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The prognostic impact of Wilms tumor 1 (WT1) mutations remains controversial for
patients with acute myeloid leukemia (AML). Here, we aimed to determine the clinical
implication of WT1 mutations in a large cohort of pediatric AML. The clinical data of 870
pediatric patients with AML were downloaded from the therapeutically applicable research
to generate effective treatment (TARGET) dataset. We analyzed the prevalence, clinical
profile, and prognosis of AML patients with WT1 mutations in this cohort. Our results
showed that 6.7% of total patients harbored WT1mutations. TheseWT1mutations were
closely associated with normal cytogenetics (P<0.001), FMS-like tyrosine kinase 3/internal
tandem duplication (FLT3/ITD) mutations (P<0.001), and low complete remission
induction rates (P<0.01). Compared to the patients without WT1 mutations, patients
withWT1mutations had a worse 5-year event-free survival (21.7 ± 5.5% vs 48.9 ± 1.8%,
P<0.001) and a worse overall survival (41.4 ± 6.6% vs 64.3 ± 1.7%, P<0.001). Moreover,
patients with both WT1 and FLT3/ITD mutations had a dismal prognosis. Compared to
chemotherapy alone, hematopoietic stem cell transplantation tended to improve the
prognoses of WT1-mutated patients. Multivariate analysis demonstrated that WT1
mutations conferred an independent adverse impact on event-free survival (hazard ratio
1.910, P = 0.001) and overall survival (hazard ratio 1.709, P = 0.020). In conclusion, our
findings have demonstrated thatWT1mutations are independent poor prognostic factors
in pediatric AML.

Keywords: acute myeloid leukemia, WT1 mutations, pediatric patients, prognostic factors, FLT3/ITD mutations
INTRODUCTION

Acute myeloid leukemia (AML) is a type of blood cancer that originates in the bone marrow from
immature white blood cells known as myeloblasts. About 20% of all children with leukemia have
AML (1, 2). In the last few years, collaborative studies have revealed a link between the degree of
genetic heterogeneity of AML and the clinical outcome, allowing risk stratification before therapy
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and guiding post-induction treatment (3). The Wilms tumor 1
(WT1) gene, located on chromosome 11p13, encodes a zinc-
finger protein that exists in multiple isoforms. It has been
implicated in the regulation of cell survival, proliferation and
differentiation, and may function both as a tumor suppressor and
an oncogene (4, 5). Various mutations across WT1 gene have
been reported in solid tumors and AML (6, 7). However, the
prognostic impact of WT1 mutations remains controversial for
patients with AML (8).

The WT1 mutations have been shown to be independent
predictors of worse clinical outcome in some but not all adult
AML studies (9–11). Recently, WT1 mutations are proposed to
be prognostic markers of risk stratification for adult AML (12).
However, the prognostic implications of WT1 mutations have
not been clarified in pediatric AML. Moreover, large cohort
studies on the clinical significance ofWT1mutations in pediatric
AML are scarce. A pediatric study of 298 patients with AML
found that WT1 mutations conferred an independent poor
prognostic significance (13). However, another study of 842
pediatric AML revealed that the presence of WT1 mutations
had no independent prognostic significance in predicting the
disease outcome (14). Recently, in a cohort of 353 pediatric
patients with AML, Niktoreh et al. (15) have found that WT1
mutations significantly increased the chance of relapse or
treatment failure and reduced the probability of 3-year overall
survival (OS), but had no significant impact on the 3-year
probability of event-free survival (EFS). On the other hand,
hematopoietic stem cell transplantation (HSCT) is an
important treatment modality for patients with AML.
However, the role of HSCT for patients with WT1 mutations
remains unknown.

