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Objective: Endometrial cancer (EC) is one of the most common gynecologic
malignancies. The present study aims to identify a metabolism-related biosignature for
EC and explore the molecular immune-related mechanisms underlying the tumorigenesis
of EC.

Methods: Transcriptomics and clinical data of EC were retrieved from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Common
differentially expressed metabolism-related genes were extracted and a risk signature
was identified by using the least absolute shrinkage and selection operator (LASSO)
regression analysis method. A nomogram integrating the prognostic model and the
clinicopathological characteristics was established and validated by a cohort of clinical EC
patients. Furthermore, the immune and stromal scores were observed and the infiltration
of immune cells in EC cells was analyzed.

Results: Six genes, including CA3, HNMT, PHGDH, CD38, PSAT1, and GPI, were
selected for the development of the risk prediction model. The Kaplan-Meier curve
indicated that patients in the low-risk group had considerably better overall survival
(OS) (P = 7.874e-05). Then a nomogram was constructed and could accurately predict
the OS (AUC = 0.827, 0.821, 0.845 at 3-, 5-, and 7-year of OS). External validation with
clinical patients showed that patients with low risk scores had a longer OS (p = 0.04).
Immune/stromal scores and infiltrating density of six types of immune cells were lower in
high-risk group.

Conclusions: In summary, our work provided six potential metabolism-related
biomarkers as well as a nomogram for the prognosis of EC patients, and explored the
underlying mechanism involved in the progression of EC.
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INTRODUCTION

EC is one of the most common gynecologic malignant cancers
worldwide and the incidence rate is increasing every year while its
age of onset is decreasing (1). The International Federation of
Gynecology and Obstetrics (FIGO) staging system, together with
the histological grade and the classification type are nowadays the
main factors for classifying EC patients with different prognosis (2).
In stage I and II EC patients, the 5-year survival rates are about 80–
90% and 70–80%, respectively, while the one of stage III and IV
disease is 20–60% (3). Multiple factors including genomic and
clinical factors play an essential role in the development and
prognosis of EC, but the current classification system cannot
achieve a comprehensive and accurate prediction of survival
outcomes in EC patients (4). Therefore, it is of great significance
to further explore the prognostic factors and establish a more
precise prognostic model combining gene expression profiles and
traditional clinical features.

The relationship between metabolic dysfunction and EC has
been extensively reported and studied (5). Prior studies have shown
that the obesity or diabetes related metabolic syndrome is closely
associated with the occurrence and poor prognosis of EC (6). The
potential mechanism may involve insulin resistance, glucose
disorder and lipid metabolism (7). It has been reported that the
glycolysis ability is significantly increased in EC cells, which can be
promoted by the abnormal gene expressions resulting in the
acceleration of the progression of EC (8). Hence, the screening of
metabolic related genes associated with the EC progress is crucial for
the prognosis of EC patients as well as for choosing a targeted
therapy to improve their outcomes.

The progression of cancer cells is associated with their
surroundings and with the tumor microenvironment (TME).
TME is composed of immune cells, extracellular matrix,
mesenchymal cells and inflammatory mediators, which turn
out to have impacts on tumor growth, metastasis, and clinical
survival outcomes (9). A previous study has demonstrated that
immune-related genes may contribute to the development of
new prognostic biomarkers for EC patients (10). The Estimation
of Stromal and Immune cells in Malignant Tumor tissues using
Expression data (ESTIMATE) algorithm (9) and the Tumor
Immune Estimation Resource (TIMER) algorithms (11) have
also provided an extensive analysis of immune cells and TME
associated genes of cancer cells, and have found the relationship
between the omics data and the prognosis of patients.

In the present study, we aimed to analyze the potential
metabolism-related gene biomarkers associated with the
prognosis of EC, and explore the correlation between EC and
immune infiltration in order to clarify the molecular mechanism
underlying the tumorigenesis of metabolism-induced EC.

METHODS

Data Collection and Identification of
Differentially Expressed Metabolism-
Related Genes
The metabolism-related gene set was downloaded from
Molecular Signature Database (MSigDB) using Gene Set
Frontiers in Oncology | www.frontiersin.org 2
Enrichment Analysis tool (GSEA, http://software.broadinstitute.
org/gsea/index.jsp). RNA sequencing transcriptomics data and
the corresponding clinicopathological data were retrieved for 416
EC and 35 normal tissues from the TCGA database (https://tcga-
data.nci.nih.gov), and for 91 EC and 12 normal samples
(GSE17025) based on the GPL570 (Affymetrix Human Genome
U133 Plus 2.0 Array) platform from the GEO database (http://
www.ncbi.nlm.nih.gov/geo). Then, the gene names and
expression profiles were extracted using “perl” scripting
language (https://www.perl.org/). All the aforementioned data
were retrieved from open resources and thus no ethical issues
were involved. The differentially expressed genes (DEGs) were
identified with R package “limma” (12) by comparing EC and
normal tissues. The heatmap of DEGs was plotted and visualized
with “pheatmap” R package (13). Meanwhile, the different
regulation of DEGs in two datasets were presented using the
Venn diagrams online tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/).

