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Pancreatic cancer has an extremely low prognosis, which is attributable to its high
aggressiveness, invasiveness, late diagnosis, and lack of effective therapies. Among all
the drugs joining the fight against this type of cancer, microtubule-targeting agents are
considered to be the most promising. They inhibit cancer cells although through different
mechanisms such as blocking cell division, apoptosis induction, etc. Hereby, we review the
functions of microtubule cytoskeletal proteins in tumor cells and comprehensively examine
the effects of microtubule-targeting agents on pancreatic carcinoma.
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OVERVIEW OF PANCREATIC DUCTAL ADENOCARCINOMA

Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor and the fourth leading cause of
tumor-related death in the world. It has a 5-year survival rate of 6% to 7% (1–3). PDAC is the most
common type of pancreatic cancer (PC), accounting for more than 90% of this malignancy (4). In
2016, in the United States alone, the number of new cases and deaths were estimated to be 53,000
and 42,000, respectively (5). At present, PDAC is the 12th most diagnosed malignancy worldwide.
The incidence of PDAC is 8 to 12.5/100000 among males and 6 to 7/100,000 among females, but
this rate continues to increase (6). Low survivability in PDAC is due to its high aggressiveness and
invasiveness as well as lack of effective and efficient diagnostic tools and therapies. Radical surgery is
considered to be the first-line treatment of early-stage PDAC (7). However, even upon diagnosing
PDAC at an early stage, only 9.7% of patients can receive surgical treatment. For advanced-stage
PDAC patients (diagnosed in 85% of cases), chemotherapy is the only treatment option (5, 8).
Abbreviations: PDAC, pancreatic ductal adenocarcinoma; PC, pancreatic cancer; GTP, guanosine triphosphate; MAP,
microtubule-associated protein; HPDE, human pancreatic duct epithelium; MTAs, microtubule-targeting agents; MDAs,
microtubule-destabilizing agents; MSAs, microtubule-stabilizing agents; NSCLC, non-small cell lung carcinoma; CA-4,
Combretastatin-A4; SPARC, secreted protein acidic and rich in cysteine; SAC, spindle assembly checkpoint; MCC, mitotic
checkpoint complex; APC/C, anaphase-promoting complex/cyclosome; Cdks, cyclin-dependent kinases; mTOR, mammalian
target of rapamycin; VEGF, vascular endothelial growth factor.
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At this rate, PDAC is expected to become the 2nd most common
cause of mortality among all the malignancies by the end of the
decade (9).

Most PDAC patients have a very poor response rate to
chemotherapy (10). High systemic drug resistance is a result of
dense stroma that drugs cannot effectively penetrate and
complex cellular processes, such as abnormal gene expression,
gene mutation, abnormal activation or inhibition of cell signaling
pathways, etc. (11–13). More effective drugs and treatment
regimens targeted on PDAC are needed to improve its clinical
outcome (14). Research toward increasing the survival rate has
been carried out for many years. The investigations were focused
on exploring prognostic markers and novel mechanisms of
PDAC carcinogenesis. Despite the advancement in PDAC
research, the difference in the median overall survival for
PDAC between 1986 and 2016 was found to be minimal (15).
Researchers require the illustration of novel molecular targets
and alternative approaches to PDAC therapy. This review
focuses on the functions of microtubule cytoskeletal proteins in
tumor cells and comprehensively examines the effects of
microtubule-targeting agents on PDAC.
OVERVIEW OF MICROTUBULES

Microtubules are one of the three main components of the
cytoskeleton and are involved in a variety of essential cellular
processes and functions. Microtubules are tube-shaped protein
polymers approximately 25 nm in diameter formed by the
combination of a- and b-tubulin heterodimers (16, 17).
Microtubules extend from the microtubule-organizing center
located in the centrosome and interact with various organelles
including endoplasmic reticulum, Golgi apparatus, lysosomes,
and mitochondria (18–20).

The main feature of microtubules is their dynamics, they
constantly shrink and expand by reversible connection and
disconnection of a- and b-tubulin heterodimers (21). The
unique structure of microtubules makes the dynamics of
tubulin heterodimer release and addition slower at the (−) end
and quicker at the (+) end (22, 23). The shrinking phase of the
microtubule is called “catastrophe” and is defined as a transition
from lengthening to shrinking period at the (−) end of the
microtubule (24). Conversion from shrinking to lengthening
period at the (+) end is known as the growth phase, or
“rescue.” The microtubule dies if it does not undergo a
transition between these two states.

The disassembly of microtubules is accompanied by the
formation of the new network of spindle microtubules that are
much more dynamic than interphase microtubules (as high as
100 times)!. This process leads to the creation of mitotic spindles.
Production of mitotic aster and centromeric microtubules
requires stringent regulation of microtubule dynamics to
assure individual chromosome attachment and segregation
during cell division (25). In addition, the natural dynamics of
microtubule fibers permit conventional segregation of
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chromosomes. Failure to accurately attach or separate
chromosomes initiates the arrest of the cell cycle in the mitotic
checkpoint, resulting in apoptosis (26, 27).

There is a multitude of different regulatory proteins that play
an important role in microtubule structural stability: promoting
microtubule stability proteins, such as (−) terminal combined
with gamma-tubulin and gamma-tubulin compound protein
(GCPs), a lateral combination of microtubule-associated
protein 2 (MAP2) and t protein; (+) terminal-binding
stabilizing microtubule proteins, such as beta TIPs (EB1 and
CLIP170), etc. There are also microtubule-binding polymerizing
or depolymerizing proteins, such as cleaved enzymes (spastin
and katanin), (+) terminal depolymerizing kinesin-13, and a/b-
microtubule dimer stabilizing protein stathmin (28, 29).
Microtubules interact with the proteins involved in
intracellular transport (kinesins and dyneins), cell cycle, and
apoptosis regulatory proteins, including tumor suppressor
protein p53, which connects directly to dynein and also
interacts with Bcl-2, survivin, and other prosurvival proteins
(30). However, the nature and function of these interactions
between dividing cells and tumor cells are not clear and deserve
further investigation (31, 32).
ISOTYPES OF TUBULIN AND THEIR
FUNCTIONS

In humans, microtubules are composed of various tubulin
isoforms:a-tubulin, b-tubulin, g-tubulin, d-, ϵ-, and z- tubulin
(33). The heterodimers of a- and b-tubulin are the basic
structural components that constitute microtubules and
control their functions. The members of the tubulin family
differ from one another by sequences at the C-terminal tail
that functions as a binding domain for microtubule-associated
proteins (MAPs) (34).

