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Objective: To investigate radiomics features extracted from PET and CT components of
18F-FDG PET/CT images integrating clinical factors and metabolic parameters of PET to
predict progression-free survival (PFS) in advanced high-grade serous ovarian cancer
(HGSOC).

Methods: A total of 261 patients were finally enrolled in this study and randomly divided
into training (n=182) and validation cohorts (n=79). The data of clinical features and
metabolic parameters of PET were reviewed from hospital information system(HIS). All
volumes of interest (VOIs) of PET/CT images were semi-automatically segmented with a
threshold of 42% of maximal standard uptake value (SUVmax) in PET images. A total of
1700 (850×2) radiomics features were separately extracted from PET and CT
components of PET/CT images. Then two radiomics signatures (RSs) were constructed
by the least absolute shrinkage and selection operator (LASSO) method. The RSs of PET
(PET_RS) and CT components(CT_RS) were separately divided into low and high RS
groups according to the optimum cutoff value. The potential associations between RSs
with PFS were assessed in training and validation cohorts based on the Log-rank test.
Clinical features and metabolic parameters of PET images (PET_MP) with P-value <0.05 in
univariate and multivariate Cox regression were combined with PET_RS and CT_RS to
develop prediction nomograms (Clinical, Clinical+ PET_MP, Clinical+ PET_RS, Clinical+
CT_RS, Clinical+ PET_MP + PET_RS, Clinical+ PET_MP + CT_RS) by using multivariate
Cox regression. The concordance index (C-index), calibration curve, and net
reclassification improvement (NRI) was applied to evaluate the predictive performance
of nomograms in training and validation cohorts.

Results: In univariate Cox regression analysis, six clinical features were significantly
associated with PFS. Ten PET radiomics features were selected by LASSO to construct
PET_RS, and 1 CT radiomics features to construct CT_RS. PET_RS and CT_RS was
significantly associated with PFS both in training (P <0.00 for both RSs) and validation
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cohorts (P=0.01 for both RSs). Because there was no PET_MP significantly associated
with PFS in training cohorts. Only three models were constructed by 4 clinical features
with P-value <0.05 in multivariate Cox regression and RSs (Clinical, Clinical+ PET_RS,
Clinical+ CT_RS). Clinical+ PET_RS model showed higher prognostic performance than
other models in training cohort (C-index=0.70, 95% CI 0.68-0.72) and validation cohort
(C-index=0.70, 95% CI 0.66-0.74). Calibration curves of each model for prediction of 1-,
3-year PFS indicated Clinical +PET_RS model showed excellent agreements between
estimated and the observed 1-, 3-outcomes. Compared to the basic clinical model,
Clinical+ PET_MS model resulted in greater improvement in predictive performance in the
validation cohort.

Conclusion: PET_RS can improve diagnostic accuracy and provide complementary
prognostic information compared with the use of clinical factors alone or combined with
CT_RS. The newly developed radiomics nomogram is an effective tool to predict PFS for
patients with advanced HGSOC.
Keywords: high-grade serous ovarian cancer, progression-free survival, radiomics, PET/CT, nomogram
INTRODUCTION

Ovarian carcinoma is the leading cause of gynecologic cancer
deaths because the majority of patients are diagnosed with
advanced-stage disease (Stages III and IV) according to the
International Federation of Gynecology and Obstetrics (FIGO)
staging classification (1). HGSOC accounts for up to 70% of
epithelial ovarian carcinoma (2, 3). Although most of those
women achieve complete remission with cytoreductive surgery
and cisplatin based chemotherapy. The median PFS time is only
18 months (4). A significant proportion of patients with advanced
HGSOC experience tumor recurrence and progression within 3
years (5). Identification of tumor recurrence and progression in
patients with advanced HGSOC after cytoreductive surgery is
important since it guides the decisions about personalized
treatment and surveillance plans.

