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Background: Anaplastic diffuse large B-cell lymphoma(A-DLBCL) is a rare
morphological subtype characterized by the presence of polygonal, bizarre-shaped
tumor cells. Our previous research found that A-DLBCL displays many genetic
alterations and biological features that differ greatly from those of ordinary DLBCL.
However, the status of tumor immune microenvironment components and checkpoint
molecules in A-DLBCL remains unclear.

Methods: Thirty A-DLBCL patients were enrolled to study tumor immune
microenvironment components and checkpoint molecules and their associations with
clinicopathological features and prognosis.

Results: Patients with A-DLBCL presented higher expression of PD-L1 (40% vs 10%,
P=0.004) than patients with ordinary DLBCL. FISH analysis showed that extra copies of
PD-L1 were more frequent in A-DLBCL cases than in ordinary DLBCL cases (23.3% vs
4.0%, P=0.001). The numbers of PD-1+ TILs (tumor infiltrating lymphocytes) and CD8+T
cells were significantly lower in A-DLBCL versus ordinary DLBCL. In contrast, the
numbers of GATA3+ Th2 cells, FOXP3+ Tregs and CD33+ myeloid-derived suppressor
cells (MDSCs) were significantly higher in A-DLBCL than in ordinary DLBCL. The
associations between clinicopathological features and tumor immune microenvironment
cell frequency were analyzed in A-DLBCL patients. Briefly, the number of PD-1+ TILs was
lower and the number of CD33+ MDSCs was higher in patients with mutated TP53
compared to those with wild-type TP53. The number of FOXP3+ Tregs was much lower in
patients with a noncomplete response (CR) to chemotherapy than in those with a
complete response. The number of CD8+ T cells showed a decreasing trend in patients
with high International Prognostic Index (IPI) scores and in those with concurrent MYC and
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BCL2 and/or BCL6 abnormalities. Univariate survival analysis showed that patients with
PD-L1+, mPD-L1+(PD-L1+ nonmalignant stromal cells) or mPD-L1+ status had a
significantly poorer overall survival (OS) than those with PD-L1- status. An increase in
the number of CD3+ T cells, FOXP3+ Treg cells and T-bet+ Th1 cells was significantly
associated with prolonged OS in patients with A-DLBCL.

Conclusion: Our study suggests that A-DLBCL displays a distinct pattern of tumor
immune microenvironment components and checkpoint molecules that distinguish it from
ordinary DLBCL. The analysis of tumor immune microenvironment components and
checkpoint molecules could help in predicting the prognosis of A-DLBCL patients and
determining therapeutic strategies targeting the tumor immune microenvironment.
Keywords: tumor immune microenvironment (TIME), checkpoint molecules, anaplastic variant of diffuse large
B-cell lymphoma, PD-L1, prognosis
INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common
type of lymphoma; it is more prevalent in elderly patients, with a
median age in the 70s. However,it also occurs in young adults but
rarely occurs in children. Clinically, most patients present with a
rapidly growing tumor mass involving one or more lymph nodes
and extranodal sites (1, 2). DLBCL displays tremendous
heterogeneity in terms of its clinicopathologic and molecular
genetic features. DLBCL cases can be subdivided into
morphologic variants, molecular and immunophenotypical
subgroups, and distinct disease entities.

Anaplastic variant of diffuse large B-cell lymphoma(A-
DLBCL) is a rare morphological type, representing
approximately 3-4% of all DLBCL cases (1, 2), that is
characterized by large or very large, pleomorphic or bizarre-
shaped lymphoma cells. Our previous research found that A-
DLBCL showed a high frequency of the TP53mutation, as well as
concurrent abnormalities of MYC and BCL2 and/or BCL6, and
most cases had a non-GCB immunophenotype. Patients with A-
DLBCL follow an aggressive disease course and have poor
prognosis (3). In our study on 3 cases of primary CNS A-
DLBCL, patients also had MYC/BCL2 co-expression, and
concurrent MYC and BCL2 and/or BCL6 genetic abnormalities,
and constitutive NF-kB pathway activation (4). Our results
suggest that A-DLBCL displays many genetic alterations and
biological features that differ greatly from ordinary DLBCL.