The following inclusion criteria were set based on the clinical
information: (1) patients undergoing standard surgery staging,
(2) no other treatment performed before the surgery; (3) aged
20–80 years; (4) follow-up of over 3 years available. Patients with
incomplete survival data were excluded.

Enrichment Analysis of Intersection Genes
Gene ontology (GO) analysis was applied to observe unique
functional terms enriched in high-throughput transcriptomics or
genomics data, where functional terms are classified into
biological process (BP), molecular function (MF), and cellular
components (CC) (14). The Kyoto Encyclopedia of Genes and
Genomes (KEGG) is a meta-database used for integrating
information with genomes, diseases, biological pathways,
drugs, and chemical materials (15). Both of them were
conducted by the “clusterProfiler” package (16).

Construction and Verification of
Metabolism-Related Gene Risk Model
The associations of gene expression profiles with clinical
outcomes were analyzed using LASSO regression analysis with
“glmnet” R package (17). The genes with the highest lambda
values were selected and further analyzed to identify hub genes.
The correlation analysis among these hub genes was conducted
with the “corrplot” R package (18). Then the risk signature was
constructed with hub genes and the coefficient for each gene was
obtained through the penalizing process. The total risk score of
this biosignature was calculated as following (19):

RS = ∑
n

i−1
Coef(i)X(i)

where n is the number of RNA modules; Coef (i) is the
coefficient; X(i) is the z-score-transformed relative expression
level for each gene identified by LASSO analysis. The optimal
cut-off value was investigated by using the R packages “survival”
and “survminer” (20). Subsequently, the patients were divided
into high-risk group and low-risk group according to this risk
score threshold. The ROC curve was presented using the R
package “survivalROC” (21) to assess the predictive power of the
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new biosignature for OS. The Kaplan-Meier survival curve was
applied to compare the survival difference between the two
groups using the R package “survival.”

GSEA analysis was conducted to study the functions
associated with different subgroups of EC by using the GSEA
4.1.0 software. The gene sets databases, h.all.v6.0.symbol.gmt and
c2.cp.kegg.v6.0.symbols.gmt were used and false discovery rate
(FDR) q-val (FDR) < 0.25 was used as a threshold to infer
statistically significant findings.

Construction and External Validation of a
Nomogram Based on the Risk Signature
The performance of the risk score model based on the set of six
metabolic genes and other conventional clinical characteristics
associated with prognosis in EC patients was evaluated using
univariate and multivariable COX regression analysis. Next, an
OS-associated nomogram with independent risk factors was
performed using multivariate analysis with the “rms” and
“Hmisc” R packages (22). Then, the C-index of the prediction
model was calculated. The predictive performance of the model
was assessed and quantified by measuring the fit of the standard
and the actual curve of the C-index and the survival time
predicted by the nomogram. Kaplan–Meier analysis can
explore the specificity of this nomogram in different subgroups
defined by age, lymph node metastasis, and grade.

The predictive potential of the nomogram was validated in
the testing cohort of 24 surgically treated patients at the
Department of Obstetrics and Gynecology, Peking University
People’s Hospital (PKUPH), in which RNA sequencing results
and clinical data were available. All samples were from patients
between January 2008 and December 2012. Total RNA isolation
and reverse transcription-quantitative PCR procedures were
performed as previously described (23). This research was
approved by the Institutional Ethics Committee (Human
Research) of our hospital and informed consent was obtained
from the patients.

Calculation of Immune and Stromal
Scores and Quantification of the Tumor-
Infiltrating Immune Cells
The ESTIMATE algorithms were used to postulate the cell tumor
composition by calculating the corresponding scores (9). The
immune, stromal, and ESTIMATE scores in high-risk and low-
risk groups were compared. On the basis of RNA-seq expression
profiles, the TIMER algorithm could estimate the tumor
abundance of six infiltrating immune cells (CD4+ T cells,
CD8+ T cells, B cells, neutrophils, macrophages, and dendritic
cells) (11). Six immune infiltration cells in the high-risk and the
low-risk groups were compared to clarify the relationship
between the prognosis of EC and the immune cells infiltration.