The composition of tubulin dimers and microtubules, their
dynamics, and functions are affected by the expression of tubulin
isotypes. Tubulin isotypes can undergo detyrosination,
glutamylation, glycylation, acetylation, and other kinds of post-
translational modifications that can affect MAPs (35). Multiple
studies established that altered expression of certain tubulin
isomers and MAPs are associated with cancer (36–38). As a
result, altered expression of different tubulin isotypes is
implicated with drug resistance. However, the exact
mechanism of developing isotype-specific resistance is still not
clearly understood, uncovering it is a key to creating novel cancer
biomarkers and drugs.
a-Tubulin
The function of a-tubulin isotypes and their role in cancer
require further investigation. Only several studies researched
the expression of a-tubulin isotypes in cancer or normal tissues.
The expression levels of a-tubulin isotypes are associated with
sensitivity to anti-tubulin agents and poor prognosis in many
May 2021 | Volume 11 | Article 640863
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types of cancer. For instance, some studied found a correlation
between the high expression level of a1B-Tubulin and the poor
prognosis in hepatocellular carcinoma and mantle cell
lymphoma (36, 39). Upregulated expression of a1C-tubulin
predicts poor prognosis and promotes proliferation and
migration in hepatocellular carcinoma (40). Expression of
a3C-tubulin is associated with the decreased response of
ovarian cancer to paclitaxel (41). High expression of ka-1-
tubulin affected paclitaxel therapy for anaplastic carcinomas.
Finally, D2a-tubulin level is related to poor response to drugs
binding to the vinca alkaloid site in the treatment of advanced
non-small-cell lung carcinoma (NSCLC) (42).
b-Tubulin
b-tubulin isotypes have been studied more comprehensively than
a-tubulins. Increased expression of b-tubulin isotypes was found
in different tumors. Specimen analysis and clinical research
determined that high production of b-tubulin isotypes, such as
bI-, bII-, bIII-, bIVa-, and bV-tubulin, are associated with
disease progression, aggressive clinical behavior, overall
survival, poor patient outcome, and chemotherapy resistance.
Recent studies concluded that tumor aggressiveness,
uncontrolled cell proliferation, and malignant biological
behaviors of tumor cells, such as infinite growth, invasion,
metastasis, and resistance to chemotherapeutic agents, are
closely correlated with abnormal expression and distribution of
b-tubulin isotypes. bIII-Tubulin (TUBB3) is the most commonly
found highly expressed b-tubulin isotype that is related to cancer.
The altered expression level of TUBB3 was observed in many
human cancer cells, and its aberrant expression was found to be
associated with enhanced chemoresistance and poor prognosis in
NSCLC, ovarian cancer, gastric cancer, breast cancer, and uterine
serous carcinoma (43–46). Moreover, increased expression of
TUBB3 is associated with glioblastoma, colorectal cancer, and
PDAC (47, 48). High expression of bII-Tubulin (TUBB2) was
shown to be correlated with decreased overall survival in
colorectal cancer (49). Several studies established a strong
association between decreased TUBB2 expression and
advanced stage of ovarian cancer, as well as resistance to
taxane treatment in ovarian cancer (50, 51). Breast cancer cells
were shown to have decreased response to docetaxel treatment in
patients with high bI-tubulin expression (46). Furthermore,
overexpression of bIVa-Tubulin (TUBB4) is correlated with
the poor response of paclitaxel treatment in patients diagnosed
with ovarian cancer and NSCLC (52, 53).
TUBULIN IN PANCREATIC CANCER

Recent studies have determined the roles of TUBB2, TUBB3, and
TUBB4 in PDAC. Immunohistochemical studies showed that
these b-tubulin isotypes are more highly expressed in PC tissues
than in paracancerous tissues. Also, they are upregulated in PC
cell lines and downregulated in normal human pancreatic duct
epithelial (HPDE) cell lines (37, 38).
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The Western blot and RT-PCT showed different expression
levels of TUBB3 in PC and HPDE cell lines. TUBB3 was
upregulated in PC cells lines and downregulated in the latter.
It was demonstrated that the knockdown of TUBB3 decreased
the growth of cell colonies. The number of colonies significantly
decreased following the administration of chemotherapy drugs
(gemcitabine, paclitaxel) (47). Knockdown of TUBB3 expression
in PC cells leads to anchorage-independent and -dependent cell
growth related to enhanced anoikis (anchorage-independent
apoptosis), thus strengthening the link between suppressed
TUBB3 and initiation of apoptosis in PC cells. TUBB3 shRNA
decreased tumorigenic potential, tumor growth, and metastases
of PC cells in a xenograft mouse model (37).

bIV-Tubulin
bIV-Tubulin isotype includes two subtypes: tubulin bIVa
(TUBB4) and bIVb-tubulin (TUBB2C). bIV-tubulin is highly
expressed in all PDAC cell lines (MiaPaCa-2, HPAF-II, and
AsPC1) compared with HPDE ones. TUBB2C plays an
important role in regulating PC cells’ anchorage-dependent
growth and responsiveness to chemotherapeutic drugs (37).

Notably, knockdown of TUBB2C largely influences PDAC
cell growth and chemosensitivity. In particular, the knockdown
of TUBB2C can enhance the sensitivity of HPAF-II and AsPC1
cell lines to paclitaxel and gemcitabine, while no effect was
observed in MiaPaCa-2 cell lines. Also, TUBB2C may play a
role in modulating chemoresistance in certain subtypes of PDAC
cell lines. For example, knockdown of TUBB2C sensitizes all
PDAC cell lines to vincristine by initiating apoptosis in tumor
cells. Further examination showed elevated sensitivity to other
vinca alkaloids, including vinorelbine and vinblastine.
Knockdown of TUBB2C does not affect normal pancreatic
HPDE cell proliferation. In other words, the drug’s anti-
proliferative properties are highly specific to cancer cells.
Hence, knockdown of TUBB2C can induce the ability of the
vinca alkaloids to arrest mitosis and induce apoptosis. In
summary, these results contribute to opening new possibilities
for PDAC therapy. TUBB2C is likely to become an object of
thorough research of therapeutic targets that may increase the
sensitivity of PDAC cells to ligands binding to the vinca alkaloid
site (38).

