating genomic predictors of
radiosensitivity with outcome. A radiosensitivity index (RSI) that
had been clinically validated in 3 independent datasets of
different tumors (54–56) was tested in 159 breast cancer
patients from the Karolinska University Hospital and 344 from
the Erasmus Medical Center. In both datasets the RSI correlated
with the risk of DM, suggesting it might serve as a predictive tool
for RT efficacy (57). When RSI was combined with molecular
sub-types, it distinguished two subgroups in TN patients. One
bore radioresistant tumors and was at increased risk of LR while
the other displayed similar radiosensitivity to luminal patients. In
multivariate analysis radiosensitivity combined with molecular
sub-type and age emerged as the most significant predictors
for LRR (58). In an attempt to develop radiosensitivity
signatures intrinsic radiosensitivity ranged from 17 to 77% in
16 breast cancer cell lines (5 luminal, 4 basal A, 4 basal B, 3
HER2/neu amplified) which were tested in radiation clonogenic
assays (RSS). They were associated with 147 genes (80
negatively; 67 positively) even though they did not correlate
significantly with tumor sub-types. A 51-gene RSS which was
elicited in a training cohort of patients who had been treated with
post-operative RT, was validated in an independent series of 228
cases, most of whom had received RT. At 10 years, the RSS
predicted the risk of LRR with sensitivity and negative predictive
values of 84 and 89%, respectively, outperforming clinical
factors (59).

To predict the benefit of RT, gene expression signatures were
developed on the basis of intrinsic radiosensitivity in 948 patients
and of anti-tumor immunity in 129. Since radiosensitivity was
significantly associated with loco-relapse free survival, the
March 2021 | Volume 11 | Article 616042
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signature was validated in a cohort of 1,439 patients and a trend
towards benefit was observed in the radiation-sensitive vs the
non-radiation sensitive. RT did not impact on disease-specific
survival which, however, was significantly better in the immune-
effective group. Integrating the two signatures predicted RT
benefit better. Validation in a prospective randomized trial is,
however, needed before the radiosensitivity or anti-tumor
immunity signatures might eventually be adopted in clinical
practice (60).

Another approach to personalizing RT is the genomic-
adjusted radiation dose (GARD). Derived from combining the
gene-expression-based radiosensitivity index (54–56, 61) with
the linear quadratic model, GARD emerged as the only
independent predictor of DM-free survival in 263 patients with
clinical T1-T3N0 breast cancer who underwent BCS and WBI.
GARD was significantly associated with relapse-free survival in a
cohort of T1-T3, N0-N1 patients (61). Hypothesizing that
GARD could predict LR, it was tested in two independent
datasets of patients with TN tumors. The first enrolled 58
patients treated with BCS and post-operative RT to the breast
plus/minus draining nodes while the second included 55 patients
who received BCS or mastectomy, followed by post-operative
RT. Since GARD was significantly associated with local control
in both, a model was developed to tailor the RT dose to each
patient. It showed that doses up to 70 Gy may be needed for
some patients despite the increased risk of toxicity (62).

To tailor response to RT the Adjuvant Radiotherapy
Intensification Classifier (ARTIC) was developed from three
datasets of early-stage breast cancer patients who were treated
with RT. Comprising 27 genes and the patient’s age, data
included details of gene-expression and LR. In its validation
for LRR in 748 patients, ARTIC emerged as a highly prognostic
tool in patients treated with RT. When ARTIC scores were low,
RT significantly reduced the 10-year cumulative incidence of
LRR; high ARTIC scores were associated with less benefit from
RT. As 88% of LR occurred in the same quadrant as the primary
tumor in the high-risk group and 85% of regional relapses in the
axilla, some patients would have benefitted from intensified RT
Frontiers in Oncology | www.frontiersin.org 7
schedules such as tumor-bed boost and regional nodal RT (63).
ARTIC should be re-validated in patients treated with modern
systemic adjuvant strategies since the high relapse rate may have
been due to adjuvant systemic therapy being administered to a
low percentage of patients.

Even though some molecular signatures/classifiers have been
developed to predict DM, LRR rate, and/or tumor response to
radiation, none is, as yet, approved for clinical use mainly because
the gene profiles differed greatly and impacted outcomes
differently. Clinical validation of gene signatures is arduous due
to lack of standardization in RNA extraction and differences in
patient and treatment selection. Results were derived from
retrospective, often small, cohorts with diverse RT doses and
volumes and, when reported, systemic therapy schedules were
generally old. Furthermore, routine gene profiling for individual
patients is far too expensive for clinical practice (64, 65).