Statistical Analysis
Continuous variables were summarized as mean ± SD
(standardized deviation) or median; categorical variables
were described by frequency (n) and proportion (%).
Differences among variables were tested using student t-tests,
Frontiers in Oncology | www.frontiersin.org 3
nonparametric tests, Chi-square tests, or one-way ANOVA tests.
The log-rank test was applied to compare the OS rates of the
high-risk and the low-risk groups. Uni- and multivariable logistic
COX regression analysis were applied calculating the hazard
ratio (HR) and its 95% confidence interval (CI). Statistical
analyses were performed using R software (The R Foundation;
http://www.r-project.org; version 3.6.3). For all analyses, all
statistical tests were two-sided, and a p-value threshold of 0.05
was used to infer statistically significant changes.
RESULTS

Identification of Overlapping Differentially
Expressed Metabolism-Related Genes
The flow diagram for the present study was exhibited in Figure
S1. A cohort containing 416 EC patients and 20,356 RNAs was
extracted from the TCGA database and the clinicopathological
characteristics of patients were summarized in Table 1. A set of
944 metabolism-related genes were downloaded from MSigDB
after a careful review, and the volcano plot visualized the
metabolism-related DEGs in TCGA and GEO datasets
(Figures 1A, B). Of these 268 DEGs in TCGA dataset (Table
S1), there were 167 up-regulated and 101 down-regulated genes
TABLE 1 | Characteristics of patients in training cohorts from TCGA dataset.

Variables Whole cohort

Total number 416
Age (year) 64.20 ± 11.0
OS (day) 999.7 ± 854.5
Living status
Alive 343 (82.45%)
Death 73 (17.55%)
Menopausal status
Pre-menopause 66 (15.87%)
Post-menopause 350 (84.13%)
FIGO stage
Stage I 255 (61.30%)
Stage II 42 (10.10%)
Stage III 95 (22.83%)
Stage IV 24 (5.77%)
Tumor grade
G1 61 (14.66%)
G2 89 (21.39%)
G3 266 (63.94%)
Histological type
EEA 301 (72.36%)
Other types 115 (27.64%)
Recurrence
No 331 (79.57%)
Yes 85 (20.43%)
Peritoneal cytology
Negative 344 (82.69%)
Positive 72 (17.31%)
LNM
Negative 302 (72.60%)
Positive 114 (27.40%)
March 2021 | Volume 11 |
OS, overall survival; FIGO, International Federation of Gynecology and Obstetrics; G,
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(Figure 1C). 101 metabolism-related DEGs were dysregulated in
the GEO dataset, including 58 up-regulated and 43 down-
regulated genes (Figure 1D and Table S2). The expression
profiles of metabolism-related DEGs in the two datasets
suggested that these DEGs could clearly discriminate between
EC samples and normal endometrial samples (Figure S2). The
Venn diagram showed that there were 61 overlapping DEGs in
the two datasets (Figure 1E and Table S3).
Frontiers in Oncology | www.frontiersin.org 4
Functional Enrichment Analysis and Risk
Signature Construction by the Overlapping
Differentially Expressed Genes
GO and KEGG analyses were implemented to elucidate the
probable function of these 61 genes. As shown in Figure 2A,
various GO significant terms were identified with some of
them being the following: “small molecule catabolic process,”
“carboxylic acid biosynthetic process,” “organic acid biosynthetic
A C

B D

E

FIGURE 1 | Distribution of metabolism-related genes in TCGA and GEO databases. Volcano plot for DEGs in tumor and normal tissues in (A) TCGA database and
(B) GEO database where red and green dots represent up- and down-regulated genes, respectively. Black dots represent genes with no significant change. Bar plot
of up- and down-regulated genes in (C) TCGA database and (D) GEO database. (E) Venn diagram of DEGs in the two databases.
March 2021 | Volume 11 | Article 630905

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Fan et al. Survival Prediction in EC Patients
process,” and “coenzyme metabolic process.” In addition, KEGG
analysis exposed that these 61 DEGs were significantly enriched
in the following pathways: “Glutathione metabolism,”
“Phenylalanine metabolism,” “Fructose and mannose
metabolism,” “Amino sugar and nucleotide sugar metabolism,”
and “Glycolysis/Gluconeogenesis” (Figure 2B). These results
demonstrated that these DEGs were closely involved in
metabolic processes.