To determine the clinical implication of WT1 mutations, an
independent large cohort study of pediatric AML is needed.
Therefore, we analyzed the clinical data of 870 pediatric patients
with AML from the therapeutically applicable research to
generate effective treatment (TARGET) dataset. We found that
WT1 mutations are independent poor prognostic factors in
pediatric AML in terms of 5-year EFS and OS. Patients with
both WT1 and FMS-like tyrosine kinase 3/internal tandem
duplication (FLT3/ITD) mutations had a dismal prognosis.
Moreover, HSCT might be an effective strategy for patients
with WT1 mutations.
MATERIALS AND METHODS

Patients
The clinical data on patients with AML were downloaded from
the TARGET dataset (https://ocg.cancer.gov/programs/target/
data-matrix). In total, 870 pediatric patients younger than 18
years old with the information of WT1 mutations were included
in our study. The year of diagnosis ranged from 1996 to 2010
while the year of last follow-up ranged from 1997 to 2015. The
diagnosis of pediatric AML and risk stratification were defined
according to the Children’s Oncology Group (COG) guidelines.
Subtype classifications of AML were assigned according to the
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French–American–British (FAB) classifications. Mutation
analyses of WT1, FLT3/ITD, NPM1, and CEBPA were
performed as previously described (14, 16–18). Treatment
protocols for AML included AAML03P1, AAML0531 and
CCG-2961. HSCT was considered for high-risk patients in the
first complete remission. Detailed treatments and risk
stratification of these studies have been previously
described (19).

Statistical Analysis
The data were analyzed with the Statistical Package for the Social
Sciences (SPSS®) version, 20.0 (IBM Corporation, Armonk, NY,
USA). The c2 test was used to compare the frequencies of
mutations. Fischer’s exact test was used when data were sparse.
The nonparametric Mann–Whitney U-test was applied for
continuous variables. Complete remission (CR) was defined as
bone marrow aspirate with < 5% blasts by morphology. EFS was
defined as the time between diagnosis and first event, including
induction failure, relapse, or death of any cause. OS was defined
as the time between diagnosis and death from any cause. The
survival curves were estimated using the Kaplan–Meier method
and compared using the log-rank test. Cox proportional hazard
models were used to estimate hazard ratios (HR) for multivariate
analyses. A two-sided P-value less than 0.05 was considered
statistically significant for all statistical analyses.
RESULTS

Relationship Between WT1 Mutations and
Clinical Characteristics
The patients’ clinical characteristics are shown in Table 1. Overall,
among the 870 pediatric patients with AML, 58 patients (6.7%)
were identified with WT1 mutations. The white blood cell count
(WBC) at diagnosis was significantly higher in WT1-mutated
patients (median 56.9×109/L) than in WT1 wild-type patients
(median 30.8×109/L; P=0.041). In WT1-mutated group, the FAB
subtypes were mainly M1, M2, and M4. A higher proportion of
WT1-mutated patients had M4 morphology in comparison with
WT1 wild-type patients (41.2% vs 25.9%; P = 0.018). We also
evaluated the associations between WT1 mutations and
cytogenetic and molecular alterations. In terms of cytogenetics,
WT1 mutations were found more frequently in the normal
cytogenetics subset (44.2% of WT1-mutated patients had normal
cytogenetics compared with 22.3% of those without WT1
mutations; P<0.001). Regarding the molecular alterations, there
was a substantial overlap betweenWT1mutations and FLT3/ITD,
as shown in Table 1, 48.3% of those carrying a WT1 mutation
were also FLT3/ITD positive as opposed to 14.7% of patients
without WT1 mutations (P<0.001). Moreover, the WT1-mutated
patients were classified more frequently as high risk (40.7% vs
12.6%; P<0.001). The treatment protocols for pediatric AML were
equally distributed between these two groups (P=0.058). However,
there were no significant differences in the median age, the median
of FLT3/ITD allelic ratio, NPM1, and CEBPA mutations between
the WT1-mutated group and WT1 wild-type group.
April 2021 | Volume 11 | Article 632094
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Clinical Outcome and Prognostic Effect of
WT1 Mutations
The CR rate was determined for all patients after the first and
second course of induction therapy. At the end of the first course
of therapy, patients with WT1 mutations had a lower rate of CR
(60.3%) compared to those withoutWT1mutations (77.4%), and
Frontiers in Oncology | www.frontiersin.org 3
the difference was statistically significant (P=0.002). At the end of
the second course of therapy, 38(69.1%) of the 55 patients with
WT1 mutations achieved a CR compared to 698 (88.5%) of 789
patients without WT1 mutations (P<0.001). Taken together,
WT1 mutations were significantly associated with low
induction CR rates.
TABLE 1 | Characteristics of pediatric patients with or without WT1 mutations.