18F-FDG PET/CT examination can provide more accurate
information on preoperative staging and surveillance
for detecting recurrent HGSOC (6–9). Compared with CT,
18F-FDG PET/CT can identify recurrence earlier because
recurrence is characterized by hypermetabolism (9). Previous
studies demonstrated conventional PET imaging metrics such as
maximum standardized uptake value (SUVmax), metabolic
tumor volume (MTV), total lesion glycolysis (TLG) had been
reported to be significant prognostic factors for patients with
HGSOC (10). However, due to inconsistent result of previous
studies, there are some problems with metabolic parameters to
predict survival for patients with HGSOC (11–14). Therefore the
predictive value of these metabolic metrics to accurately stratify
different risk groups seems to be limited (15). More effective
indicators are needed to long-term monitor and predict the risk
of recurrence and tumor progression.

Radiomics based on high-dimensional quantitative features
extracted from different medical imaging modalities can
noninvasively quantify tumor heterogeneity and show
underlying malignant features (16). On the basis of predictive
2

models based on those radiomics features, clinicians can deliver
more personalized medical care about tumor diagnosis,
histopathological classification, therapeutic assessment, and
prognosis (16, 17). Several studies investigated the role of
applying radiomics features extracted from CT images for non-
invasive predicting tumor recurrence of HGSOC patients (18–
21). The nomogram built by radiomics signatures and clinical
factors demonstrated the feasibility of predicting the recurrence
of HGSOC (18, 21). However, to our knowledge, study on the
establishment and validation of PET/CT radiomics signature and
nomogram for predicting PFS in HGSOC patients has not yet
been reported. Therefore, in this study we established PET_RS
and CT_RS, and hybrid radiomics nomograms integrating RS
and clinical factors. In addition, the performances of these hybrid
nomograms were compared.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Medical Ethics
Committee of Shengjing Hospital of China Medical University.
From January 2013 to December 2017, A total of 363 patients
were enrolled in this retrospective study. Inclusion criteria were
as follows: (1) patients received cytoreductive surgery and 6-8
cycles of platinum-based chemotherapy; (2) postoperative
pathological examination confirmed stage III and IV HGSOC;
(3) 18F-FDG PET/CT examination was performed before surgery
and neoadjuvant chemotherapy (NACT); (4) clinical,
pathological, and follow-up information was available. The
exclusion criteria included the following: (1) patients received
any antitumor therapy before 18F-FDG PET/CT scan; (2)
patients with other malignancies or other diseases that might
affect the radiomics and survival analysis;(3) incomplete clinical-
pathological reports;(4) poor image quality or SUVmax<2.5.
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Finally, 261 patients were enrolled in this study and randomly
divided into training (n=182) and validation(n=79) cohorts in a
ratio of 7:3. Clinical characteristics including age, FIGO stage,
CA125, lymph node metastasis (LNM), volume of ascites,
location of primary tumor, residual tumor(>2cm), NACT, and
follow-up information were retrieved from the hospital
information system. The diameter of primary tumor was
acquired by PET/CT images.

Follow-Up and Clinical Endpoints
The patient was followed up 2-4 months for two years, then 3-6
months for 3 years, then annually after 5 years. Physical exam, CT
scan, and serum CA-125 level was used to evaluate recurrence or
progression of tumors. The endpoint of this study was tumor
recurrence or progression, which was diagnosed by combining
clinical symptoms, rising CA-125 levels, and radiological findings.
PFS is defined as the time from the end of chemotherapy until
tumor progression or the time of last follow-up.