The PD-1/PD-L1 pathway is an inhibitory immune
checkpoint that has the ability to suppress T cell immune
activity. However, this pathway inhibits the immune activity of
tumor-specific CD8+ T cells, allowing tumor cells to escape T-
cell–mediated tumor-specific immunity, thereby promoting
tumor development. Various studies have reported an
association between increased expression of PD-L1 and poor
prognosis in several cancers, including melanoma, lung cancer,
ovarian cancer, and DLBCL (5–8). PD-L1 is also expressed on
DLBCL tumor cells and tumor infiltrating nonmalignant cells,
primarily macrophages (9, 10). Furthermore, the presence of
high levels of PD-L1 is associated with poor OS and acts as a
2

potent novel biomarker in DLBCL (7). Extensively pretreated
patients with relapsed or refractory DLBCL achieve beneficial
therapeutic effects with blockade of the PD-1/PD-L1 pathway
(11–13). These results suggest that the PD-1/PD-L1 pathway
contributes to tumor cell survival and that manipulation of this
pathway may be an applicable therapeutic modality to
treat DLBCL.

The tumor microenvironment(TME) of B-cell lymphoma
significantly contributes to tumor progression and immune
evasion (14). Recently, some researchers separate tumor
immune microenvironment(TIME) from the TME, focusing on
the immune cells around tumor cells (15, 16). The TIME in B cell
malignancies includes multiple different cell types, including
NLCs/tumor-associated macrophages(TAMs), tumor-
infiltrating lymphocytes(TILs), regulatory T cells, dendritic
cells(DCs), myeloid suppressor cells(MSCs) and endothelial
stromal cells, which interact with and are enlisted by
malignant cells (17, 18). Research has revealed that in DLBCL,
the microenvironment is crucial for the provision of survival and
proliferation signals and makes critical contributions to both
disease progression and drug resistance/disease relapse (14).
However, the status of the TIME and checkpoint molecules in
A-DLBCL remains unclear. The aim of this study was to evaluate
the checkpoint molecules and TIME of A-DLBCL and their
associations with clinicopathological features and prognosis.
MATERIALS AND METHODS

Patients and Samples
We analyzed 30 patients with A-DLBCL and 50 patients with
ordinary DLBCL, both originally diagnosed, from June 2004 to
April 2016. Four pathologists(M.L., Q.Y., S.G. and Z.W.)
reviewed all cases according to the 2016World Health
Organization classification of tumors of hematopoietic and
lymphoid tissues (2). All cases were tested by EBER
hybridization, and EBV-positive cases were excluded. The
diagnosis was based on lymph node biopsy specimens of 20
patients or from the resection samples of extranodal involvement
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in the other 10 patients. The corresponding medical records were
reviewed to obtain clinical information. A total of 30 well-
documented patients were treated with different chemotherapy
regimens, including cyclophosphamide, doxorubicin, vincristine,
and prednisone(CHOP) or rituximab plus cyclophosphamide,
doxorubicin, vincristine, and prednisone(R-CHOP), or
etoposide, prednisone, vincristine, cyclophosphamide and
doxorubicin(EPOCH). All 30 cases were exactly came from our
previous 35 A-DLBCL study (3), while in this study we deleted 5
cases with incomplete data vital to analyze. Table 1 summarizes
the major clinical characteristics, treatment, and follow-up for all
30 patients. These patients and their tumors were compared with
50 cases of DLBCL-NOS without anaplastic features (common
DLBCL). The 50 consecutive control cases were derived from
one institution (Xijing Hospital) spanning the time interval of
April 2009 through September 2014, and only DLBCL-NOS
cases were enrolled in the study. Institutional ethical approval
was obtained in compliance with the Helsinki Declaration.

Immunohistochemistry and Fluorescence
In Situ Hybridization (FISH) Analysis
All immunohistochemical staining was performed using fully
automated protocols on a Bond-III Autostainer (Leica
Biosystems, Melbourne, Australia). Sections were subjected to
staining protocols (detailed information on the antibodies is
listed in Table S1).