All patients WT1-mutated case WT1 wildtype case P-value

Number (%) 870 58 (6.7%) 812(93.3%)
Age, median (year) 9.6 11 9.5 0.221

<3years, n (%) 211(24.3%) 6 (10.3%) 205 (25.2%) 0.011
3≤Age<10years, n (%) 237(27.2%) 19 (32.8%) 218 (26.8%) 0.329
10≤Age<18years, n (%) 422(48.5%) 33 (56.9%) 389 (47.9%) 0.186

Sex 0.119
male, n (%) 454 (52.2%) 36 (62.1%) 418 (51.5%)
female, n (%) 416 (47.8%) 22 (37.9%) 394 (48.5%)

WBC, ×109/L,
Median (range) 31.7(0.2-610) 56.9(1.1-446) 30.8(0.2-610) 0.041
FAB classification: n (%) 0.001

M0 20 (2.8%) 1 (2.0%) 19 (2.9%) >0.999
M1 96 (13.4%) 10 (19.6%) 86 (13.0%) 0.181
M2 193 (27.0%) 11 (21.6%) 182 (27.5%) 0.362
M3 2 (0.3%) 0 (0.0%) 2 (0.3%) >0.999
M4 193 (27.0%) 21 (41.2%) 172 (25.9%) 0.018
M5 160 (22.4%) 3 (5.9%) 157 (23.7%) 0.003
M6 11 (1.5%) 4 (7.8%) 7 (1.1%) 0.005
M7 39 (5.5%) 1 (2.0%) 38 (5.7%) 0.351

Risk group: n (%) <0.001
Low risk 328 (39.0%) 15 (27.8%) 313 (39.8%) 0.079
Standard risk 391 (46.5%) 17 (31.5%) 374 (47.6%) 0.022
High risk 121 (14.4%) 22 (40.7%) 99 (12.6%) <0.001

FLT3/ITD <0.001
Positive, n (%) 147 (16.9%) 28 (48.3%) 119 (14.7%)
Negative, n (%) 722(83.1%) 30 (51.7%) 692 (85.3%)

FLT3/ITD allelic ratio,
Median (range)

0.54 0.55 0.54 0.865
(0.03-9.50) (0.03-5.19) (0.03-9.50)

NPM1 0.794
Positive, n (%) 66(7.6%) 3(5.3%) 63(7.8%)
Negative, n (%) 802(92.4%) 63(94.7%) 748(92.2%)

CEBPA 0.245
Positive, n (%) 49(5.7%) 1(1.7%) 48(5.9%)
Negative, n (%) 817(94.3%) 57(98.3) 760(94.1%)

Cytogenetic status
Normal (n, %) 196(23.7%) 23(44.2%) 173(22.3%) <0.001
Abnormal (n, %) 631 (76.4%) 29 (55.8%) 602 (77.7%) 0.317
inv(16)(n, %) 106(12.8%) 9(17.3%) 97(12.5%) 0.046
t(8;21) (n, %) 128(15.5%) 3(5.8%) 125(16.1%)

HSCT in 1st CR 0.906
No (n, %) 663 (83.8%) 38 (84.4%) 625 (83.8%)
Yes (n, %) 128 (16.2%) 7 (15.6%) 121 (16.2%)

Protocol 0.058
AAML03P1 (n, %) 91 (10.5%) 7 (12.1%) 84 (10.3%) 0.679
AAML0531 (n, %) 732 (84.1%) 44 (75.9%) 688 (84.7%) 0.074
CCG-2961 (n, %) 47(5.4%) 7 (12.1%) 40 (4.9%) 0.031

CR status at end of course 1 0.002
CR, n (%) 656 (76.3%) 35 (60.3%) 621 (77.4%) 0.003
Not CR, n (%) 189 (22.0%) 20 (34.5%) 169 (21.1%) 0.017
Death, n (%) 15 (1.7%) 3 (5.2%) 12 (1.5%) 0.074