PET/CT Image Acquisition
All patients underwent a whole-body 18F-FDG PET/CT scan on
a dedicated PET/CT system (Discovery 690, GE Healthcare,
Milwaukee, USA) according to the European Association of
Nuclear Medicine (EANM) guidelines within 1 month before
any treatment. Patients fasted 6 hours were injected with 161–
361 MBq (4.35–9.76 mCi, 150 mCi/kg) 18F-FDG. Then the scan
was performed after 60 min (59 ± 3 min, range 53–62 min).
The 3D ordered subset expectation maximization algorithm
(2 iterations and 20 subsets) was used for PET image
reconstruction, resulting in voxel sizes of 3.65×3.65×3.27 mm3.
The field of view (FOV) was 700 mm. The CT scans (80 mA,
120 kV) with matrix sizes of 512×512 were acquired for the
attenuation correction method, prior to the PET scan. The PET
and CT scans were transferred to workstation to display frame-
on-frame fusion images. The PET images (voxel size 3.65 mm,
slice thickness 3.27 mm) were then interpolated to the same
Frontiers in Oncology | www.frontiersin.org 3
resolution as CT images (voxel size 0.98 mm, slice thickness
3.27 mm).

Image Segmentation and Preprocessing
For each patient, all the lesions including primary tumors and
distant metastases were identified by two radiologists (with more
than 5 years of experience in abdominal imaging) in PET images.
Metabolic parameters including SUVmax, SUVpeak, SUVmean,
SUVmedian, TLG,MTVwere extracted from all lesions. After that,
all VOIs of PET images were semiautomatically segmented with a
threshold of 42% of SUVmax by 3D slicer (Version 4.81, www.
slicer.org). All tumors with SUV > 42% SUVmax were delineated
except small lesions with size <1 cm. The VOIs of CT images were
delineated according to the VOIs of PET images (Figure 1).

Radiomics Features Extraction and
Selection
Extractions of radiomics features from VOIs were performed by
using a radiomics extension of 3D Slicer software called
SlicerRadomics (V2.10, https://github.com/Radiomics/
SlicerRadiomics) (22). We used a fixed bin width to make a
histogram and discretized image gray level because PET show a
better reproducibility of features when implementing a fixed bin
width (23). Finally, 850 radiomics features were extracted from
original and 8 derived images obtained by applying Wavelet
filters, including 18 first-order features, 13 shape features, 23 gray
level cooccurence matrix features, 16 gray level run length matrix
features, 16 gray level size zone matrix features, 5 neighboring
gray tone difference matrix features, 14 gray level dependence
matrix features. All of the radiomics features were separately
extracted from VOIs of PET and CT images for each patient.

The univariate analysis based on Cox regression was used to
assess the correlation between radiomics features and PFS in
training cohort. The features with P-value <0.05 were separately
included in the LASSO regression analysis with 5-fold cross-
validation for further features selection and RSs calculating.
FIGURE 1 | ROI delineation in PET and CT images. Plots (A, B) showed ROI delineation in PET and CT images. Plots (C) showed the 3D view.
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PET_RS and CT_RS of each patient were separately calculated
from selected features weighted by their regression coefficients.
In the training cohort the optimum cut-off value of each patient
for PET_RS and CT_RS was determined by using the time-
dependent ROC curve analysis with the highest Youden index,
then the patients were divided into high-RS and low-RS groups
according to the cutoff values. The potential associations of RSs
with PFS were assessed in the training and validation cohorts
based on Log-rank test.