The tumor immune microenvironment was characterized by
immunostaining for CD3(tumor-infiltrating lymphocytes, TILs),
CD8(cytotoxic T lymphocytes), T-bet(Th1 cells), GATA3(Th2
cells), FOXP3(regulatory T cells), CD68(tumor-associated
macrophages, TAMs), CD163(M2-TAMs), and CD33(myeloid-
derived suppressor cells, MDSCs). Germinal center B cell(GCB)
and non-GCB subtypes of DLBCL were classified using the Hans
(19) and Choi (20) algorithms. Each marker was investigated in a
single stain with 5 high-power fields (HPFs) of the representative
areas evaluated (21). PD-L1/PAX5 IHC double staining was used
to evaluate PD-L1 expression in tumor cells (PD-L1+) or in
nonmalignant stromal cells (defined as microenvironmental PD-
L1, mPD-L1+). PD-L1 staining on tumor cells was considered
positive in cases with moderate (2+) or strong (3+) cytoplasm
reaction, and the percentage of the positive tumor cells was set as
above 30%. Once reaching the 30% threshold, the PD-L1
positivity of nonmalignant stromal cells was ignored. Among
PD-L1-negative DLBCL cases, in which PD-L1+nonmalignant
microenvironment cells represented 20% or more of the total
tissue, cellularity was defined as microenvironmental PD-L1
(mPD-L1+) DLBCL (22). PD-1+ TILs were similarly evaluated.
The number of tumor cells and cells in the TME were quantified
in whole-tissue sections of all samples using an automated
scanning microscope image analysis system (Ariol 2.1, SL-50;
Applied Imaging, Melville, NY). Quantification of cells was
performed with the nuclear Kisight assay provided by the
manufacturer (Applied Imaging) (23).

FISH analysis was performed using LSI probes for PD-L1
(Vysis, Abbott Laboratories, USA) on a Thermobrite System
(Abbott Laboratories S500-24, USA) according to the
Frontiers in Oncology | www.frontiersin.org 3
manufacturer’s instructions. Images were collected using a
workstation equipped with software (Imstar Pathfinder
CellscaFluoSpot, France). Areas with a minimum of 70%
tumor cells were counted, and signals from 100 non
overlapping nuclei were analyzed. Positivity was determined
above and a 30% threshold for extra copies (defined as copy
number ≥ 3/cell). The 9p24.1 gene (PD-L1 gene) was labeled
with Spectrum Red, and centromeres were labeled with Spectrum
Green as a control probe on 9p. After calculation of red and
green in areas with a minimum of 70% tumor cells were counted,
and signals from 100 non-overlapping nuclei, the numbers of red
and green was calculated. 4 or more was considered as
amplification. 3 was considered as copy gains (24).

Statistical Analysis
Statistical analysis including data description was performed
using the Statistical Package of Social Sciences 14.0 software
(Chicago, IL, USA). Pearson’s c2 statistic, Fisher’s exact test or
Spearman’s correlation test was used to analyze relationships
between the markers and the clinical variables. The Kaplan–
Meier method was used for survival analyses. Two-sided P-
values of <0.05 were considered to be statistically significant
for all analyses.
RESULTS

Patient Characteristics and Histologic
Findings
Thirty patients with A-DLBCL were enrolled, of whom 20 were
male (66.7%) and 10 were female (33.3%), with a median age of
61.5 years. Only 1(3.3%) patient was classified as Ann Arbor
stage I, 3(10%) as Ann Arbor stage II and 8(26.7%) as Ann
Arbor stage III. The remaining 13(43.3%) patients were at Ann
Arbor stage IV. Sixteen (53.3%) patients had elevated serum
LDH, while 9(30%) had normal LDH levels. Clinical data are
summarized in Table 1.

Immunohistochemical and FISH Analysis
of PD-L1 in Tumor Cells
All A-DLBCL cases contained large bizarre-shaped tumor cells
with abundant cytoplasm containing irregularly shaped nuclei.
Membrane expression of PD-L1 by the tumor cells was observed
in the investigated sections. PD-L1+ A-DLBCL was identified
based on double immunostaining for PD-L1 and PAX-5.
Representative IHC images for PD-L1 are shown in Figures 1A–
C. The prevalence of PD-L1+A-DLBCL was 40% (12 of 30), which
was higher than that of ordinary DLBCL (10%, P=0.001) according
to our results.