Therapeutic Efficiency of a Novel bIII/bIV-
Tubulin Inhibitor (VERU-111)
Just like in other cancers, tubulins play a significant role in the
progression of PDAC. Among all the tubulins, bIII and bIV
isotypes may have the strongest association with PDAC
progression, metastasis, and chemoresistance (54, 55).
Therefore, the ability to selectively target bIII and bIV tubulins
may improve the therapeutic response of PDAC. Recently, a
novel bIII and bIV inhibitor, VERU-111, was created. VERU-
111 can efficiently suppress the growth of aggressive PC cells.
qPCR and Western blot analysis demonstrated potent inhibitory
properties of VERU-111, which arise from its ability to affect the
expression of all the b-tubulin isotypes (56). Another study
May 2021 | Volume 11 | Article 640863
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found that miR-200c was significantly restored in PDAC cells
after VERU-111 administration (p < 0.01), whereas miR-200c
inhibitor could decrease the effect of VERU-111 on the
expression of TUBB3. This indicates that VERU-111 most
likely targets TUBB3 via miR-200c (57).

VERU-111 causes cell cycle arrest in the G2/M phase, which
is somewhat similar to other microtubule-targeting agents
(MTAs). Due to arrest in the G2 phase, cancer cells can no
longer repair DNA damage, so they move directly into the M
phase, making the G2/M checkpoint a suitable target for anti-
cancer drugs.

VERU-111 also affects the expression of Cdc2, cyclin B1, and
Cdc25C kinases (58). Flow cytometry data showed that VERU-
111 induces apoptosis in PDAC cells via altering mitochondrial
proteins (Bcl-xL, Bcl-2, Bax, and Bad). Additionally, it can
activate caspase-3, caspase-9, and cleavage of PARP that are
essential in the apoptotic pathway (59). These outcomes suggest
the involvement of multiple apoptosis-related proteins in the
death of PDAC cells caused by VERU-111.

Xenograft mouse model results showed that VERU-111 (50
mg/mice) can effectively suppress tumor growth along with
suppression of bI, bIII, and bIV tubulins and restoration of
miR-200c expression. Taken together, VERU-111 suppresses
pancreatic tumor growth via influencing cell cycle arrest,
restoring miR-200c, and inducing apoptosis of PDAC cells,
which may be efficacious in PDAC treatment (56).
MICROTUBULES AS TARGETS IN
CANCER CHEMOTHERAPY

Microtubules have become one of the core approaches in cancer
pharmacology and targeted therapy due to their pivotal role in
mitotic cell division (60). As the cell undergoes prophase,
microtubules existing in the cytoplasm begin to depolymerize
Frontiers in Oncology | www.frontiersin.org 4
more rapidly (61). This highly dynamic process is crucial for the
assembly of the mitotic spindle, prompt and complete
segregation of chromosomes during cell division. In the
following stage of division, spindle microtubules pull the sister
chromatids from the equator to the two poles of the spindle
(Figure 1). The end of mitosis is marked by depolymerization of
spindle microtubules as they assemble back into cytoplasmic
microtubules. The dynamic characteristics of depolymerization
and polymerization are necessary for cells to complete
mitosis (62).

If this cycle is interrupted, the cell will not enter mitosis, or
cell division will be disrupted followed by mitotic arrest or
division errors, decreased proliferation, and cell death (60).
Impairment in the dynamic behavior of microtubules affects
the division of tumor cells and inhibits their growth. Therefore,
microtubules are believed to be one of the most promising targets
in cancer. Most of the anti-angiogenic agents in clinical trials
are MTAs.

Microtubule inhibitors comprise a highly effective class of
anti-cancer drugs and have been widely applied in the treatment
of hematopoietic and solid tumors. The majority of these MTAs
are anti-mitotic agents that induce cell cycle arrest in the G2/M
phase and produce irregular mitotic spindles (63). They disrupt
the structure of microtubules and inhibit cell proliferation by
alternating polymerization dynamics of spindle microtubules
(54). Most MTAs can be classified into two groups:
microtubule-destabilizing agents (MDAs) and microtubule-
stabilizing agents (MSAs) (Table 1).
MICROTUBULE-DESTABILIZING AGENTS
IN PANCREATIC CANCER

Compounds that inhibit microtubule polymerization and
reduce microtubule polymer bulk are known as MDAs.
FIGURE 1 | Simplified role of microtubules in mitosis. Catastrophe rate of cytoplasmic microtubules increases to provide building blocks to different populations of
spindle microtubules required for mitosis. Nuclear envelope breakdown allows spindle microtubules to attach to kinetochores of chromosomes. After chromosomes
are aligned at equator, chromatids can finally segregate through depolymerization of attached microtubules and spindle pole movement.
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Agents in this group arrest the formation of mitotic spindles by
acting on different binding sites of microtubules, mainly
colchicine and vinca alkaloid sites (66). Two additional
binding sites exist (pironetin site and maytansine site), but
there are no known agents active against PC that can bind
to them.
Frontiers in Oncology | www.frontiersin.org 5
Colchicine Site
The colchicine site is occupied by the majority of MDAs. It is
located at the junction of the a-b subunit of the microtubule
(Figure 2) (67). Binding to the b-tubulin results in the original
straight conformation bending, causing steric hindrance between
colchicine and a-tubulin. This binding first occurs on the
TABLE 1 | Microtubule-targeting agents in pancreatic cancer.