A LASSO regression model was implemented and six genes
were found to have significant regression coefficients including
CA3, HNMT, PHGDH, CD38, PSAT1, and GPI (Figures 2C, D
Frontiers in Oncology | www.frontiersin.org 5
and Table 2). The risk score based on the set of six metabolic
genes for this risk signature was established as following: risk
signature = 0.023196*CA3 − 0.07585*HNMT+ 0.19606*PHGDH
− 0.01887*CD38 + 0.05374*PSAT1 + 0.00844*GPI. The results
suggested that the expressions of PHGDH, PSAT1, and GPI were
significantly elevated, while CA3, HNMT, and CD38 were down-
regulated in EC samples in both datasets (Figure 2E and Figure
S3A). The expression profiles of the six genes were significantly
correlated with each other especially between GPI and PHGDH,
PSAT1 and PHGDH, PSAT1 and GPI in TCGA dataset (Figure
2F). GEO revealed similar results (Figure S3B).
A B

C D

E F

FIGURE 2 | Functional enrichment analysis and prognostic genes constructed by the overlapping DEGs. (A) GO analysis of 61 metabolism-related DEGs, with only
top 10 terms of BP, CC, and MF being shown; (B) KEGG analysis of 61 DEGs. The inner circle is composed of different genes and their expression (LogFC) while
the outer circle consists of different KEGG terms; (C) LASSO logistic regression algorithm to screen associated genes with cross-validation, where each gene has a
different color; (D) The selection of six genes with the lowest misclassification error; (E) Expressions of the selected genes in different tissue samples in TCGA
database. Blue dots represent gene expressions in the normal group, and red dots represent gene expressions in the EC group. (F) Spearman correlation analysis of
the selected genes in TCGA database.
March 2021 | Volume 11 | Article 630905
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Development and Verification of
Metabolism-Related Risk Signature
According to the above formula, we calculated the risk score of all
the EC patients, and they were then categorized into low-risk and
high-risk groups based on the median cut-off value. The
expression levels of six hub genes in high- and low-risk groups
were visualized with a heatmap (Figure 3A). As expected,
the results revealed that the number of deaths was higher in the
high-risk group (Figure 3B). It also showed that there were
statistically significant differences between the low- and
the high-risk groups in terms of LNM (p < 0.01), peritoneal
cytology (p < 0.05), grade (p < 0.001), histology (p < 0.001), stage
(p < 0.01), and living status (p < 0.001). The relationships between
the risk score and each clinicopathological characteristic were also
explored and shown in Figures S4A–F. Furthermore, Kaplan-
Meier survival analysis indicated that patients in the low-risk
group had a significantly longer survival time than those in the
high-risk group (p = 7.874e-05, Figure 3C) The time-dependent
ROC curve showed that the risk signature had a relatively higher
accuracy in predicting 3-year (AUC = 0.756), 5-year (AUC =
0.722), and 7-year (AUC = 0.720) survival (Figure 3D).

Additionally, GSEA analysis was further conducted to explore
the functional and KEGG pathway enrichment of the DEGs
between the two groups. As presented in Figures 3E, F, the high-
risk group was enriched in “cholesterol hemostasis,” “fatty acid
metabolism,” “chemokine signaling pathway,” “insulin signaling
pathway,” and “PI3K-AKT-MTOR signaling,” and the low risk
group was enriched in “inflammatory response,” “JAK-STAT
signaling pathway,” “KRAS signaling,” “T cell receptor signaling
pathway,” and “apoptosis.” After all, the risk group built on the
metabolism-related signature of the six key genes might be
distinguishable when the EC patients were classified according
to the high- and the low-risk models, and the potential
mechanism might be involved in chemokine signaling pathway
and insulin signaling pathway.

Establishment and Evaluation of a
Prognostic Nomogram in Endometrial
Cancer Patients
As shown in Figure 4A, results of the multivariate analysis
suggested that age (HR = 1.031, 95% CI: 1.007–1.057, p = 0.010),
LNM (HR = 4.179 95% CI: 1.734–10.069, p = 0.001), grade (HR =
1.726, 95% CI: 1.125–3.264, p = 0.033), and risk signature (HR =
4.718, 95% CI: 2.406–9.250, p < 0.001) were found to be significant
predictive factors of the EC patients survival. A comprehensive
Frontiers in Oncology | www.frontiersin.org 6
nomogram was calculated taking into consideration of all the above
significant predictive factors (Figure 4B). The C-index of this model
was 0.82 and the calibration curve suggested that the nomogram
predicted survival rate was close to the actual values for all of the 3-,
5-, and 7-year survivals (Figure 4C). In addition, we evenly
categorized the patients into three subgroups according to their
total points calculated from the nomogram (Table 3) and further
tested the survival assessment model by Kaplan-Meier analysis in
both of the whole cohort and subgroups divided by different
clinicopathological features. The Kaplan-Meier analysis (Figure
4D) presented that the survival status of the patients in the low-
risk group was significantly better than that in the patient of
medium-risk group and high-risk group (p = 0). The AUC of the
nomogram was 0.827, 0.821, and 0.845 at 3-, 5-, and 7-year survival
(Figure 4E).