Amplifications targeting the PD-L1 locus were observed in 7
out of 30 A-DLBCL cases. Seven cases (23.3%) were
amplifications, and 2(6.6%) were copy gains, and the other 21
cases (70%) were normal. Representative examples of cytogenetic
alterations identified by FISH are presented in Figures 1D–F.
Detailed features of 7 A-DLBCL cases with PD-L1 locus gain
were listed in Supplementary Table 2. In 50 ordinary DLBCL
June 2021 | Volume 11 | Article 638154
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cases, only 2 cases(4%) harbored amplifications and 2 cases (4%)
were copy gains. In comparison with ordinary DLBCL cases,
extra copies of PD-L1 were more frequent in A-DLBCL (23.3% vs
4.0%, P=0.001).

Composition and Distribution of the TIME
To evaluate the cellular composition of the TIME in A-DLBCL,
we used markers targeting various cells of the TIME in IHC
analysis. Representative immunostaining of A-DLBCL cases is
shown in Figure 2. The immunohistochemical and FISH results
of 30 Patients with A-DLBCL are listed in Table 2. Afterwards,
the differences in TIME in A-DLBCL and ordinary DLBCL cases
were analyzed and are listed in Table 3.

mPD-L1 Expression
In addition to cases containing PD-L1+ large bizarre-shaped
tumor cells, there were also cases with PD-L1+ nonmalignant
stromal cells, and we defined them as mPD-L1+ (PD-L1+/PAX5-)
(Figure 1B). PD-L1/PAX5 double staining showed that the
proportion of mPD-L1+ cells was higher (72.2% vs 33.3%,
P=0.005) in A-DLBCL patients than patients with
ordinary DLBCL.

MDSCs and Tumor-associated Macrophages
We found that MDSCs were more abundant in A-DLBCL than
in ordinary DLBCL(P=0.039), with 33.8 ± 4.2/HPF vs 20.6 ± 4.1/
HPF, represented by CD33, while M2 TAMs (CD163) and M1/
M2 TAMs (CD68) showed no significant difference between A-
DLBCL and ordinary DLBCL.

TILs
The distribution of TILs was diffuse in all cases. The difference
between the numbers of cells expressing GATA3 and FOXP3 in
A-DLBCL and DLBCL was significant(P=0.039; P=0.048) after
TABLE 1 | Clinical Features of the 30 Patients With ADLBCL.

Characteristics Values (n[%])

Age (y)
Median 61.5
Range 26-89

Sex
Male 20(66.7)
Female 10(33.3)

Stage at diagnosis (Ann Arbor stage)
I 1(3.3)
II 3(10)
III 8(26.7)
IV 13(43.3)

B symptoms 11(36.7)
Extranodal sites ≥ 2 12(40)
Serum LDH
Normal 9(30)
High 16(53.3)

Chemotherapy CR rate 6(15)
IPI score
1 2(6.7)
2 7(23.3)
3 8(26.7)
4 4(13.3)
5 4(13.3)

Immunophenotype
Non-GCB subtype 25(83.3)
BCL-2 21(70)
c-MYC 17(56.7)
MYC/BCL2 DEL 13(21.7)
Ki-67( ≥ 80%) 20(66.7)
p53 24(80)

Fluorescence in situ hybridization
MYC abnormalities 10(33.3)
BCL2 abnormalities 10(33.3)
BCL6 abnormalities 11(36.6)
Concurrent abnormalities of MYC and BCL2 and/or BCL6 9(30)

Mutation statuses
TP53 MUT 17(56.7)
EL, double-expressor lymphoma
FIGURE 1 | Representative immunohistochemical analysis of PD-L1 and PD-L1 FISH in A-DLBCL (400×magnification). (A) PD-L1+ A-DLBCL, tumor cells were double
positive for PD-L1 (red) and PAX5 (black); (B) mPD-L1+ DLBCL, tumor cells were positive for PAX5 and negative for PD-L1; (C) PD-L1- A-DLBCL, tumor cells were
negative for PD-L1 (red) and positive for PAX5 (black); (D) Copy number gains in PD-L1 locus; (E) Amplification in PD-L1 locus; (F) Normal PD-L1 FISH signal.
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statistical analysis, indicating that there were more Th2 cells and
Treg cells in the TME of A-DLBCL than in ordinary DLBCL. In
contrast, staining of CD8 showed decreased numbers of CD8+ T
cells (34.7 ± 5.7/HPF vs 58.6 ± 7.5/HPF, P=0.026) and PD-1+

TILs (23.3 ± 6.0/HPF vs 50.6 ± 7.2/HPF, P=0.010) in A-DLBCL
compared to ordinary DLBCL. Moreover, there seemed to be no
significant difference in CD3+ T cells and Th1 cells between A-
DLBCL and ordinary DLBCL cases.