Table 2 (66–69) reports other studies on this topic.

Assessing Genomic Tests and Outcome
Following in the footsteps that guide clinicians in the choice of
adjuvant systemic therapy, studies attempted to stratify patients
by means of commercially available small gene sets. To identify
suitable breast cancer candidates for adjuvant RT, genomic tests
investigated risk subgroups and LRR and whether the
relationship varied with the type of local treatment.

The Oncotype DX 21-gene RS significantly associated RS with
LRR risk in node-negative, ER-positive patients from the
National Surgical Adjuvant Breast and Bowel Project (NSABP)
B-14 and B-20 trials, who had received BCS and WBI or
mastectomy, followed by tamoxifen (895 patients), placebo
(355), or chemotherapy plus tamoxifen (424). In multivariate
analysis, RS emerged as a significant independent predictor along
with age and type of initial treatment, suggesting it might
discriminate between candidates for post-operative RT (70).

RS was not associated with LRR in 110 ER-positive patients
who received BCS followed by RT. On the other hand, in 53
mastectomized patients it seemed helpful in selection for post-
mastectomy RT as, at a median follow-up of 68.2 months, an RS
TABLE 2 | Gene expression and outcomes in breast cancer patients.

Author Analysis Major Results

Niméus-Malmström et al. (66) Gene expression analysis on RNA in 143 patients LR
ER+ vs ER− ROC areas (0.91, p = 9 × 10−6 vs 0.74 p = 0.08)

Le Scodan et al. (67) A quantitative reverse transcriptase PCR-based
approach measured mRNA levels of 20 genes in
97 patients

RAD51 was the only gene associated with:
5-yr LRR-free survival
100% (low RAD51) vs 70% (high RAD51), p < 0.0001
5-yr OS
95% (low RAD51) vs 69% (high RAD51), p = 0.0002

Meng et al. (68) Gene expression microarrays analysis IDC DFS
Was related with MAMDC2, TSHZ2, and CLDN11, p < 0.001
OS
Was shorter with high CLDN11 expression, p = 0.012

Jang et al. (69) Transcriptional and mutational profile analysis by
scRNA-seq

RR cells in basal subtype were related to:
high PD-L1, p < 0.001
high TMB, p = 0.033
LR, local relapse; ROC areas, areas under the receiver operating curve; LRR, loco-regional relapse; OS, overall survival; IDC, invasive ductal carcinoma; DFS, disease-free survival; RR,
radioresistance; TMB, tumor mutation burden.
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> 24 predicted a higher LRR rate (71). Another series of 1,758
patients with stage I-II, ER-positive breast cancer (81% with RS ≥
25), who had been treated with mastectomy or BCS ± post-
operative RT, were retrieved from the US National Prospective
Breast Cancer-Collaborative Outcomes Research Database. At a
median follow-up of 29 months, risk of isolated LRR (iLRR) was
not significantly associated with an RS ≥ 25 in the entire cohort.
It was, however, significantly associated with an RS ≥ 25 in 74/
1,199 women who had received adjuvant ET but not
chemotherapy. Overall, in these 1,199 patients, higher RS was
associated with greater risk of iLRR (72).

RS might be combined with standard clinical-pathological
risk factors to improve LRR risk stratification and identify
suitable candidates for adjuvant RT after BCS. To test this
hypothesis, 388 patients were retrieved from the Eastern
Cooperative Oncology Group’s database of the E2197
prospective randomized clinical trial. All had one to three
positive lymph nodes or tumors >1.0 cm in size and negative
lymph nodes with about 44% being receptor-negative. Neither
biological subtype nor 21-gene RS was associated with LR or LRR
in univariate or multivariate analyses but when analyzed as a
continuous variable, the 21-gene RS emerged as a significant risk
factor for LRR (73).

Other studies confirmed these findings. In 1,065
node-positive, ER-positive patients who received adjuvant
chemotherapy and ET, no post-mastectomy RT was delivered
and only the breast was irradiated after BCS. RS emerged as a
significant predictor of LRR; multivariate analysis showed nodal
status and tumor size were also independent predictors of LRR
(74). In 2,326 node-negative, ER-positive/HER2-negative
patients univariate analysis showed that RS category, T stage
and lymphovascular invasion impacted on LRR risk. Even after
adjusting for lymphovascular invasion and T stage, RS remained
significantly associated with LRR. Compared with low RS, LRR
risk increased 3-fold in the intermediate risk category and over 4-
fold in the high-risk category (75).