Predictive Model Establishment and
Evaluation
The radiomics features of CT and PET with variance close to 0
were deleted. Clinical features and PET metabolic parameters were
assessed by univariate analysis based on Cox regression analysis.
The features with P-value <0.05 in univariate Cox regression
analysis were included in multivariate Cox regression analysis.
Only the significant risk features with P-value <0.05 in multivariate
Cox regression analysis were used to construct predictive models.
Then, multivariate Cox regression models involved different
combinations of clinical features, PET metabolic parameters,
PET_RS, and CT_RS were build: (1) clinical features alone
(denoted as Clinical), (2) combining clinical features and PET
metabolic parameters (denoted as Clinical + PET_MP),
(3) combining clinical features and PET_RS (denoted as
Clinical + PET_RS), (4) combining clinical features and CT_RS
(denoted as Clinical + CT_RS), (5) combining clinical features,
PET metabolic parameters, and PET_RS (denoted as Clinical +
PET_MP + PET_RS), (6) combining clinical features, PET
metabolic parameters, and CT_RS (denoted as Clinical +
PET_MP + CT_RS). The C-index was used to evaluate the
discrimination of models. Then the time-dependent C-index
curve analysis was used to evaluate the predictive performance
of different models at different time points during follow-up both
in training and validation cohorts. Calibration curves were
performed to compare the predicted time with actual PFS. In
order to evaluate the improvement in prediction performance by
adding RSs and PET_MP to the Clinical model, the categorical
NRI was calculated in the validation cohort for the first and third
year. The patients were classified into three groups based on the
probability of tumor progression with cutoffs at 0.30 and 0.60
defining low-, medium-, and high-risk groups. Finally, to provide
patients and clinicians with an individualized and easy-to-use
postoperative predictive tool for PFS, a radiomics nomogram
was constructed on the basis of an optimal model.

Statistical Analysis
Student t-tests and Mann–Whitney U tests were used for
continuous clinical risk factors, Chi-squared tests were applied
for categorical variables, and log-rank tests were conducted
for PFS to assess the difference between the training and
validation cohorts. Univariate and multivariate Cox regression,
LASSO-Cox regression analysis, calibration curves plot,
C-index, and NRI was performed using R software (version 4.0,
http://www.r-project.org). A two-sided p <0.05 indicated a
statistically significant difference.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Clinical Characteristics
The demographic and clinical characteristics of training and
validation cohorts were shown in Table 1. There was no
significant difference between two cohorts. The PFS of the
training cohort was 694 days, 616 days in the validation cohort
(P=0.955). Although slightly longer compared with validation
cohort, the PFS was not significantly different between two cohorts.

Univariate Cox regression analysis revealed that NACT,
residual tumor, ascites, LNM, location, FIGO stage were
significantly associated with PFS in the training cohort. But
only NACT, location, ascites, and residual tumor was
significantly factor associated with PFS in multivariate Cox
regression analysis. However, there were no PET_MPs
significantly associated with PFS in the training cohort (Table 2).

Radiomics Signatures Development and
Validation
Ten features were selected from the radiomics feature of PET to
construct PET_RS, and 1 features from the radiomics feature of CT
to construct CT_RS in the training cohort. RSs were constructed
based on the selected features and their corresponding weighting
coefficients. The optimal cut-off values for CT_RS and PET_RS
were 13.97 and -0.14. There was a significant difference between
April 2021 | Volume 11 | Article 638124
TABLE 1 | The demographic and clinical characteristics of HGSOC patients in
the training and validation cohorts.

Characteristic Training cohort
(n=182)

Validation cohort
(n=79)

P-
value

CA125, median (range) 1471 (38.61,
6659.00)

1415 (35.15, 5000) 0.77

Age, mean ± SD,
years

55.11 ± 8.90 56.6± 10.31 0.26

NACT 0.66
Yes 55 21
No 127 58

Residual tumor 0.99
Yes 49 22
No 133 57

Ascites 0.38
<200ml 58 21
200ml-1000ml 42 15
>=1000 82 43

LNM 0.62
Yes 93 37
No 89 42

FIGO Stage 1.00
Stage III 123 54
Stage IV 59 25

Progression-free
survival

0.25

Yes 152 71
No 30 8

PFS time 694 616 0.20
Location 0.30
Unilateral 52 17
Bilateral 130 62

Diameter, mean ± SD,
mm

81.17±33.99 76.1±30.90 0.24
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high and low RS groups both in training and validation cohorts for
PET_RS and CT_RS. In the training cohort, p-values of the Log-
rank test were both P < 0.01 for PET_RS and CT_RS, and both
P=0.01 in the validation cohort. The Kaplan-Meier survival curves
were conducted respectively for PET_RS and CT_RS in training
and validation cohorts (Figure 2).