Clinicopathological Association and
Prognostic Factors
Same as in our previous study (3), the mutation states of
ADLBCL cases were already performed and all were available
in cases. In this study, TP53 mutation status was associated with
the numbers of PD-L1+ TILs (CD3) and MDSCs (CD33) in A-
DLBCL cases. There seemed to be fewer PD-L1+ TILs in TP53
mutant cases than in TP53 wild type cases (14.7 ± 5.2/HPF vs
42.5 ± 16.3/HPF, P=0.049). For MDSCs, the result was the
opposite (37.4 ± 5.0/HPF vs 19.3 ± 6.2/HPF, P=0.044). The
comparison also showed that patients with fewer Treg cells
(10.3 ± 4.5/HPF vs 35 ± 13.4/HPF, P=0.032) in the TIME
(FOXP3) had a non-complete response(Non-CR) to
chemotherapy, since high FOXP3 expression had a significant
correlation with complete response. The number of CD8+ cells
showed a decreasing trend in patients with high International
Frontiers in Oncology | www.frontiersin.org 5
Prognostic Index (IPI) scores (23.8 ± 5.7/HPF vs 47.4 ± 8.2/HPF,
P=0.075). All results are shown in Figure 3.

Figure 4 shows the univariate overall survival analysis of A-
DLBCL patients according to the expression of different markers,
showing that patients with PD-L1+/mPD-L1+ or mPD-L1+ had
significantly poorer overall survival(OS) than those with PD-L1-

status(P=0.034 and P=0.046, respectively). In consistent with
DLCBL, A-DLBCL patients with PD-L1+ has a poorer prognosis
thanPD-L1-.An increase inCD3+, FOXP3+ andT-bet+ cell numbers
was significantly associated with prolonged OS in patients with A-
DLBCL (P=0.040, P=0.000 and P=0.046, respectively).
DISCUSSION

In this study, we demonstrated the molecular pathogenesis of
primary A-DLBCL and its association with clinical
characteristics. In brief, our findings showed high expression of
PD-L1+ and mPD-L1+ in A-DLBCL compared with ordinary
DLBCL. In the TME, the numbers of PD-1+ TILs and CD8+ cells
were significantly lower in A-DLBCL. In contrast, the numbers
of GATA3+ cells, FOXP3+ cells and CD33+ cells were
significantly higher in A-DLBCL patients. These differences
between A-DLBCL and ordinary DLBCL were associated with
poor prognosis in A-DLBCL.
FIGURE 2 | Representative immunohistochemical analysis of A-DLCBCL. Representative IHC staining expressions of CD3 (A), CD8 (B), PD-1 (C), CD68 (G),
CD163 (H), CD33 (I), and negative expressions of T-bet (D), GATA3 (E), FOXP3 (F).
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Traverse-Glehen et al. (25) divided GZL into 3 distinct
subgroups (namely, cHL-like GZL, large B-cell lymphoma-like
GZL, and composite/sequential cases) according to the
evaluation and integration of tumor cell morphology,
architecture and growth pattern, microenvironmental
composition, and immunophenotype. CHL-like GZL and
Frontiers in Oncology | www.frontiersin.org 6
LBCL-like GZL were then divided into 2 subgroups (namely,
groups 0 and 1 for cHL-like cases and groups 2 and 3 for LBCL-
like cases).A-DLBCL differs from these four subtypes as we
stained for CD15 with immunohistochemistry. In CD15 IHC
found that it was negative in all of our cases, and A-DLBCL
cases showed a large B-cell-like morphology with an
TABLE 2 | Immunohistochemical and FISH Analysis of 30 Patients with A-DLBCL.