RS was linked with randomized treatment, number of positive
nodes and surgical type in a cohort of 316 post-menopausal, ER/
PR-positive, node-positive patients who were retrospectively
extracted from the Southwest Oncology Group S8814 phase 3
trial. After BCS andWBI, patients were randomized to tamoxifen
alone, chemotherapy followed by tamoxifen, or concurrent
tamoxifen and chemotherapy. The 10-year cumulative
Frontiers in Oncology | www.frontiersin.org 8
incidence of LRR was significantly different in each RS
category (9.7% for a low RS, vs 16.5% for intermediate or high
RS). The same profile was observed after mastectomy without
RT. When patients had one to three involved nodes, a low RS was
associated a 1.5% LRR rate and an intermediate or high RS with
11.1% LRR. Multivariate analysis confirmed that a higher RS was
a predictor of LRR (76).

Over time, Oncotype DX has used different RS definitions for
systemic therapy. The original cut-offs were <18, 18–30, and ≥31
but more recently, the TAILORx trial set cut-offs at <11, 11–25,
and ≥26 in order to minimize the risk of systemic therapy under-
treatment in potentially high-risk patients (77). A discrepancy in
use of different cut-offs in the 21 gene RS is worth nothing.
Although all ongoing RT trials and most research selected the
original <18 cutoff to identify low-risk patients when aimed at
defining a role for post-operative RT, in clinical decision-making
for systemic therapy the <11 threshold is now used. An open
question is whether the same consensus on RS cut-offs is
advisable for systemic therapy and RT.

The EndoPredict test did not appear to be useful in tailoring
local therapy in patients at low-risk of LRR. In 1,324
postmenopausal patients who were selected from a cohort of
3,714 that had been randomized to receive tamoxifen or
tamoxifen followed by anastrozole, it classified 683 at high risk
and 641 at low risk of recurrence. At a median follow-up of 72.3
months, the risk of LR was significantly higher in high-risk than
in low-risk patients. LR rates were similar after BCS and
mastectomy. After BCS, RT significantly improved LR-free
survival in both low- and high-risk sub-groups (78). The
predictive role of PAM50 on LR was assessed in 1,308 HER2-
negative patients from the same trial. The risk of recurrence
(ROR) score was an independent predictor of LR-free survival
independently of nodal status, tumor size, and patient’s age. The
10-year LR-free survival was significantly lower in patients with a
ROR score of ≥57 (79).

The 70-gene signature (MammaPrint™) emerged as an
independent prognostic factor for LRR. The LR risk was
significantly lower in 561 low-signature T1-3N0-1 patients who
were treated with BCS and RT or mastectomy at the Netherlands
Cancer Institute, than in 492 with a high signature. The 70-gene
signature emerged as a prognostic factor for LRR in a competing
risk analysis which included clinical-pathological risk factors
such as age, tumor size, grade, hormone receptor status,
TABLE 3 | Studies assessing genomic tests and outcome.

Author N° patients Treatment Follow-up Results

Dong et al. (83) 13,246 BCS ± RT NA Postoperative RT: independent predictor of better BCSS only in intermediate risk (RS) group
(HR 0.630; 95% CI 0.416–0.955, p = 0.029)

Wu et al. (84) 18,456 BCS ± RT NA Postoperative RT: independent predictor of better BCSS only in intermediate risk (RS) group
(HR 0.467; 95% CI 0.283–0.772, p = 0.003)

Zhang et al. (85) 1,571 Mastectomy ± RT 30 months 5-y BCSS in the high risk group
No PMRT subgroup 100.0% vs PMRT subgroup 90.0%, (p = 0.046)
No significant difference in BCSS in the PMRT group vs the no PMRT group (p = 0.427)
BCS, breast conserving surgery; RT, radiotherapy; BCSS, breast cancer-specific survival; RS, recurrence score; PMRT, post-mastectomy radiotherapy.
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lymphovascular invasion, axillary lymph node involvement,
surgical treatment, ET, and chemotherapy (80).