Name Origin Anti-cancer properties Clinical trials

Taxane site Paclitaxel Taxus brevifolia Probably p53 stimulation Approved by FDA for pancreatic cancer
Nab-paclitaxel Paclitaxel (Taxus brevifolia) Probably p53 stimulation Nab-paclitaxel + gemcitabine is approved by FDA for

late-stage pancreatic cancer
Epothilones Sorangium cellulose Apoptosis induction (probably Bcl-2

targeting)
Ixabepilone completed phase II clinical trial (64)

10ae Synthetic Anti-proliferative, apoptosis induction
(caspase family activation)

Pre-clinical

Colchicine
site

NSC 51046 Colchicine (Gloriosa superba/
Colchicum autumnale)

Apoptosis induction, anti-vascular Pre-clinical. Earlier, phase II of structurally similar ZD
6126 was suspended (65)

UA62784 Synthetic Anti-proliferative, apoptosis induction Pre-clinical
Plinabulin Synthetic (Aspergillus ustus) Anti-proliferative Phase II and III clinical trials against non-small-cell

lung carcinoma
TH-482, TH-
337, TH-494

Synthetic (indazole) Anti-proliferative, anti-vascular Pre-clinical

Vinca
alkaloid site

DZ-2384 AB-5 (synthetic (Diazonaangulata)) Anti-proliferative Pre-clinical
FIGURE 2 | Binding sites of microtubule-targeting agents against pancreatic cancer and their mechanism of action. 1. Colchicine site. It is located at the junction of
the a-b subunit of the microtubule, which is adjacent to the GTP binding site on the a-subunit. Colchicine-site ligands inhibit microtubule polymerization by
preventing “curved-to-straight” transition. 2. Vinca alkaloid site. The binding site of vinca alkaloids is located near the GTP binding site of b-tubulin. Vinca alkaloids
display two mechanisms of action. First, binding of vinca alkaloid ligands introduces a wedge at the end of microtubules, thus preventing a “curved-to-straight”
transition. Second, the binding of vinca alkaloids results in ring-like tubulin oligomers that cannot assembly into the microtubule. 3. Taxane site. This site is located at
the b-tubulin pocket facing the lumen of microtubules. Taxoids stabilize M-loop and thus promote microtubule assembly.
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a/b-tubulin dimer, which does not participate in the formation
of the microtubules (68). The stable complex formed at the end
of microtubules significantly reduces the microtubule capacity to
polymerize. Notably, colchicine can also induce microtubule
depolymerization by inhibiting the interaction between the
microtubule fibrils (69). Some of the most well-known drugs
that bind to this site are colchicine, 2methoxyestradiol (2ME),
combretastatin-A4 (CA-4), combretastatin-A2 (CA-2), and
podophyllotoxin (PDT).

N-Acetyl-O-Methylcolchinol
Derivatives of colchicine have potent activity in many types of
cancer cells, including PDAC cell lines. N-acetyl-O-
methylcolchinol (NSC 51046) was reported to block mitosis by
inhibiting microtubule polymerization. It can hinder the cell
cycle of PC cells and trigger apoptosis. NSC 51046 inhibits
tubulin polymerization at low doses and, strikingly, also
promotes tubulin polymerization at higher doses. NSC 51046
induces apoptotic cell death in approximately 70% of both PC
cell lines (PANC-1) and normal fibroblasts. Nonetheless, NSC
51046 displays non-selective properties and mild potent activity,
preventing it from becoming a part of targeted therapy. Its
analogs might prove different (65).

UA62784
UA62784 is one of few compounds that selectively target PDAC
cells. It is a novel highly potent microtubule inhibitor with
enormous cytotoxicity whether used alone or with other
MDAs. Its cytotoxicity is additive to that of vinca alkaloids and
may solve the problem of cancer cells’ resistance to MDAs.

Intrinsic tubulin tryptophan fluorescence experiments
demonstrated the ability of UA62784 to bind to a- and b-
tubulin dimers. UA62784 similarly to other MDA compounds,
such as vinblastine, nocodazole, and colchicine, induced a
fluorescence quenching upon binding to the a- and b-
tubulin dimmers. UA62784 displayed a high affinity of 27 ±
13 nM for tubulin in a model with a high-affinity site with a
dissociation constant in the nanomolar range (Kd1) and of 142
± 104 mMin a model with a low-affinity site with a dissociation
constant in the micromolar range (Kd2). Since Kd2 value is
greater than Kd1 by more than 5,000 times, the former could
be left out for UA62784. Kd1 values for known microtubules
anti-tumor agents, such as colchicine (324 ± 36 nM),
vinblastine (227 ± 45 nM), and nocodazole (259 ± 86 nM),
show an approximately 10 times lower affinity compared with
UA62784. On the other hand, the affinity of the second binding
mode (Kd2) is two-fold (colchicine and vinblastine) to eight-
fold (nocodazole) higher than UA62784, suggesting the
possibility of the existence of the second binding site.

[3H]-colchicine experiment showed that the synergy of [3H]-
colchicine with tubulin is reduced by the addition of raising
doses of UA62784. The addition of 2 to 4 mM of UA62784
compound dismisses more than 60% of the tubulin heterodimers
bound to [3H]-colchicine, which is similar to the results seen
after administration of 10 mM of colchicine. On the contrary,
even high doses of vinblastine do not alter the interaction of
Frontiers in Oncology | www.frontiersin.org 6
[3H]-colchicine with tubulin. This confirms that UA62784
directly combines with tubulin heterodimers at the colchicine-
binding site and affects the number of microtubules in vitro.

Flow cytometry assay revealed that 20 nM of UA62784 for
12 h increases the doubling in the G2/M phase from 21.5% ±
2.8% to 40.1% ± 1.1% in untreated HeLa cells. At a higher dose of
200 nM for 24 h, UA62784 promotes the accumulation of
phosphorylated histone H3, cyclin B, and MPM2. The
presence of another mitotic marker, phosphorylated BubR1/
BUB1B, strongly indicates that UA62784-treated tumor cells
undergo mitotic arrest due to activated spindle assembly
checkpoint (SAC). Moreover, b-tubulin staining showed that
the administration of UA62784 promotes microtubule
depolymerization in PC cells (Panc-1 cell lines). Finally, a
relatively simple structure of UA62784 makes it an appealing
agent in terms of structural modifications and modeling (70, 71).