Patient Number PD-L1 TIME

Tum mPD-LI** PD-L1 PD-1 TIL CD3 CD8 T-bet GATA3 FOXP3 CD68 CD163 CD33
PD-L1* FISH*** (/HPF****) (/HPF) (/HPF) (/HPF) (/HPF) (/HPF) (/HPF) (/HPF) (/HPF)

1 + + 10 70 20 55 0 0 80 70 20
2 − − − 50 130 55 60 15 0 100 80 15
3 + + 0 160 140 120 110 120 90 50 50
4 − + − 100 150 30 60 30 0 80 60 20
5 + + 0 110 60 75 15 0 60 50 40
6 + − 0 50 35 45 5 0 70 50 50
7 − + − 0 130 70 110 120 100 60 60 40
8 − − − 60 150 40 120 5 10 85 80 0
9 + + 0 150 30 130 0 0 110 90 0
10 − + − 0 80 10 60 20 0 70 60 25
11 − + − 0 50 2 10 60 0 50 50 20
12 − − − 0 50 5 0 30 15 25 0 0
13 − − − 20 50 50 0 0 0 60 50 30
14 + − 30 160 30 100 80 25 70 60 5
15 + + 120 150 35 80 30 15 80 70 80
16 + − 0 5 5 0 0 0 50 80 10
17 − + − 70 150 40 50 100 50 50 40 30
18 − + − 70 140 120 30 10 10 80 80 60
19 − − − 10 120 35 90 95 90 90 80 60
20 − + − 0 90 10 0 0 0 65 20 30
21 + − 25 100 20 60 40 60 50 40 25
22 + − 0 80 40 0 0 0 40 80 60
23 − + − 20 40 35 3 0 0 60 45 50
24 + + 0 60 40 20 30 0 30 5 80
25 − + − 5 120 3 50 20 10 50 50 25
26 − + − 10 50 25 15 0 0 65 40 30
27 − + − 0 40 20 10 5 0 85 80 70
28 − + − 0 70 5 55 0 0 60 60 50
29 − + − 40 30 10 0 0 0 60 60 10
30 + + 60 120 20 30 80 20 40 40 30
June 2021
 | Volume
 11 | Article 6
*Tum PD-L1, tumor PD-L1.
**mPD-L1, microenvironment PD-L1. Once tumor PD-L1 was defined positive, the mPD-L1 positivity was ignored.
***“+” stands for amplification of PD-L1 in tumor cells.
****/HPF, per high power field.
TABLE 3 | Comparison of TME markers and checkpoint molecules between A-DLBCL and ordinary DLBCL.

Features A-DLBCL (n = 30) Ordinary DLBCL (n = 50) P value

PD-L1+ 12/30 (40%) 5/50 (10%) 0.001
mPD-L1+ 13/18 (72.2%) 15/45 (33.3%) 0.005
CD3+ 78.2 ± 7.2/HPF 92.5 ± 8.6/HPF 0.214
CD8+ 34.7 ± 5.7/HPF 58.6 ± 7.5/HPF 0.026
PD-1+ TILs 23.3 ± 6.0/HPF 50.6 ± 7.2/HPF 0.01
T-bet+ 49.8 ± 7.6/HPF 41.1 ± 6.3/HPF 0.394
GATA3+ 30.5 ± 7.1/HPF 15.1 ± 3.8/HPF 0.039
FOXP3+ 17.5 ± 6.0/HPF 6.6 ± 2.1/HPF 0.048
CD68+ 65.5 ± 3.6/HPF 59.9 ± 5.5/HPF 0.461
CD163+ 56 ± 4.0/HPF 50.3 ± 6.3/HPF 0.514
CD33+ 33.8 ± 4.2/HPF 20.6 ± 4.1/HPF 0.039
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A B

D E

C

FIGURE 3 | Associations between clinicopathological features and the tumor immune microenvironment markers in A-DLBCL. There were less PD-L1+ TILs in TP53
mutant cases than in TP53 wild type cases (A), the result was opposite as to CD33+ cells (MDSCs) (B). Patients with less Treg cells (10.3 ± 4.5/HPF vs 35 ± 13.4/
HPF, P=0.032) in TME (FOXP3) ended in non-complete response (CR) to chemotherapy (C). CD8+ cells showed a trend of decreasing in number in patients with
high International Prognostic Index (IPI) score (D). CD8+ cells showed a trend of decreasing in patients with double-hit lymphoma (DHL) (E).
A B

D E F

C

FIGURE 4 | Univariate survival analysis for anaplastic variant of diffuse large B-cell lymphoma In ADLBCL, patients with PD-L1+ and/or mPD-L1+ (A–C) had a
significantly poorer overall survival (OS) than those with PD-L1-.An increase in CD3+ cell numbers, FOXP3+ cells numbers and T-bet+ cell numbers were significantly
associated with prolonged OS in patients with A-DLBCL was significantly worse than those who tested negative (P < 0.05) (C–F).
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obvious sinusoidal growth pattern and was not on an
inflammatory background.