Construction of Multiple Prognostic Model
and Performance of Different Models
Because there were no PET_MPs significantly associated with PFS
in the training cohort, only three models were constructed by 4
clinical features with P-value <0.05 in multivariate Cox regression
and RSs (Clinical, Clinical+ PET_RS, Clinical+ CT_RS). The C-
index of each model was shown on Table 3. Clinical+ PET_RS
model showed higher prognostic performance than other models in
training cohort (C-index=0.70, 95% CI 0.68-0.72) and validation
cohort (C-index=0.70, 95%CI 0.66-0.74). The time-dependent C-
index curve analysis of each model in training and validation
cohorts also indicated similar results (Figure 3). Calibration
curves of each model for prediction of 1-, 3-year PFS indicated
Clinical +PET_RS model showed excellent agreements between
estimated and the observed 1-, 3-outcomes (Figure 4). Compared to
the Clinical model, the Clinical+PET_RS model achieved higher
predictive performance improvement than Clinical+CT_RS models
in the validation cohort, NRI was 19.33% (95%CI -3.37%,44.23%)
for PFS estimation at the first year, and 11.97% (95%CI -6.56%,
29.70%) at the third years (Table 4).

Individualized Nomogram Construction
and Clinical Use
Considering that the Clinical + PET_RS model had better
discrimination, and calibration in predicting PFS for patients with
advanced HGSOC in training and validation cohort, we created a
nomogram based on this model, which can visualize proportion of
risk factors and prediction result for each patient (Figure 5).
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

Identifying new quantitative imaging markers of PET/CT to
improve the accuracy of predicting tumor recurrence and
progression is essential for the selection of appropriate treatment
and follow up. In this study, we investigated the performance of
RSs extracted separately from PET and CT components of PET/
CT images integrated with clinical features to predict PFS for
patients with advanced HGSOC. Compared with simple use of
clinical features, the predictive performance of the model
integrated clinical features and RS of PET images were
significantly improved both in the training and validation cohorts.

In our study, we only included the patients with advanced
HGSOC (FIGO stage III and IV), because there was significant
difference between early stage and advanced stage HGSOC in PFS.
Besides in our study, some advanced HGSOC patients with high
tumor burden received NACT before cytoreductive surgery. We
included age, NACT, residual tumor, volume of ascites, LNM,
CA125, FIGO stage, location of primary tumor, and diameter of
primary tumor as clinical features. Previous study indicated the
volume of ascites was an independent predictor of PFS and OS in
patients with epithelial ovarian carcinoma (24, 25). Although in
previous study the threshold of volume was set to 1500 ml or 2000
ml respectively to classify patients into small- and large-volume
ascites groups. We think the patients could be accurately stratified
according to small(<200ml), medium (200-999ml), and lager
(>1000ml) volume of ascites. AS showed in univariate and
multivariate Cox regression analysis, the volume of ascites was
the features significantly associated with PFS and included into
final model. Previous study built a clinical model involving age,
FIGO stage, preoperative CA-125, tumor location,and tumor
diameter as features for PFS prediction (18). But in our study,
the clinical model only involved clinical features with p-value
<0.05 in univariate and multivariate COX regression analysis.
Only NACT, residual tumor, ascites, location was included in the
final clinical model. Residual tumor, NACT and location of
primary tumor was considered to be independent risk factor of
PFS for patients with advancedHGSOC in previous study (26–28).