Plinabulin
Plinabulin is isolated from a fungal metabolite from Aspergillus
ustus. Recently, a combination treatment consisting of docetaxel
and plinabulin has entered phase III trial for NSCLC therapy.
Plinabulin has to be administered by intravenous injection due to
its poor water solubility. Synthetic derivatives of plinabulin,
compounds 1 and 2, display activity against cancer cells
(inhibition percentage in human BxPC-3 PC cell lines – >85%
at 12.5 nM). Compound 1 at the IC50 value of 0.63 nM exhibited
stronger anti-tumor activity than plinabulin at that of 4.28 nM
(72, 73).
TH-482, TH-337, and TH-494
TH-482, TH-337, and TH-494 are lead compounds that belong
to indazole-based microtubule inhibitors. They have potent anti-
proliferative activity against PC cells (MIA PaCa-2 cell lines).
TH-482 has the most potent anti-proliferative activity in 11 cell
lines, including MIA PaCa-2 cell lines. It was shown to inhibit
tubulin polymerization in vitro and lead to arrest in the G2/M
phase. In addition to its effect on the cell cycle, TH-482 exhibits
vascular-disrupting activity in vitro. It hinders angiogenesis,
increases endothelial cell permeability, and destroys pre-
existing vasculature. Remarkably, all of this can be achieved
only with nanomolar TH-482 concentrations. At the same time,
micromolar concentrations of TH-482 are required for the
inhibition of microtubule polymerization. These findings are
no different from other MTAs, such as paclitaxel, epothilones,
combretastatin-A4 (CA-4) sulfonate analogs, T138067, and 2-
(3,4,5-trimethoxybenzoyl)-3-amino 5-aryl thiophenes (74).
Vinca Alkaloid Site
Experimental studies determined that vinca alkaloids mainly
bind to amino acid residues at the 175-213 position of b-
tubulin. They induce microtubules depolymerization at high
concentrations (75). Major drugs of this group are vinblastine,
vindesine, vinorelbine, vinflunine, and vincristine. Eribulin
mesylate (Halaven®), which acts on the vinca alkaloid site, was
approved by the FDA in 2010 for the treatment of breast cancer.
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DZ-2384
DZ-2384 is a synthetic derivative of AB-5. AB-5 has long been
known to have anti-tumor activity in animal xenograft models.
Its precursor is diazonamide A, another sponge-isolated
compound. DZ-2384 synthesis is simplified and commercially
scalable compared with earlier diazonamide analogs (76). Unlike
vinorelbine, it can increase the rescue rate, and the produced
difference in microtubule dynamics is greater than in other
MDAs (dolastatin 10, vincristine, etc.).

DZ-2384 has anti-tumor activity in PC xenograft models and
other types of cancer in various models such as a patient-derived
xenograft model and a genetically engineered mouse model with
immunocompetent mice. DZ-2384 binds to the vinca alkaloid
site in a unique way, producing higher anti-tumor properties and
safety. The electron microscopy and X-ray crystallography
showed that DZ-2384 modifies the curvature between tubulin
dimers, thus straightening protofilaments. It enhances the rescue
frequency, and, despite the limited effect on microtubules
destabilization compared with vinorelbine, it is adequately
sufficient to disrupt mitotic spindle formation. As a single
agent alone, DZ-2384 has anti-tumor activity in MIA PaCa-2
cell lines. Researchers reported that DZ-2384 induced complete
neoplasm regression in the MIA-PaCa-2 xenograft model, and
all the mice were cancer-free ~3 months after therapy (9 mg/m2).
Vinorelbine was also effective in both xenograft models, but at
higher doses and for a shorter term. The importance of DZ-2384
also lies in its increased safety margin (more than 24-fold vs 0.7-
to 1.0-fold in vinorelbine) in terms of weight loss, prognosis,
bone marrow toxicity, and more than 13-fold in terms of
neurotoxicity. A combination of DZ-2384 and gemcitabine was
observed to be more efficacious than gemcitabine monotherapy,
which is the first-line treatment of patients with PDAC. DZ-2384
together with gemcitabine decreased tumor formation and
progression with a higher response rate (68%) than a
combination of nab-paclitaxel and gemcitabine (53%) in
Rgs16::GFP; KIC model. These results are indicative of DZ-
2384 being a possible candidate for PDAC treatment and its
potential to be used in a wide range of other applications (77).
MICROTUBULE-STABILIZING AGENTS IN
PANCREATIC CANCER

Taxane Site
MSAs influence cell proliferation by inhibiting cell division and
blocking the cell cycle in the G2/M phase, producing abnormal
mitotic spindle afterward and leading to cancer cell death via
apoptosis. MSAs mainly promote the polymerization of
microtubules, making them unusually stable and increasing
their quantities in the cell (78). So far, only the taxane-site
ligands were shown to have potent activity against PDAC.

Paclitaxel
The representative drug of the taxane drugs is paclitaxel
(Taxol®). The structure of paclitaxel was discovered in 1971,
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but its microtubule-stabilizing characteristics were identified
only 8 years later, in 1979 (79). It easily binds to the assembled
microtubules on the b-tubulin subunit. Generally, the process of
microtubule polymerization requires GTP, but paclitaxel can
promote tubulin polymerization without it. Paclitaxel promotes
microtubule polymerization at low concentration and
temperature without significantly rising polymer levels of the
microtubule (78, 80).

Paclitaxel is one of the most effective microtubule-targeting
anti-cancer drugs. Paclitaxel was approved by the FDA in
1992 and is stillconsidered to be one of the most critical
supplements to chemotherapeutic regimens against various
cancers, including PC (81). At present, paclitaxel combined
with albumin-based chemotherapy is used as the first line of
advanced PC therapy. Paclitaxel influences the dynamics and
microtubule polymerization via binding to the taxane site,
which leads to cell cycle arrest and cell death. Because
paclitaxel dramatically decreases cell proliferation and mitotic
rate of microtubules at low concentrations without significantly
rising polymer levels, suppression of microtubule dynamics
appears to be its most effective mechanism of mitotic arrest.
Paclitaxel at high concentrations promotes the addition of
tubulin dimers and disturbances ina dynamic balance of
microtubules but acts the opposite at low concentrations (82).
Several approaches have been implemented to improve the
solubility and pharmacology of paclitaxel, including albumin
nanoparticles, liposomes, and emulsions (81). Albumin-
stabilized nanoparticle formulation of paclitaxel is also known
as ABI 007, or nab-paclitaxel.