CR status at end of course 2 <0.001
CR, n (%) 736 (87.2%) 38 (69.1%) 698 (88.5%) <0.001
Not CR, n (%) 88 (10.4%) 14 (25.5%) 74 (9.4%) <0.001
Death, n (%) 20 (2.4%) 3 (5.5%) 17 (2.2%) 0.136
April 2021 | Volume 11 | Article
CEBPA CCAAT, enhancer binding protein alpha; CR, complete remission; FAB, French–American–British morphology classification; FLT3/ITD, internal tandem duplication of the FLT3
gene; HSCT, hematopoietic stem cell transplantation; NPM1, Nucleophosmin; WBC, white blood cell count.
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A B

C D

E F

FIGURE 1 | Survival curves of pediatric AML patients with and without WT1 mutations. Probability of EFS (A) and OS (B) for all patients with and without WT1
mutations, respectively. Probability of EFS (C) and OS (D) for cytogenetically normal patients with and without WT1 mutations, respectively. Probability of EFS (E)
and OS (F) for cytogenetically abnormal patients with and without WT1 mutations, respectively.
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Next, we evaluated the survival data for all the 870
pediatric patients. The median follow-up time for the
survivors was 5.6 years. As shown in Figure 1A, WT1-
mutated patients had a significantly worse 5-year EFS
(21.7 ± 5.5%) compared with WT1 wild-type patients
(48.9 ± 1.8%; P<0.001). Moreover, patients with WT1
mutations had a worse 5-year OS (41.4 ± 6.6%) than those
without WT1 mutations (64.3 ± 1.7%; P<0.001) (Figure 1B).
When analyses were restricted to patients having normal
cytogenetics, there were significant differences in the
outcome between patients with and without WT1 mutations
(Figures 1C, D) (5-year EFS: 15.2 ± 7.8% vs 51.8 ± 3.8%,
P<0.001; 5-year OS: 34.4 ± 10.4% vs 66.1± 3.7%, P<0.001). In
the subgroup of abnormal cytogenetics (Figures 1E, F), WT1-
mutated patients also had a worse survival time compared
with WT1 wild-type patients in terms of 5-year EFS (31.0 ±
8.6% vs 48.3 ± 2.1%, P=0.027) and OS (48.0 ± 9.3% vs 64.6±
2.0%, P=0.048).
Frontiers in Oncology | www.frontiersin.org 5
Prognostic Impact of WT1 and
FLT3/ITD Mutations
Survival data for patients with FLT3/ITD positive and negative
were also explored. As shown in Figure S1A, FLT3/ITD positive
was significantly associated with inferior EFS (5-year EFS=33.5±
4.0% vs 49.7± 1.9% for FLT3/ITD-negative; P<0.001). Moreover,
the FLT3/ITD positive group had a worse 5-year OS (51.5 ±
4.3%) than the FLT3/ITD-negative group (65.0 ± 1.8%; P=0.003)
(Figure S1B).

Given the overlap between WT1 mutations and positive
FLT3/ITD status, subset analysis was performed to assess the
relative influence of WT1 mutations and FLT3/ITD on the
prognosis of children with AML (Figures 2A, B; Table 2). In
the FLT3/ITD-positive subgroup, WT1-mutated patients had an
extremely dismal prognosis (5-year EFS =12.5 ± 6.5% vs 38.4±
4.5% for WT1 wild-type patients, HR: 2.179 [1.364-3.482],
P=0.001; 5-year OS = 27.5± 8.8% vs 57.0 ± 4.7% for WT1
wild-type patients, HR: 2.225[1.305-3.796], P=0.003). When
A B

FIGURE 2 | Survival curves of all pediatric AML patients according to the combined WT1 mutations and positive FLT3/ITD status. Probability of EFS (A) and OS (B)
for patients according to the combined WT1 mutations and positive FLT3/ITD status, respectively.
TABLE 2 | Statistical comparison of survival data according to both WT1 and FLT3/ITD status.