Finally, studies investigated whether the Oncotype DX assay
and RT impacted upon OS. An observational cohort study
enrolled T1-2N1 ER-positive patients, some of whom received
post-mastectomy RT. The National Cancer Database (NCDB)
provided 7,332 patients and the Surveillance, Epidemiology, and
End Results (SEER) registry supplied the validation cohort of
3,087 patients. In both cohorts RS and post-mastectomy RT
interacted significantly with OS but post-mastectomy RT was
associated with longer OS only when RS was low. Thus caution
should be exercised when omitting post-mastectomy RT in
women with low RS (81). In a pooled analysis of 1,778 patients
from seven clinical trials, all had stage I, ER- and/or PR-positive,
HER2-negative disease, and an Oncotype RS no greater than 18.
After BCS ± post-operative RT they had received ET but not
chemotherapy. The 5-year relapse-free interval was significantly
lower in the post-operative RT group. RT omission significantly
increased the risk of LRR, but not of DM, breast cancer-specific
survival or OS. The RT effects varied across subgroups, with lower
relapse-free interval rates in older patients with RS under 11 (vs
11–18) and ER-positive/PR-positive status (vs other) (82). Other
studies on this topic are reported in Table 3 (83–85).

To help fill current gaps between adjuvant systemic therapy
and RT in clinical practice and individualize prediction of RT
outcomes, larger validation studies are warranted to define
genomic predictors and their values in improving health care.
DISCUSSION

Personalized medicine in radiation oncology for breast cancer
aims at improving survival outcomes and quality of life as well as
reducing treatment-related morbidity and National Health
Service costs. Reaching this goal is arduous because so many
factors impact upon outcomes. In order to throw some light on
the topic, the present overview explored the links between
adjuvant RT, type of surgery, and the response of each sub-
type to RT, finding study limitations precluded definitive
conclusions. The earliest studies investigated whether diverse
molecular sub-types impacted on LR and/or LRR, which is the
most common RT-related outcome and a well-established
predictor of DM, mortality and survival (86–88). Attention
also focused on whether sub-type and type of surgery (BCS or
mastectomy) were predictive of outcome but no firm evidence
emerged to support one type of surgery over another, so choice of
surgery remains dependent on standard criteria, such as breast
dimension and/or tumor extension and patient’s choice.

After finding Luminal A tumors were associated with a low
risk of LRR they emerged as highly radiosensitive. HER2-positive
tumors were associated a high risk of LRR and radioresistance
which was reversed by trastuzumab administration (37, 89–93).
Finally, drugs could not overcome the high risk of LRR and
radioresistance in the TN subtype as there were no effective
treatment targets. On the other hand, RT was reported to lower
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the risk (45, 46, 90, 91), even though the benefit was less evident
than in the luminal and hormone-receptor positive subtypes.
Post-operative RT also seemed to account for a lower relapse rate
after BCS than after mastectomy (92).

Gene expression profiling appeared to offer a pathway to
tailored RT and when small gene sets were evaluated as
predictors of LRR or OS risk, results appeared promising.
Despite some interesting results no signature has, however, as
yet been approved or validated for clinical use. To ensure that
tailored RT for breast cancer becomes a clinical reality, present
efforts, in our view, should be directed towards validation studies
that focus on the most promising biomarkers as they are crucial
in identifying appropriate patients for RT escalation or de-
escalation schedules. Nowadays, ongoing RT de-escalation
trials that are based on biomarkers and genomic profiling (77,
93–99) seek to better stratify the LR risk and identify patients
who can omit RT after BCS. Moreover, one ongoing trial was
designed to assess whether RT was needed after mastectomy and
whether treatment volumes should be adjusted in patients
with pT1-2N1a who are ER-positive, HER2-negative and
at low biological risk (21-gene RS < 18) (100, 101). The
results are expected to provide future recommendations for
personalized RT.

Predictive biomarkers may perhaps be validated by exploiting
information from large databases (102) which may combine the
anatomic extent of disease with biological factors like grading,
ER, PR, and HER2 status. These were in fact included in the 8th

Edition of the AJCC staging manual (103). Once suitable genetic
assays are validated for adjuvant RT, their use will be easily
incorporated into clinical practice as such kits are already used to
identify suitable patients for adjuvant chemotherapy and are
more accurate than clinical-pathological features.

The present overview has illustrated the potentialities of
molecular sub-types and genomic profiling but also uncertain
results and lack of definitive conclusions. To overcome today’s
lack of over-arching strategy, research groups are advised to
collaborate on a shared approach, bearing in mind that achieving
personalized radiation oncology in breast cancer will require
specific infra-structure, networking and investment (104).
Besides focusing on clinical biomarkers, molecular signatures,
tumor phenotypes, and genomics, research will also need to
incorporate RT technical aspects, imaging, radiomics as well as
patient-related factors like genetics and genetic predisposition,
comorbidities, lifestyle, and environmental features. Even data
on breast tissue composition and its microenvironment may
contribute to personalizing the approach to the patient.
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