The test of survival model showed the similar results among
the whole cohort and the six subgroups defined by all clinical
characteristics except the ones included in the nomogram
(Figures S5A–F). Although the p-value in the other types of
histology group and recurrence group were not statistically
significant (Figures S5B, F), these patients presented the same
predictive tendencies. All results showed that this nomogram
could not only accurately differentiate patients in the whole
groups, but to some extent predict the OS in different
clinicopathological subgroups.

Validation of the Nomogram Based on the
Clinical Samples
The aforementioned nomogram was further validated in the clinical
cohort. The detailed data of 24 EC samples from the PKUPH
patient cohort were presented in Table 4. EC patients in the cohort
were divided into the low- and the high-risk groups based on the
median risk score from the set of six metabolic genes as above. The
heatmap of the expression levels of the six metabolism-related risk
genes showed that these six genes differentially distributed in high-
and low-risk groups, especially for HNMT (Figure 5A). Then the
expression levels of the six metabolism-related genes were analyzed
in the subgroups defined by different clinicopathological risk factors,
as shown in Figures 5B–G. Kaplan-Meier survival curves (Figure
5H) showed that patients with low risk scores presented a longer OS
(p = 1.997e-01), which were consistent with the predicted survival
TABLE 2 | Hub genes and correlated coefficient value.

Metabolism-related gene Coefficient

CA3 0.023196
HNMT −0.07585
PHGDH 0.19606
CD38 −0.01887
PSAT1 0.05374
GPI 0.00844
Risk score Low: <9.28

High: ≥9.28
TABLE 3 | Corresponding risk score for each variable and total score.

Variables Score

Age <60 0
≥60 35

LNM Negative 0
Positive 95

Grade Negative 0
Positive 40

Risk signature Low 0
High 100

Total score Low score 0–40
Moderate score 75–135
High score ≥140
March 2021 | Volume 11 | Article
LNM, lymph node metastasis.
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results of the nomogram (p = 4.191e-02) (Figure 5I). The
nomogram was proved to be accurate in the prediction of OS.

Immune and Stromal Scores and Immune
Cell Infiltration Analysis
Immune, stromal, and total (ESTIMATE) score were calculated
based on the gene expression profiles and the ESTIMATE
algorithm. Through the comparison between the two risk
groups divided by the metabolism-related risk signature, all
scores were lower in the high-risk group (Figures 6A–C) in
TCGA cohorts. Then the whole patients were divided into two
Frontiers in Oncology | www.frontiersin.org 7
groups (high vs. low score groups) again to explore the potential
correlation of OS with immune, stromal, and ESTIMATE scores
respectively. Kaplan-Meier survival analysis (Figures 6D–F)
revealed that patients with high immune scores presented a
longer OS for EC patients (p = 0.003). Meanwhile, patients
with higher stromal or ESTIMATE score showed longer median
OS than those with lower scores, even though they were not
statistically significant (p > 0.05).

The tumor infiltration with six types of immune cells was
analyzed using TIMER and the results showed that the
infiltrating immune cells, including B cell (p = 9.657e-06),
A

B C

E F

D

FIGURE 3 | Different clinicopathological factors and OS of EC in metabolism-related risk signature. (A) Heatmap of clinicopathological factors and the six hub genes
in the high-risk and the low-risk groups. P-value is represented by * (P < 0.05), ** (P < 0.01), and *** (P < 0.001); (B) Distribution of the risk score based on the set of
six metabolic genes and living status in the two groups; (C) Survival curves of the two groups; (D) Time-dependent ROC curves for 3-, 5-, and 7-year survival
prediction; The GSEA results based on risk groups in 216 EC patients of (E) hallmarker and (F) kegg pathway.
March 2021 | Volume 11 | Article 630905
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CD4+ T cell (p = 9.881e-05), CD8+ T cell (p = 5.626e-05),
dendritic cell (p = 4.139e-07), macrophage (p = 4.705e-11), and
neutrophil (p = 0.041), conferred significantly lower infiltrating
density in the high-risk group (Figures 6G–L). The results
demonstrated that the prognosis of EC patients in the high
metabolism-related risk group was correlated with lower
immune scores and immune infiltration.
DISCUSSION