Comparison EFS hazard ratio (95% CI) EFS OS hazard ratio OS
P-value (95% CI) P-value

FLT3/ITD(-):
WT1 wildtype vs WT1 mutant

1.861(1.197-2.892) 0.006 1.600(0.933-2.744) 0.088

FLT3/ITD(+):
WT1 wildtype vs WT1 mutant

2.179(1.364-3.482) 0.001 2.225(1.305-3.796) 0.003

WT1 wildtype:
FLT3/ITD(-)vs FLT3/ITD(+)

1.386(1.075-1.788) 0.012 1.305(0.961-1.771) 0.088

WT1 mutant:
FLT3/ITD(-) vs FLT3/ITD(+)

1.605(0.886-2.906) 0.118 1.748(0.870-3.514) 0.117
April 2021 | Volume 11 | Article
CI, confidence interval; EFS, event-free survival; FLT3/ITD, internal tandem duplication of the FLT3 gene; OS, overall survival.
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restricted to the FLT3/ITD-negative subgroup, WT1 mutations
had an adverse impact on 5-year EFS (HR: 1.861[1.197-2.892],
P=0.006) instead of 5-year OS (HR: 1.600[0.933-2.744],
P=0.088). Similarly, for the WT1 wild-type patients, FLT3/ITD
positive had reduced 5-year EFS (HR: 1.386[1.075-1.788],
P=0.012) but not 5-year OS (HR: 1.305[0.961-1.771], P=0.088).
However, FLT3/ITD mutations had no significantly negative
influence on the outcome of WT1-mutated patients (EFS HR:
1 .605[0 .886-2 .906] , P=0.118 ; OS HR: 1 .748[0 .870-
3.514], P=0.117).

Similar results were found in the subgroup of cytogenetically
normal AML patients according to the combined WT1
mutations and positive FLT3/ITD status (Figure S2). Of note,
the survival curves showed that there were no significant
differences between WT1-mutated patients with FLT3/ITD-
positive (n=17) and FLT3/ITD negative (n=6), in terms of 5-
Frontiers in Oncology | www.frontiersin.org 6
year EFS (14.1 ± 9.0% vs 16.7 ± 15.2%; P=0.584) and OS (34.5 ±
12.3% vs 33.3 ± 19.2%; P=0.665).

The Effect of SCT in Patients With
WT1 Mutations
As shown in Table 1, there was no significant difference in the
proportion of HSCT in WT1-mutated group and WT1 wild-type
group (15.6% vs 16.2%, P=0.906). The survival analysis, after HSCT
stratification, showed that forWT1-mutated pediatric AML patients,
HSCT conferred a favorable prognostic impact with a trend of better
5-year EFS (42.9 ± 18.7% vs 22.3 ± 7.0% for chemotherapy-only;
P=0.316) and OS (57.1 ± 18.7% vs 43.6 ± 8.2% for chemotherapy-
only; P=0.483) (Figures 3A, B).

To further evaluate the role of HSCT in the patients with co-
occurringWT1 and FLT3/ITDmutations, we explored the impact
of HSCT on those patients. As shown in Figures 3C, D, for AML
BA

DC

FIGURE 3 | Survival curves of pediatric AML patients according to WT1 mutations and hematopoietic stem cell transplantation (HSCT) status. Probability of EFS (A)
and OS (B) for patients with WT1 mutations according to HSCT status, respectively. Probability of EFS (C) and OS (D) for patients with WT1 mutations and FLT3/
ITD positive according to HSCT status, respectively.
April 2021 | Volume 11 | Article 632094
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patients with bothWT1mutations and positive FLT3/ITD, 5-year
EFS (33.3 ± 19.2%) and OS (50.0 ± 20.4%) were higher in children
with HSCT than those with chemotherapy-only (EFS: 0.0 ± 0.0%,
P=0.152; OS: 17.3 ± 11.1%, P=0.205), respectively, although
the differences between the two groups were not
statistically significant.

Multivariate Analysis of Prognostic Factors
Cox regression analyses were then performed to evaluate WT1
mutation status as a predictor of EFS and OS alongside other
prognostic factors: age (utilizing 10 years of age as the cutoff
value), white blood cell count at diagnosis (utilizing 50×10 9/L as
the cutoff value), high risk, standard risk, and HSCT. We
identified WT1 mutations as an independent prognostic factor
for both EFS and OS in pediatric patients with AML (Table 3).
WT1 mutations were significantly associated with inferior EFS
(HR: 1.910, 95% CI: 1.297-2.812, P=0.001) and OS (HR: 1.709,
95% CI: 1.090-2.679, P=0.020). Additionally, age (older than 10
years), white blood cell count greater than 50×109/L at first
diagnosis, high-risk and standard-risk were significantly related
to poor EFS and OS, while HSCT was related to better survival
prognosis (HR: 0.431, 95% CI: 0.313-0.593, P<0.001) and OS
(HR: 0.594, 95% CI: 0.419-0.843, P=0.004).
DISCUSSION