Tumors harvested from untreated animals group were
stained with Collagen IV and Masson’s trichrome. Researchers
found enormous levels of fibrotic tissue in the tumor
microenvironment. The visually impressive decrease in fibrotic
tissue mass was noted in tumor tissues after administration of
nab-paclitaxel compared with those treated withpaclitaxel. Nab-
paclitaxel therapy decreased the amount of proliferating
carcinoma cells to a greater extent than paclitaxel therapy as
evidenced by a decreased amount of carcinoma cells expressing
Ki-67. Nab-paclitaxel plus gemcitabine therapy was very effective
in inhibiting Ki-67 (+) tumor cells compared with paclitaxel plus
gemcitabine treatment. Plasma and intratumor concentrations of
paclitaxel following nab-paclitaxel or paclitaxel therapy were
performed to investigate the potential mechanism of the
therapeutic effectiveness of nab-paclitaxel over paclitaxel. Nab-
paclitaxel therapy was correlated with higher tumor stroma in
the tumor microenvironment compared with paclitaxel-treated
and untreated tumors.

According to the results from both clinical and preclinical
studies, the efficacy of nab-paclitaxel is superior to that
of cremophor-based paclitaxelowing to many factors including
a better pharmacokinetics behavior. A higher intratumor
paclitaxel concentration was achieved after nab-paclitaxel
treatment that resulted in desmoplastic tumor stroma
destruction and enhanced neoplastic cell death. This may be
another reason for the superiority of nab-paclitaxel over
paclitaxel treatment in PDAC (81).
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Nab-paclitaxel
Nab-paclitaxel (Abraxane®) is a 130-nm, solvent-free, albumin-
bound formulation of paclitaxel. Apart from hindering cell
division via interrupting the microtubule network, it can
enhance transportation of paclitaxel to endothelial and tumor
cells. Nab-paclitaxel has many advantages compared with sb-
paclitaxel. For instance, it produces significantly higher doses of
paclitaxel in a shorter transfusion time (30 min vs 3 h for sb-
paclitaxel), it can reach a higher peak concentration, enhance
drug combination to tumors and endothelial cells more
effectively. Another study showed the nab-paclitaxel has a
higher neoplasm uptake thansb-paclitaxel after administration
at equal doses.

In phase I and II trials, a maximum-tolerated dose of nab-
paclitaxel and gemcitabine (1000 and 125 mg/m2, respectively)
was given to advanced PDAC patients (QW 3/4 w). 44 patients
had an overall response rate of 48% and a median overall survival
of 12.2 months. In phase III study, 850 patients with metastatic
PDAC receiving the same regimen were compared with
monotherapy of gemcitabine 1000 mg/m2 (QW 7/8 was cycle 1
and QW3/4 was cycle 2). Median overall survival was
significantly longer in the nab-paclitaxel plus gemcitabine
group (8.5 vs 6.7 months). Other trials reported that the grade
3 neuropathy was correlated with nab-paclitaxel treatment in a
majority of patients with advanced PC (83).

Effects of gemcitabine and nab-paclitaxel were investigated in
the following PDAC cell-lines: MIA PaCa-2, AsPC-1, BxPC-3,
and Panc-1a. Addition of nab-paclitaxel or docetaxel at IC25
reduced IC50 of gemcitabine. Tumor growth inhibition after
gemcitabine, nab-paclitaxel, and docetaxel was 67%, 72%, and
31%, respectively. Tumor stromal mass (estimated through the
reduction in a-smooth muscle actin, collagen I, and S100A4
expression) was reduced more greatly by nab-paclitaxel than
docetaxel. Furthermore, a PDAC xenograft model study showed
that nab-paclitaxel is more efficacious and results in longer
median survival than gemcitabine. Phase I, II, and III trials
were performed to examine nab-paclitaxel-based chemotherapy
together with target therapy or immunotherapy in metastatic
PDAC patients (84). Nab-paclitaxel plus gemcitabine therapy
comprises standards of metastatic PC care, and this combination
is suitable for PDAC patients with different characteristics and
clinical presentations (85).

Secreted protein acidic and rich in cysteine (SPARC) has a
crucial role in the transport of nab-paclitaxel to a tumor. A
research was conducted to examine the relationship between the
prognosis of patients receiving nab-paclitaxel plus gemcitabine
and SPARC expression (83). In phase I and II, stromal SPARC
expression (high and low) was significantly associated with OS in
the nab-paclitaxel plus gemcitabine group (17.8 vs 8.1 months),
indicating that SPARC may serve as a biomarker for PC.
However, phase III concluded that intratumor, stromal, and
plasma SPARC were not predictive of survival rate in both
groups with metastatic PC.

As technologies advance, nab-paclitaxel undergoes additional
investigations for PDAC therapy. The solvent-free albumin-
paclitaxel nanoparticles are comparatively more favorable than
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solvent-based formulations of cre-paclitaxel in patients with
advanced metastatic PC. Stopping treatment with albumin-
paclitaxel is associated with a lower risk of neutropenia, infusion
hypersensitivity responses, and quicker alleviation of external
neuropathy. Albumin-paclitaxel is currently regarded as an ideal
regimen for patients with metastatic PDAC. Albumin-bound
formulation reduces tumor stroma via synergy between albumin
and SPARC, thereby affecting the tumor microenvironment. This
mechanism promotes the gemcitabine-enhanced effect.