The mortality of EC has been doubled during the past 20 years.
Although the 5-year survival rate of early EC patients is greater than
85%, about 13–25% of EC patients (initially considered to have a
good outcome) present recurrence and metastasis (1). Thus,
accurate prognostic indicators are required to assist clinicians into
conducting more accurate clinical evaluation. Database-based
bioinformatics analysis has been increasingly used to screen out
target biological molecules with prognostic potential. But previous
studies were mainly based on either genomic factors or clinical
factors (24, 25), both of which played a vital role in tumorigenesis
and prognosis of EC. A metabolism-related risk signature for EC
was introduced by the present study using large-scale cancer
datasets, and then an OS prediction nomogram was created by
integrating the risk signature and clinicopathological features to
accurately predict the outcomes of the individual EC patients. This
model was validated by an external clinical patient cohort from
PKUPH. CIBERSORT and TIMER algorithms were used to
conduct an integrative analysis of immune scores and immune
cells in the different risk groups characterized by the risk signature
in EC patients, aiming to study the molecular mechanism
underlying the tumorigenesis of the metabolism-induced EC.
Frontiers in Oncology | www.frontiersin.org 8
Obesity is more closely related to the development of EC than
any other cancer types in women (26). It is also related to worse
outcomes with a 2.6 to 4.7-fold increase in EC risk and doubled
risk in diabetic patients (27). In the present study, 61
metabolism-related overlapping genes were detected and they
were mostly enriched in metabolic processes and in amino acid/
glucose metabolism according to GO and KEGG enrichment
analyses. Extensive metabolic dysregulation occurs during the
process of obesity such as hyperglycemia, insulin insensitivity,
abnormal metabolites, and high-density lipoprotein (28). The
underlying mechanisms may be the cancer proliferation caused
by glucose uptake and fatty acid synthase (29). Increased blood
glucose levels may contribute to the development of EC (30). In
EC cells, the glycolysis rate is higher and glucose oxidation is
lower (31).

Then the six metabolism-related genes were selected by
performing LASSO regression analysis, including CA3, HNMT,
PHGDH, CD38, PSAT1, and GPI. It is noteworthy that some of
these genes have been reported in earlier studies associated with
cancer. CA3 and CD38 were down-regulated in EC samples in both
TCGA datasets and clinical cohort from PKUPH. The CA3 gene
(carbonic anhydrase III) is a member of a multigene family which
are mainly isozymes encoding carbonic anhydrase (32). In human
hepatocellular carcinoma, this gene is down-regulated, and it may
be involved in the process of apoptosis or programmed cell death
(33). CD38 has been linked to the inhibition of the metabolism and
the proliferation in prostate cancer (34). PHGDH, PSAT1, and GPI
were up-regulated in EC samples in both cohorts. Human 3-
phosphoglycerate dehydrogenase (PHGDH) is an important
enzyme in the process of serine synthesis, and the serine and
glycine has offered sufficient energy and metabolites accelerating
the proliferation of cancer cells (35). At present, the expression of
PHGDH has been found increased in multiple types of cancers,
including breast cancer, cervical cancer, glioma, melanoma,
pancreatic cancer, and colon cancer (36). Moreover, the elevation
of PHGDH expression is usually related to cancer progression and
poor prognosis (37). Currently, PSAT1 has mainly been explored in
non‐small‐cell lung cancer, colon cancer, esophageal cancer, and
breast cancer (38). The over-expression of PSAT1 is a marker of
poor prognosis in cancer patients and even increases the resistance
of chemotherapy (39). Histamine N-methyltransferase (HNMT) is
one of the main enzymes catabolizing histamine in humans.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are
vital for a variety of cell functions, and some of them have been
reported to make contribution to the tumor occurrence and
progression (40). Thus, our study has demonstrated that these
genes could perform as potential prognostic biomarkers for EC and
the prognostic function of these six genes manifests in its overall
effects as a whole risk signature, but not a single gene or the
correlation among these genes.

Afterwards, a risk signature model was established based on
genes expression profiles and coefficients of their association
with survival, and the AUC of the ROC curves of the whole
cohort based on this model was higher than 0.7 at 3-, 5-, and 7-
year of OS. GSEA analysis identified the “fatty acid metabolism,”
“chemokine signaling pathway,” “insulin signaling pathway,”
TABLE 4 | Characteristics of patients in validation cohort from PKUPH.