The TARGET program is a collaborative COG-national cancer
institute (NCI) project aiming to comprehensively characterize
the mutational, transcriptional, and epigenetic landscapes of a
large, well-annotated cohort of pediatric cancer (20). Using this
large cohort of subjects, we were able to investigate the clinical
implication of WT1 mutations in pediatric AML. Our findings
showed that the frequency of WT1 mutations was 6.7% among
these 870 pediatric AML patients. This result was similar to the
adult AML studies. In a large cohort of adult AML study, the
frequency of WT1 mutations among 3157 patients was reported
to be 5.5% (21). Next, we found that WT1 mutations were
Frontiers in Oncology | www.frontiersin.org 7
significantly associated with FAB subtypes of M4, with high
white blood cell counts at first diagnosis, normal cytogenetics,
and FLT3/ITD mutations. However, no association was found
between WT1 mutations and CEBPA mutations. These results
were different from some of the other studies. For instance, a
report by Ho et al. (14) also found that WT1 mutations were
related to normal cytogenetics and FLT3/ITD mutations, but
they found no correlation between WT1 mutations and white
blood cell counts or M4 subtype. A pediatric AML report by
Hollink et al. (13) showed that WT1 mutations clustered
significantly in the subgroup with normal cytogenetics and
were associated with FLT3/ITD and CEBPA mutations.

The prognostic impact of WT1 mutations has not been
clarified in pediatric AML. In our study, we found that patients
with WT1 mutations had lower CR induction rates, worse EFS
and OS rates in comparison to patients withoutWT1 mutations.
Patients with both WT1 and FLT3/ITD mutations had a dismal
prognosis. The multivariate analysis showed thatWT1mutations
were an independent adverse impact factor. These results are
consistent with findings by Hollink et al. (13), though they found
the CR induction rates did not differ significantly between
patients with WT1-mutated and WT1 wild-type AML. A
report from the French study group confirmed that WT1
mutations were an independent prognostic factor for pediatric
AML (22). However, a report from the Japanese study group
showed that WT1 mutations were related to a poor prognosis in
patients with normal cytogenetics, excluding those with FLT3/
ITD and those younger than 3 years (23). By contrast, a report
from the Nordic Society of Pediatric Hematology and Oncology
(NOPHO) revealed that no significant correlation with survival
was seen for WT1 mutations (24). Notably, they found that
patients with WT1 mutations but negative FLT3/ITD had a
superior EFS compared with patients with WT1 wildtype with
or without concurrent FLT3/ITD (24). In adult studies, the
presence of WT1 mutation has been found to be associated
with poor clinical outcomes of AML patients in some but not all
studies. In the studies from Cancer and Leukemia Group B (9)
and Hou et al. (10), WT1 mutations were correlated with a poor
prognosis in AML patients. However, in the study from the
German-Austrian Study Group (11), WT1 mutation as a single
molecular marker did not seem to impact the patient outcomes.
These conflicting results may be due to the differences in sample
size, exon of WT1 mutations, and variable treatment protocols
across studies. It has been reported that the negative impact of
WT1 mutations may be overcome by the use of repetitive cycles
of high-dose cytarabine, especially in the subgroup of patients
with negative FLT3/ITD genotype (11).

The mechanism of WT1 mutations in leukemogenesis
remains elusive. Several different WT1 mutations have been
described in AML, which occur primarily in exons 1, 7, and 9.
WT1 mutations may result in the loss of DNA binding ability
due to loss of the zinc-finger domain or result in loss of
expression of the WT1 protein altogether (25–27). WT1
mutations fail to properly direct the ten-eleven translocation-2
to its target sites, either by disruption of the interaction itself or
by failing to bind to DNA (28, 29). Recently, Pronier et al. (30)
TABLE 3 | Cox regression analysis of WT1 mutations and other prognostic
factors.