PD-1 belongs to the B7/CD28 family and is expressed on the
surface of activated T and B cells, follicular helper T cells,
dendritic cells (DCs), and monocytes. The interaction between
PD-1 and its ligand PD-L1 reduces T cell proliferation and
cytokine release and inhibits survival proteins (e.g. bcl-xl),
which results in apoptosis (21, 26, 27). Non-Hodgkin
lymphomas harbor decreased PD-L1 expression with the
notable exceptions of nodal diffuse large B-cell lymphoma
(DLBCL) and virus-associated lymphoma (28). Retrospective
analyses have shown that PD-L1 positivity in tumor cells, as
detected by immunohistochemistry, may predict an improved
response to anti-PD-1/PD-L1 therapy in melanoma (29), non-
small-cell lung carcinoma (30), breast cancer (31), esophageal
adenocarcinoma (32), glioblastoma (33), renal cell carcinoma
(34), pancreatic carcinoma (35) and urothelial carcinoma (36).
Consistent with Kiyasu et al. in DLBCL patients, our findings on
A-DLBCL patients also revealed that PD-L1 expression was
associated with poor overall survival. In the meantime, we
confirmed the consistency of the cases of PD-L1 amplification
and PD-L1 overexpression, which suggested that such
cytogenetic alteration correlated with increased expression of
PD-L1. Overall, these findings indicated that anti-PD-1/PD-L1
therapy could be a novel therapeutic approach for A-
DLBCL.mPD-L1+ DLBCL is defined as 20% or more PD-L1+

nonmalignant cells among the total tissue cellularity in PD-L1–

DLBCL. Studies have shown that the prevalence of mPD-L1+

DLBCL is approximately 15% in DLBCL (22, 37). Our results
told the same story as those DLBCL studies. In addition, patients
with PD-L1+ and/or mPD-L1+ had significantly poorer overall
survival (OS) than those with PD-L1-in DLBCL. These results
may help explain both tumor escape from host immune
surveillance and inhibition of activated T-cells in A-DLBCL.

TIME cells include tumor-infiltrating lymphocytes (TILs),
regulatory T cells, and myeloid-derived suppressor cells (MDSCs).
Some studies have demonstrated that PD-L1-expressing tumor cells
can induce apoptosis in PD-1+ tumor-infiltrating lymphocytes
(TILs). Others have reported that the quantity of PD-1+ TILs is
significantly positively correlated not only with PD-L1 expression in
tumor cells but also with PD-L1 expression in tumor cells/
macrophages. Moreover, the therapeutic response can be affected
by several parameters, such as the mutational load of GATA3+ cells,
FOXP3+ cells and CD33+ cells and the abundance of TILs in lung
cancer or melanoma (38–40). The TP53 gene is mutated in
approximately 20% of cases of DLBCL; TP53 mutation predicts
poor prognosis (41) and is widely used in clinical evaluation.
Patients with more CD3+cells have lower risks of relapse after
antitumor treatment. In speaking of FOXP3, the prognostic
influence is controversial, reported as being correlated with a
good prognosis in some studies or with an adverse outcome in
others (42–44). To be detailed, in follicular lymphoma, germinal
center-like diffuse large B-cell lymphoma and classical Hodgkin’s
lymphoma, the increased FOXP3+ Treg cells being associated with
better OS, while in non-germinal center diffuse large B-cell
lymphomas the conclusion is opposite. As we observed a
Frontiers in Oncology | www.frontiersin.org 8
significantly reduced quantity of PD-1+ TILs, an increased
quantity of CD33+ cells, and a high possibility of non-CR to
treatment related to a low quantity of FOXP3+ cells in our study,
we propose that the prognosis of A-DLBCL is poorer than that of
ordinary DLBCL. Accumulating evidence suggests that myeloid-
derived suppressor cells(MDSCs) (45, 46) can enhance their
inhibitory function to further dampen the T cell mediated
antitumor response. In accordance with the observations of Y. Liu
et al., our findings may suggest that the antitumor response is
inhibited within the malignant node. Although some studies point
towards a negative prognostic impact of regulatory T cells in
lymphoma (47, 48), it is possible that regulatory T cells directly
suppress malignant B cells or counteract tumor-supporting T cells.
Moreover, the abundance of Tregs has been proven by research on
predictors of progression-free survival (49). In our study, CD3 and
FOXP3 were related to opposite out comes, which deserves
further study.