Variables Validation cohort

Total number 24
Age (year)
<60 18 (66.7%)
>60 6 (33.3%)

Living status
Alive 16 (66.67%)
Death 8 (33.33%)

Menopausal status
Premenopausal 7 (29.17%)
Postmenopausal 17 (70.83%)

FIGO stage
Stage I 13 (54.17%)
Stage II-IV 11 (45.83%)

Tumor grade
G1-2 19 (79.17%)
G3 5 (20.83%)
Recurrence
No 12 (50%)
Yes 12 (50%)
LNM
Negative 19 (79.17%)
Positive 5 (20.83%)
FIGO, International Federation of Gynecology and Obstetrics; G, grade; LNM, lymph node
metastasis.
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and “PI3K-AKT-MTOR signaling” as the potentially relevant
pathways in the high-risk group. While “inflammatory
response,” “JAK-STAT signaling pathway,” “KRAS signaling,”
“T cell receptor signaling pathway,” and “apoptosis” were
enriched pathways in the low-risk group. The relationship
between metabolic dysfunction and the prognosis of EC has
been extensively reported and studied, and the potential
mechanisms are diverse. The PI3K/AKT/mTOR signaling
pathway is overactivated in many tumors and participates in
cancer invasion (41). The mTOR activation via CCL18 leads to
Frontiers in Oncology | www.frontiersin.org 9
cell migration in tumors such as EC (42). Through fatty acids
metabolism (FAS), cancer cells can form cell membrane, store
energy and produce signal molecules (43). It has been found to
be up-regulated in many cancers including EC and it is also a
reliable marker of increased risk of recurrence in EC. Growth
factor receptors interact and activate downstream PI3K/AKT/
mTOR axis with subsequent transcriptional activation of FAS
expression and it is critical for aerobic glycolysis and tumor
growth (44). The specific inhibition of FAS gene could lead to
apoptosis of tumor cells (45). Chemokine signaling is found
A

B C

D E

FIGURE 4 | The construction of the predictive nomogram for EC patients from TCGA. (A) Univariate and multivariate Cox regression analyses of the association
between clinicopathological factors (including the risk signature) and OS of patients in the TCGA dataset; (B) Nomogram for predicting the probability of 1-, 3-, and
5-year OS for the prognosis of EC patients. Four factors were included in this nomogram. (C) Calibration plot of the nomogram for predicting the probability of OS at
1, 3, and 5 years; (D) Survival curves of the three groups divided by total score of the nomogram. (E) The time‐dependent ROC analysis.
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A

B C D

E F G

H I

FIGURE 5 | Validation of the predictive nomogram with EC patients from PKUPH. (A) Heatmap and clinicopathological factors of the high-risk and low-risk groups
based on the set of six metabolic genes. P-value is represented by * (P < 0.05) and ** (P < 0.01). Violin plot for the expression of six metabolism-related genes in the
subgroups defined by different clinicopathological risk factors including (B) age, (C) stage, (D) grade, (E) LNM, (F) myometrial invasion, and (G) recurrence. Survival
curves of the high-risk and low-risk groups based on (H) the metabolism-related risk signature including six genes and (I) the nomogram.
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to participate in mTOR/KIF5B-mediated epithelial to
mesenchymal transition and neoplastic metastasis by the PI3K/
AKT/mTOR signaling pathway in EC (42). Insulin acts as a
growth factor that promotes EC cell proliferation and inhibits
apoptosis via PI3K/AKT/mTOR pathways (46). Insulin signaling
pathway, especially insulin resistance, is positively correlated
with the aggressiveness of EC and local tumor dissemination
(47, 48). The promotion of EC cell proliferation involves
activation of STAT3 and ERK2 signaling pathways in previous
Frontiers in Oncology | www.frontiersin.org 11
studies and blocking the JAK-STAT signaling pathway could be a
rational therapeutic strategy for EC (49).

A nomogram was generated based on multiple clinical
features and the risk signature to allow its application in
clinical practice. This model provided a high accuracy for the
prediction of the OS in the discovery and validation cohorts,
suggesting the excellent predictive capability of this risk model in
the prognosis of EC patients. Meanwhile, the analysis results of
the subgroups with diverse characteristics showed that this
A B C