Metabolic parameters of PET images were most frequently
used in clinical practice and studies (29, 30). Although as shown
in previous meta-analysis, MTV and TLG was potentially useful
prognostic markers of PFS and OS in patients with ovarian
cancer (13, 14). The prognostic value of metabolic parameters
such as SUVmax, SUVmean, SUVmedian, MATV, and TLG for
patients with HGSOC remains controversial (8, 11, 12, 15). In
our study, Although the P value of SUVmedain and SUVmean
was close to 0.05, there was no PET_MP significantly associated
with PFS (P<0.05). So we did not include any PET_MP into
our model. This might be due to the different cohorts. Previous
studies included all subtypes of ovarian cancer regardless of
heterogeneity and hindered the subtype-specific significance of
PET/CT metabolic parameters. Another possible reason was that
the difference of those metabolic parameters of 18F-FDG PET/CT
in advanced HGSOC was small. Compared with the
conventional PET_MP, the radiomics features of PET can
reflect more extensive properties of image. PET_RS calculated
by lasso regression could directly associate with PFS.
TABLE 2 | Univariate and multivariate Cox analysis for PFS in the training and
validation cohorts for patients with advanced HGSOC.

Variable Univariate Cox regression Multivariate Cox regression

HR (95% CI) P HR (95% CI) P

CA125 1.00 (1.00,1.00) 0.08
Age 1.01 (0.99,1.03) 0.27
NACT 1.44 (1.03,2.02) 0.04 1.85 (1.25,2.73) <0.01
Residual tumor 1.96 (1.38,2.79) <0.01 1.98 (1.34,2.92) <0.01
Ascites
<200ml Reference Reference
200ml-1000ml 1.47 (0.95,2.28) 0.09 1.56 (0.99,2.45) 0.05
>=1000 1.89 (1.29,2.75) <0.01 1.63 (1.10,2.42) 0.02

LNM 1.48 (1.08,2.04) 0.02 1.2 (0.86,1.69) 0.28
Location 1.92 (1.33,2.79) <0.01 1.76 (1.20,2.59) <0.01
Diameter 1.00 (0.99,1.00) 0.28
FIGO Stage 1.43 (1.02,2.01) 0.00 0.9 (0.82,1.71) 0.37
SUVmedian 0.91 (0.83,1.00) 0.06
TLG 1.00 (1.00,1.00) 0.38
MTV 1.00 (1.00,1.00) 0.12
SUVpeak 0.98 (0.95,1.01) 0.27
SUVmax 0.99 (0.96,1.01) 0.35
SUVmean 0.92 (0.84,1.01) 0.07
April 2021 | Volume 11 | Article 638124
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Intratumoral heterogeneity of PET/CT has been proved to
be a prognostic predictor for some malignancies these years
(10, 31, 32). The radiomics features extracted from PET/CT
images allowed us to assess intratumoral and metabolic
heterogeneity quantitatively. The relationship between
texture-based quantitative features of CT images with
residual tumors and survival was revealed in previous studies
(33, 34). Textural analysis of CT images can provide added
value in evaluating prognosis for patients with HGSOC. The
Frontiers in Oncology | www.frontiersin.org 6
predictive model built in previous study integrating deep
learning features extracted from CT achieved good
performance (18). The C-index was about 0.7, which is
almost equal to our result. Combination of the radiomics
feature of F2-Shape/Max3DDiameter with clinical features
could significantly improve the AUC for predicting the risk
of disease progression within 12 months in ovarian cancer
patients (20). Hoverer this result was not validated in other
patents. In previous study the AUC of RS constructed by 7
features from CT images to predict 3-year clinical recurrence-
free survival was 0.8567 in the training cohort, and 0.8533 in
the validation cohort (19). In our study we could forecast the
time of tumor progression because the endpoint of our study
was tumor progression instead of a fixed interval. However, in
our study, the C-index of the CT_RS model was not as high as
in the training cohort. A possible explanation for the low
predictive power of CT_RS model in the validation cohort
was that the VOI outlined in the PET image with a threshold of
TABLE 3 | The C-index of each model in the training and validation cohorts.