Several studies examined the efficacy and survival advantage
of nab-paclitaxel alone and in combination with gemcitabine.
They aimed to study treatment effects on tumor cell
proliferation, tumor desmoplasia, and metastases to adjacent
organs (86). Nab-paclitaxel as an individual agent was not found
to be significantly useful in decreasing primary tumor weight or
increasing mouse survival rate compared with nab-paclitaxel or
gemcitabine monotherapy. Finally, combined treatment of
gemcitabine and nab-paclitaxel reduced metastatic tumor
burden and elevated median survival rate of animals greater
than any of the agents alone (87, 88). The synergy between nab-
paclitaxel and gemcitabine in PDAC was assessed in two
preclinical models: genetically engineered mice and primary
patient-derived tumors. The result of the experiment in a
primary tumor xenograft model demonstrated that nab-
paclitaxel plus gemcitabine induced regression of the tumor in
64% of the 11 biologically different primary tumors versus 36%
and 18% nab-paclitaxel and gemcitabine monotherapy. Another
study’s outcomes showed that nab-paclitaxel treatment was more
effective in preventing initial tumor progression, solid tumor
stroma depletion, consistently showing a higher anti-tumor
response and increased the survival rate in animal models than
paclitaxel treatment. Combined treatment of gemcitabine plus
nab-paclitaxel reduced metastatic tumor burden and improved
the overall survival rate of animals compared with monotherapy
of any of the agents. Moreover, there is no benefit of adding
paclitaxel to gemcitabine treatment for regionally advanced and
metastatic PDAC (82). In 2013, gemcitabine plus nab-paclitaxel
was approved by the FDA as the first-line treatment for patients
with metastatic PC. Nab-paclitaxel plus gemcitabine could better
improve tumor response and survival rates in metastatic PDAC
than gemcitabine alone (89).

Treatment with nab-paclitaxel seemed to exhaust the
desmoplastic stromal matrix and improve microvasculature in
gemcitabine-resistant primary tumors. Intratumoral gemcitabine
concentration was 2.8 times higher in mice receiving nab-
paclitaxel plus gemcitabine than gemcitabine alone. Related
synergistic anti-tumor and pharmacologic responses were
confirmed in a transgenic PDAC murine model. The results
showed that paclitaxel elevated intratumoral accumulation of
gemcitabine via inactivation of cytidine deaminase. Another
study revealed that nab-paclitaxel plus gemcitabine therapy
efficiently reduced the density of tumor-associated fibroblasts
and produced disruptive changes in tumor stroma. Preclinical
trial results revealed the positive anti-tumor activity of nab-
paclitaxel and its potential to alter desmoplastic stroma. This was
part of the MPACT trial, a randomized phase III study, which
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confirmed the efficacy of nab-paclitaxel plus gemcitabine. The
results of this research lead to regulatory approval of nab-
paclitaxel plus gemcitabine therapy, which is now a standard
regimen for metastatic PC (87).

Epothilones
Epothilones are a novel class of anti-microtubule agents derived
from the soil bacterium Sorangium cellulose. They bind to the
taxane site and stabilize microtubule polymerization.
Epothilones have the activity of promoting assembly and
polymerization of microtubules. After binding to the
microtubule, epothilones restructure the disordered M-loop
(site of lateral tubulin contacts) within the microtubule and
stabilize it. Compared with paclitaxel, epothilones have several
advantages. First, the activity of epothilones is 10 to 1,000 times
higher than that of paclitaxel. Second, the water solubility is also
higher. Lastly, the structure is much simpler, making them easier
to synthesize (90). Hence, epothilones were introduced to the
Oncologist’s portfolio of drugs, which represents a pivotal step in
PDAC therapy.

A human PC xenograft model experiment demonstrated the
effectiveness of one of the derivatives of epothilone B against
PDAC. This derivative is named ixabepilone, previously known
as BMS-247550. Ixabepilone is more efficient in inhibiting tumor
growth than paclitaxel with five to six lower doses required in
mice and rats. Phase II trial (Southwest Oncology Group)
suggested that ixabepilone is efficacious in the treatment of
patients with PC. The treatment with this compound resulted
in median survival of 7.2 months and 6-month survival of 60%,
whereas the patients receiving gemcitabine had a median survival
of 5.65 months and 6-month survival of 46% (91).

(Z)-1-(2-bromo-3,4,5-trimethoxyphenyl)-3-
(3-hydroxy-4-methoxyphenylamino)-prop-
2-en-1-one (10ae)
(Z)-1-aryl-3-arylamino-2-propen-1-one (10) compounds
enhance microtubule stability and induce cell apoptosis via
caspase family (92). (Z)-1-(2-bromo-3,4,5-trimethoxyphenyl)-
3-(3-hydroxy-4-methoxyphenino)-prop-2-en-1-one (10ae)
promotes tubulin polymerization and induces apoptotic cell
death in MIA-Paca2 and Panc-1 cell lines (93).

10ae has a remarkable cell killing ability. It induces apoptosis
in 20 tumor cell lines with similar GI50 values, including drug-
resistant tumor cell lines. Such a broad spectrum of action is
probably due to its inhibitory effect on critical stages of cancer
cell division. Flow cytometry demonstrated that 10ae arrests cells
in the G2/M phase and that it may trigger apoptosis through
activation of caspases (50).

Treatment with 10ae leads to tumor cell accumulation in the
G2/M phase in a dose-dependent manner. Tumor cells begin to
accumulate in the G2/M phase shortly after administration of 0.25
mM of 10ae, whereas G2/M arrest occurs after treatment with twice
the dose. The fluorescence-activated cell sorting showed that treated
tumor cells had >2N DNA regardless of whether it was G2 or M
phase. The influence of 10ae on the phosphorylation of proteins
serving as markers of SAC activation andmitotic arrest (history H3,
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Bcl-2, and BubR1) was then studied. All three were phosphorylated
6 h after 10ae treatment, showing a similar increase in
concentration level (2.95-fold). To conclude it all, 10ae has the
most potent cytotoxic properties among the other derivatives of 10
compounds. It also surpasses paclitaxel in that it leads to greater
tubulin polymerization at the same concentration (1 mM) (92).
MECHANISM OF MICROTUBULE-
TARGETING DRUGS IN CANCER THERAPY

Block Cell Mitosis and Cycle Progression
MTAs alter the normal structure and function of microtubules
that subsequently affects microtubule assembly and spindles
formation (Figure 3). Mitotic spindles lose the pulling power
required to separate sister chromatids and cannot properly
orientate them, which completely stops the process of cell
division. The two-way separation of sister chromatids is
regulated by SAC. Chromosome segregation does not occur
until the “correct” checkpoint is determined, which is defined
as a proper and stable kinetochore-microtubule attachment (94).
To ensure that anaphase does not start when kinetochores are
not attached or attached improperly, checkpoint proteins are
recruited on kinetochores and form a mitotic checkpoint
complex (MCC). This complex inhibits anaphase-promoting
complex/cyclosome (APC/C), preventing degradation of
securin and cyclin proteins and thus delaying anaphase onset.
Errors in the test point of the cell cycle of tumor cells may result
in drug sensitivity differences due to changes in the structure or
expression of test point kinase (95).