D E F

G H I

J K L

FIGURE 6 | Relationship between immune, stromal, total scores and the metabolism-related risk signature in TCGA cohort. Distribution of (A) immune scores,
(B) stromal scores, and (C) ESTIMATE scores in the different risk groups. Survival curves in different (D) immune score, (E) stromal score, and (F) ESTIMATE score
groups. Differential distributions of immune cells in the two risk groups. Wilcoxon rank-sum test accurately compared the difference and indicated that six immune
cells conferred significantly lower infiltrating density in the high-risk groups, including (G) B cells, (H) CD4+ cells, (I) CD8+ cells, (J) Dendritic cells, (K) Macrophages,
(L) Neutrophils.
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nomogram could not only accurately differentiate patients in the
whole groups, but could also accurately predict the OS in
different clinicopathological subgroups. Several studies have
suggested various prognostic biomarkers for EC based on
mRNA or miRNA expression profiles (50). However, hub
genes previously identified usually contained only biomarkers
or several genomic markers without clinical features, restricting
the clinical applicability of these biomarkers and decreasing the
specificity of the overall prognostic models. Even though a
similar metabolism-related risk model including nine genes
associated with prognosis of EC was constructed in one study
recently (51). There were still many differences between the two
studies. Our study obtained the metabolic gene list fromMSigDB
and enrolled more DEGs in the LASSO analysis from two
databases, of which the intersection made the results
more credible. Besides, we further investigated the main
metabolic pathways of the prognosis-related gene set through
GSEA analysis in our study and the metabolic pathways
corresponding to different outcomes were elucidated above.
Additionally, we validated the risk model and nomogram
internally from multiple aspects and externally with patients
from our own center. With sufficient evidence, we constructed
an integrative nomogram to allow for better prediction of
prognosis and precision medicine in patients with EC.

TME is responsible for the tumor development and
progression and the activation of immune system, which is a
decisive factor during tumorigenesis and progression of the
tumor (52). The metabolic pathways are activated in immune
cells. Immune system needs to produce many metabolites to
provide energy for various functions of immune cells (53).
Moreover, there are quite a number of immune cells involving
in metabolic pathways (54, 55). Our findings imply that the
immune, stromal, and total scores are all negatively related to the
metabolism-related risk of EC patients, proposing that more
immune cells in the TME is associated with good prognosis of
low-risk EC patients. In another study, lower immune and
stromal scores are also found in high grade and invasive
subtypes (10). The metastatic foci with the least amount
of immune cells infiltration represents the worst immune
microenvironment and the immune escape is most likely to
occur (56). In breast cancer, CD8+ T cells, CD4+ T cells, M0 and
M2 macrophages showed lower infiltrating concentration in the
high tumor-associated immune genes groups, which suggested
an adverse association between them (56). Similar to above, the
results suggested that the immune cells have a significantly lower
infiltrating density in the high-risk group. Among them, high
numbers of CD8+ T-lymphocytes is an independent positive
predictive factor for OS in EC patients (57). In addition, our data
showed that high immune score patients have longer
OS, presenting that the TME composition affects the final
clinical outcomes of EC patients. Nevertheless, further studies
are needed to clarify the mechanisms related to these
immune microenvironments.

Up to now, the six-gene based predictive model has not been
previously published, and our study has investigated the
Frontiers in Oncology | www.frontiersin.org 12
relationship between aberrant metabolism-related genes
and the prognosis of EC patients. Moreover, the revealed
biosignature is easy to test routinely, which can provide a cost-
effective and accurate prognosis of EC in clinical practice.
Nevertheless, there are some limitations existing in this study.
First, metabolism is quite variable with tumor stage, between
primary tumor and metastases, and likely even with circadian
rhythm. Given its complexity and variability, larger sample sizes
and broader perspectives are needed to explore the relations and
associations between metabolism and cancers. Second, the risk
model based on these six genes and the nomogram are all
potential signature, and its clinical action needs to be further
validated in more clinical centers. What’s more, in vivo and in
vitro basic experimental verification is also needed to elucidate
the molecular mechanisms and increase the persuasiveness and
accuracy of these results.
CONCLUSION

Above all, we constructed a prognostic predictor aggregating six
metabolism-related genes (HNMT, PHGDH, PSAT1, GPI, CA3,
and CD38) and an integrative nomogram that could accurately
and effectively predict the likelihood of OS and serve as a
predictive tool for clinical prognosis and for guiding
personalized anticancer treatment in EC patients. The function
of immune cells infiltration in TME was also explored, which
promotes the understanding of the underlying mechanisms
involved in the development and prognosis of EC.
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(B) Spearman correlation analysis of the selected genes in GSE17025.

Supplementary Figure 4 | Correlation of the risk score with (A) lymph node
metastasis, (B) peritoneal cytology, (C) FIGO stage, (D) grade, (E) histology, and
(F) the living status.

Supplementary Figure 5 | Kaplan–Meier survival curves. Validation of the
nomogram based on subgroups with different clinical characteristics. (A) EEA
histological type. (B) Other types of histology. (C) FIGO stage I and II. (D) FIGO
stage III and IV. (E) Patients without recurrence. (F) Patients with recurrence. EEA,
endometrioid endometrial adenocarcinoma; FIGO, International Federation of
Gynecology and Obstetrics.
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