Several studies have used CD163 as an M2 tumor-associated
macrophage (TAM) marker and CD68 as a pan macrophage
marker(M1+M2) (50–52). Emerging research has shown that
M2-like TAMs expressing PD-L1 correspond to the majority of
immune cells in DLBCL and may play a role in tumor immune
escape, angiogenesis, or matrix remodeling; in addition, a high M2-
TAM level at diagnosis may be an unfavorable prognostic factor in
DLBCL patients (53). Unfortunately, our data did not show results
consistent with those of previous DLBCL studies, and there was no
significant difference in M1 and M2 cell quantity between A-
DLBCL and ordinary DLBCL(P=0.461 and 0.514), which may
suggest a less important role for TAMs in A-DLBCL.

T-bet and GATA3 are two transcription factors that
determine Th cell differentiation into Th1 or Th2 cells,
respectively, and both are expressed in the nuclei of tumor-
infiltrating lymphoid cells. Immune balance controlled by Th1
and Th2 cells is critical for protecting the host against pathogenic
invasion, while imbalance can cause various immune disorders.
We found that the expression of Th1 markers did not show a
significant difference in A-DLBCL and ordinary DLBCL
(P=0.394), while the expression of Th2 markers in A-DLBCL
was increased. According to existing reports, increased Th2
marker levels accelerate the secretion of interleukin(IL)-10 and
IL-4 and inhibit cellular immune function, and the GATA3/T-
bet(G/T) ratio of tumor-infiltrating lymphoid cells is an
independent negative predictive marker for survival (54, 55).
Overall, our findings verify the elevated G/T ratio in A-DLBCL,
in line with studies of gene-expressing profiles in nodal DLBCL,
revealing a high number of M2 macrophages in the TIME (56).
All of the above findings suggest that there may be an
immunosuppressive state in/around the focus in A-DLBCL
patients. Moreover, this could be one of the potential
mechanisms that explains why the prognosis of A-DLBCL is
worse than that of ordinary DLBCL. CD8+ T cells are generally
thought to play a central role in the antitumor immune response,
and the presence of CD8+has been reported as a prognostic
factor in cancer (57, 58). Our results showed that a significantly
lower level(P=0.026) of CD8+ T cells existed in A-DLBCL,
suggesting an immunosuppressive state within the focus.
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The standard therapy for patients with DLBCL contains
rituximab, cyclophosphamide, doxorubicin, vincristine, and
prednisone(R-CHOP). By such regimen, approximately 60–70%
of patients with DLBCL are cured of the disease. However, 30–40%
of patients experience disease relapses or, in a small patient subset,
are refractory to R-CHOP therapy. The great potential of our recent
advances is based on the understanding of the molecular
characteristics of DLBCL, and we hope this will be translated into
the development of novel, highly effective therapies for patients with
A-DLBCL. With the advent of novel targeting agents/regimens, one
that specifically targets A-DLBCL will eventually be developed. In
addition, our final cohort contains only 30 A-DLBCL cases, which
make the results relatively preliminary. Our study requires more
cases to make the conclusion closer to the real world.
CONCLUSION

In conclusion, an immunosuppressive state in A-DLBCL may be
described by both high levels of PD-L1+, mPD-L1+, CD33+,
CD163+ and GATA3+ cells and low levels of CD8+ and PD-
1+cells in the TIME; these TIME features could highlight key
molecular markers of the prognosis of A-DLBCL, which is
poorer than that of ordinary DLBCL. A-DLBCL displays a
distinct pattern of tumor immune microenvironment
components and checkpoint molecules that distinguish it from
ordinary DLBCL. These results could help in understanding the
prognosis of A-DLBCL patients and determining therapeutic
strategies that target the tumor immune microenvironment.
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