Model Training cohort Validation cohort

C-Index (95% CI) C-Index (95% CI)

Clinical 0.67 0.65-0.69 0.67 0.63-0.71
Clinical + PET_RS 0.70 0.68-0.72 0.70 0.66-0.74
Clinical + CT_RS 0.69 0.67-0.71 0.68 0.64-0.72
A B

C D

FIGURE 2 | Kaplan-Meier survival curves for PET_RS and CT_RS in the training and validation cohorts. Plots (A, B) showed the KM survival curves of PET_RS in
the training and validation cohorts. Plots (C, D) showed the KM survival curves of CT_RS in the training and validation cohorts.
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)

42% SUVmax could influence the radiomics features extracted
from the CT component of PET/CT image. The intratumoral
heterogeneity reflected by CT_RS might decrease. And also, the
radiomics features extracted from noncontract CT of PET/CT.
Although diagnostic accuracy of CT without contrast media is
really poor. The radiomics features of CT without contrast
7

media could also show certain tumor heterogeneity (35–
37).The difference between radiomics features of noncontract
CT and contrast enhanced CT need to be explored.

To our knowledge, the association between radiomics features
of PET images and PFS of HGSOC patients has not been
evaluated. In our study, numerous prediction models,
incorporating clinical features, CT_RS, and PET_RS in
different combinations were built to predict PFS for patients
with advanced HGSOC. The Clinical+PET_RS model
performed better than other models in the training and
validation cohorts. PET_RS included 10 radiomics features
extract from original and derived images. The CT_RS was
calculated by wavelet. HHH_glszm_GrayLevelNonUniformity
Normalized features. This radiomics features measured the
A B

FIGURE 3 | Compare of time-dependent C-index curves of each model for predicting PFS with advanced HGSOC in training (A) and validation (B) cohorts.
FIGURE 4 | Calibration curves of each model for prediction of 1-, 3-year PFS in the training and validation cohorts. Model-estimated PFS was plotted on the x-axis;
the observed PFS was plotted on the y-axis. The diagonal dotted line was a perfect estimation by an ideal model. (A) Clinical model, (B) Clinical + PET_RS model,
(C) Clinical + CT_RS model.
TABLE 4 | NRI in validation cohort for the first year and third year.

Model Validation cohort(1Y) Validation cohort(3Y
NRI (95%CI) NRI (95%CI)

Clinical Reference Reference
Clinical + CT_RS 3.03 (-15.14, 20.89) 7.05 ( -7.56,23.62)
Clinical + PET_RS 19.33 (-3.37,44.23) 11.97 (-6.56, 29.70)
April 2021 | Volume 11 | Article 638124
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variability of gray-level intensity values in CT image array and be
related to the PFS. Some studies have shown that the metabolic
modifications of PET were more predictive than morphological
modifications of CT (35–37). The results of previous and our
study indicated the fact that the combination of radiomics features
of PET and clinical variables has a more complementary and
synergistic effects in predicting PFS.

This study has several limitations. Firstly, this was a single-
center study. Although all the PET/CT scans were performed by
one PET/CT scanner with standard imaging processes to reduce
variance and bias of radiomics features. Further confirmation of
the robustness of radiomics features and our predictive model will
be needed. Secondly, the VOI s of the tumors was delineated on
PET images with 42% SUVmax instead of CT images. The
information on anatomical structure and structural
heterogeneity may be ignored. Some studies draw ROI manually
on fused images (38, 39). There are some problems in manual
segmentation in the repeatability and stability of radiomics
features. A further study exploring the difference between ROI
extract methods will be needed. Thirdly, the average value of
radiomics features was computed for all the VOIs including
primary and metastatic tumors, which might not be the optimal
method. The primary or other metastatic tumors must be
investigated to generate optimal case-based image features.

CONCLUSIONS

In conclusion, RSs extracted from the PET and CT components
of PET/CT images, quantitatively characterizing intratumoral
heterogeneity, were associated with PFS of patients with
advanced HGSOC. PET_RS can improve diagnostic accuracy
and provide complementary prognostic information compared
Frontiers in Oncology | www.frontiersin.org 8
with the use of clinical parameters alone or combined with
CT_RS. The newly developed radiomics nomogram is an
effective tool to predict PFS for patients with advanced HGSOC.
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