Outcome Variable Hazard ratio (95% CI) P-value

EFS WT1 1.910(1.297-2.812) 0.001
High risk 3.136(2.235-4.400) <0.001
Standard risk 2.581(2.207-3.286) <0.001
HSCT 0.431(0.313-0.593) <0.001
Age > 10 years 1.300(1.053-1.607) 0.015
WBC>50×109/L 1.499(1.220-1.841) <0.001

OS WT1 1.709(1.090-2.679) 0.02
High risk 3.991(2.653-6.004) <0.001
Standard risk 3.413(2.494-4.670) <0.001
HSCT 0.594(0.419-0.843) 0.004
Age > 10 years 1.496(1.158-1.933) 0.002
WBC>50×109/L 1.307(1.018-1.677) 0.036
CI, confidence interval; EFS, event-free survival; HSCT, hematopoietic stem cell
transplantation; OS, overall survival; WBC, white blood cell count.
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have found that WT1 heterozygous loss enhances stem cell self-
renewal, WT1 depletion cooperates with FLT3/ITD mutation to
induce fully penetrant AML. Mutational analysis of a large
cohort of AML cases revealed that WT1 may play an
important role in the epigenetic pathway (31, 32). Given the
epigenetic alterations catalogued in WT1 mutant, epigenetic-
targeted therapy has been explored as a potential mechanism to
deal with this subgroup of leukemia (33). Recently, Sinha et al.
(34) have found that mutant WT1 is associated with DNA
hypermethylation of polycomb repressor complex 2 targets in
AML, and inhibitor of enhancer of zeste homolog 2 (EZH2) may
be helpful in this AML subtype.

Alternately, HSCT is one of the most effective treatments for
AML. However, it is unknown whether WT1-mutated patients
will benefit from HSCT. Our studies showed that compared to
chemotherapy alone, HSCT tended to improve the prognoses of
WT1-mutated patients, and for patients with both WT1 and
FLT3/ITD mutations as well. These results are in agreement with
a previous pediatric AML report (14). Recently, Eisfeld et al. (12)
have found that co-occurrence of WT1 and NPM1 mutations
confers especially poor outcomes in a large cohort of 863 adult
AML. They proposed that mutated WT1 co-occurrence with
mutated NPM1 would be an adverse marker for risk
stratification, indicating patients with both WT1 and NPM1
mutations might be considered for HSCT. However, since
NPM1 mutation is relatively rare in children, we could not
draw a firm conclusion on this topic due to the small number
of patients with bothWT1 and NPM1 mutations. Thus, whether
WT1 mutation is an indication for HSCT in pediatric AML
requires further investigation.

There were several limitations to our study. Firstly, since
different WT1 mutations may affect its functions on DNA
binding or protein interaction differentially, the details of
WT1 mutants can be important to the clinical outcome of
AML patients with these mutants. However, the information on
the specific mutations of in WT1 is not provided in the
TARGET dataset, therefore, we can’t perform further
analysis. Secondly, though this is a large pediatric AML
cohort study, the sample size is still relatively small in the
subgroups of patients withWT1mutations. We cannot rule out
the contribution of FLT3/ITD co-occurrence towards the
prognosis. Thirdly, our findings showed that WT1 mutations
were associated with poor clinical outcomes, andWT1-mutated
patients might benefit from HSCT. These results suggested that
WT1 mutations could be used as predictive factors and linked
to a specific clinical management plan. However, due to the
limitations associated with the TARGET dataset as mentioned
above, and the retrospective analysis nature of our study, a large
multicentric prospective future study could be of value to
further address the prognostic significance of WT1 mutations
in AML.

In summary, we analyzed the clinical implication of WT1
mutations in a large pediatric AML cohort. Our findings
showed that WT1 mutations are independent poor
prognostic factors in pediatric AML. Patients with co-
occurring WT1 and FLT3/ITD mutations had a dismal
Frontiers in Oncology | www.frontiersin.org 8
prognosis. Moreover, HSCT might be an effective strategy
for patients with WT1 mutations. These results have
important implications and might contribute to the refining
risk stratification of pediatric AML.
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