As mentioned earlier, MTAs induce cell cycle arrest in the
G2/M phase. Paclitaxel can block the cell cycle via two following
mechanisms: regulation of expression of cyclin B1 and cyclin-
dependent kinase (Cdk). CA-4 blocks the cell cycle in the G2/M
phase by regulating the expression level of Cdc2 (96).

Induce Apoptosis and Autophagy
Cell cycle arrest has long been known to trigger apoptosis.
Apoptosis induction occurs via different pathways, such as
phosphorylation of Bcl-2 and Bcl-xL, activation and
upregulation of E2F1—all of which can instigate the release of
cytochrome c (31). Activation of mammalian target of
rapamycin (mTOR) is also implicated with microtubules.
Interference with microtubule activity interrupts the AKT/
mTOR signaling pathway, leading to hindered tumor cell
proliferation via autophagy induction. This independent
mechanism represents a unique tool for inducing mitotic
arrest (97).

Anti-Angiogenesis and Vascular
Destruction
Folkman et al. postulated that tumor neovascularization is
involved in tumor development and metastases (98).
Destruction of tumor vasculature, starvation of tumor cells,
and other strategies have been widely adopted in many types
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of cancer. Several cancers in mice were found to be inhibited after
feeding with natural vascular inhibitors (95).

The application of MTAs becomes a new direction in the
research of anti-tumor drugs. Drugs, such as paclitaxel,
vinblastine, and colchicine, have potential anti-angiogenic
effects on PC. Vinblastine was shown to exhibit dose-
dependent anti-angiogenic activity in a chick embryo
chorioallantoic membrane model. A research confirmed that
tumor blood vessels could be selectively destroyed within 6 h
after administration of CA-4 in an alive rat model. Notably, the
effect on the intratumor blood vessels is stronger than on the
extratumor ones. Some researchers are currently investigating
Frontiers in Oncology | www.frontiersin.org 10
the effects of MTAs on vascular destruction and conducting
corresponding clinical trials. More than 10 types of tumor
vasculature-targeting drugs are enrolled in clinical trials. Most
of them act on the colchicine site in PC and advanced
solid tumors.

Only a few studies have studied the side effects of MTAs such as
cardiotoxicity and gastrointestinal adverse reactions. It is still
unclear as to how MTAs exactly inhibit tumor angiogenesis or
destroy tumor blood vessels. Vascularization requires the
proliferation and transport of vascular endothelial cells, both of
which are very sensitive to MTAs. Certain MTAs are speculated to
affect the development of tumor blood vessels by altering the
FIGURE 3 | Mechanism of microtubule-targeting drugs in cancer therapy. 1. Improper, incomplete or absent attachment at kinetochores maintain spindle assembly
checkpoint (SAC) activity. When SAC is active, a group of checkpoint proteins constituting mitotic checkpoint complex (MCC) is recruited and block the activity of
anaphase-promoting complex/cyclosome (APC/C). As ubiquitylation of cyclins and securin does not take place, a cell’s entry into anaphase is impossible. 2. MTAs
trigger phosphorylation of Bcl-2 and Bcl-xL, allowing for cytochrome c release by mitochondria. Produced cytochrome c bind to apoptosis-protease activating factor
1 (Apaf1) and result in the generation of the apoptosome. Eventually, a caspase cascade is triggered leading to apoptosis. 3. Tumor cells increase endothelial cell
proliferation and vasopermeability and alter gene expression via vascular endothelial growth factor (VEGF) pathway. Ensuing angiogenesis facilitates tumor cell
proliferation. MTAs cut off tumor blood supply by destroying its vasculature. 4. Increase in p53 concentration stimulates the production of p27 that inhibits cyclin-
dependent kinase (Cdks) and thus prevents cell cycle transition at several checkpoints. P53 can also interact with some members of the Bcl-2 family and induce
apoptosis via the aforementioned mechanism.
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expression of vascular endothelial growth factor (VEGF).
Colchicine, nocodazole, vinblastine, and vincristine were shown
to reduce the production of human umbilical vein endothelial cells
(HUVEC) and expression of VEGF (56, 99).

Finally, damage to tumor vasculature inflicted by MTAs is
more reversible than inhibiting cell proliferation. Drugs that
cause depolymerization for a short time are more suitable to
serve as vascular inhibitors, whereas long-term anti-mitotic
agents act as tumor cell proliferation inhibitors (100).

p53
The core mechanism of paclitaxel affecting mitosis of cancer cells
is still under investigation. Some studies proved that the
inhibitory action of paclitaxel lies in alterations of microtubule
transport that lead to decreased activation and translocation of
androgen receptors. In addition, paclitaxel can stimulate the
production of tumor suppressor protein, p53, and increase its
quantity in the nucleus (101). The loss of p53 function due to
defective genome unleashes the build-up of tumorigenic
mutations in the cell and increases cancer cell survival. p53
signaling is associated with microtubule dynamics and
expression of various tubulin isotypes (31).

CONCLUSION

Tubulin is not the most optimal target for cancer targeting drugs
as it requires high selectivity of agents. This in turn makes drug
development relatively complex. However, current researches
give hope that the creation of such agents is possible, and
Frontiers in Oncology | www.frontiersin.org 11
prolonging the survival rate in PC may not be unachievable.
Humanity has long needed it.
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