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Viruses play an important role in the development of certain human cancers. They are
estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1
(HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of
adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor
prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host
cells for their own benefit, evading the immune system and promoting the establishment
of disease. Several viruses manipulate the autophagy pathway to achieve their infective
goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-kB and
autophagy pathways prone favoring viral replication and T cell transformation. In this
review we focus on describing the relationship of HTLV-1 with the autophagy machinery
and its implication in the development of ATLL.
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INTRODUCTION

Human T cell leukemia virus type 1 (HTLV-1), was the first human retrovirus discovered (1). It is the
etiological agent of an aggressive T cell malignancy known as adult T cell leukemia/lymphoma
(ATLL) and a neurologic disease named HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP), other inflammatory syndromes, opportunistic infections, and lung diseases (2). HTLV-
1 is transmitted through sexual contact, from mother to child (mainly by prolonged breastfeeding)
and parenterally (3, 4). In 2014, HTLV-1 was included as group 1 human carcinogens by the
International Agency for Research on Cancer (IARC) (5). The vast majority of HTLV-1 infected
individuals are asymptomatic and around 3-5% of them will develop ATLL, that usually occurs after a
long latency period. It is clinically classified as smoldering, chronic, lymphoma and acute (6). The
smoldering and chronic without unfavorable prognostic factors are categorized as indolent ATLL and
generally progress slowly. On the contrary, acute, lymphoma and chronic with unfavorable
prognostic factors are aggressive forms and patients have a survival of months (7, 8). The HTLV-
1 genome shares the structural features of other retroviruses, but it also has a pX region which
March 2021 | Volume 11 | Article 6412691

https://www.frontiersin.org/articles/10.3389/fonc.2021.641269/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.641269/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.641269/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mn.garcia@docente.ffyb.uba.ar
https://doi.org/10.3389/fonc.2021.641269
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.641269
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.641269&domain=pdf&date_stamp=2021-03-31


Ducasa et al. Autophagy in HTLV-1 Infection
encodes regulatory proteins, such as Tax and bZIP factor (HBZ)
(9). HBZ and Tax have opposing functions in most transcription
pathways, but both proteins play a critical role in HTLV-1
infection as well as in growth and survival of leukemia cells (10).

Autophagy (also known as macroautophagy) is a degradative
process for cellular components including macromolecules such
as proteins, RNA and even whole organelles (11). Under stress
conditions such as cell starvation, inhibition of mTORC1
(mammalian Target of Rapamycin Complex 1) leads the
activation of ULK1 (unc-51 Like Autophagy Activating Kinase
1) complex which in turn triggers the autophagosome biogenesis
(12). ULK1 activates a complex which includes BECN1 among its
members and a PI3KC3 (phosphatidylinositol 3-kinase Class 3).
The PI3P (phosphatidylinositol 3-phosphate) generated by this
last complex is required for recruitment of further autophagic
proteins and the autophagosome formation. Autophagosomes are
double membrane vesicles decorated by LC3 protein and, once it
is loaded with the cargo, this particular vesicle is carried to fuse
with lysosomes where the cargo is eventually degraded (12–15).

Alternatively, autophagosomes can fuse with components of the
endosomal system, late endosomes or multivesicular bodies (MVBs)
(16). These hybrid compartments, named as amphisomes, have the
options of degrading its intravesicular material by fusion with a
lysosome or fusing with the plasma membrane (17, 18). In the case
they fuse with the plasma membrane, their contents are released
outside the cell including extracellular vesicles (EVs) (19, 20). These
small vesicles have recently gained special relevance since they are
important intercellular messengers capable of carrying several
molecules, proteins, nucleic acid, and even viral components, and
yield an effector response in the target cell (21–24). Importantly,
exciting new data is supporting the idea of a superlative crosstalk
between autophagy and EVs machineries (25–30). Moreover,
autophagy can take an antiviral or pro-viral role. It could be
expected to degrade intracellular pathogens, but certain viruses
have evolved to use the autophagic machinery for their own
benefit, increasing viral replication and viral spread (31).
ADULT T-CELL LEUKEMIA/LYMPHOMA

The adult T-cell leukemia/lymphoma or ATLL is a malignant and
aggressive neoplasm as a consequence of HTLV-1 infection. In
endemic regions of Japan, ATLL affects about 8.7 persons per 10,000
HTLV-1 infected citizens and, having in mind an annual incidence
of 20 million around the world, it is expected a significant number
of persons suffering this pathology (32). In Latin America, 1% of
HTLV-1 infected individuals are asymptomatic positive, but in
some endemic areas it might reach 10% (32). It is interesting to
know that HTLV-1 infects T cells, B cells, fibroblasts, dendritic cells,
and macrophages, though hitherto data show it is only capable of
transforming regulatory T cells which are positive for CD4/CD25
(33). The carcinogenesis induced by HTLV-1 infection possesses a
biphasic behavior, with an initiation and a maintenance phases.
Epidemiology demonstrates that ATLL onset is observed about the
fifth decade in individuals that were infected during the firsts years
of life (34, 35). This suggests an extensive latency period coincident
with the conception that oncogenesis is initiated in a first phase of
Frontiers in Oncology | www.frontiersin.org 2
viral infection and then a second phase where oncogenic properties
of transformed cells are maintained (34, 35).

HTLV-1 seems to rely on two main proteins for cellular
transformation, HBZ and Tax. Data suggests that HBZ is
important for viral replication, cellular proliferation and
evasion from the immune system (36, 37). Then, the major key
role of HBZ in oncogenesis is maintaining the oncogenic
phenotype by attenuation of host immune response against
leukemic cells and fostering a microenvironment appropriate
for HTLV-1 infected cells (38). On the other hand, Tax is the
main actor for the T cells transformation process engaging
several cellular pathways (39). This means that Tax appears
early during infection and during the long period of latency time,
and it is crucial to initiate cellular transformation. Once cells are
transformed, HBZ enters in the second phase for maintaining the
transformed phenotype. This is also supported by the fact that
Tax gradually disappears during that time, to the point of being
almost undetectable, contrary to HBZ whose presence is
prominent and ubiquitous in advanced stages of ATLL (40, 41).

The central role of Tax in ATLL is highlighted with the
observation that impairment of functionality of tax gene impedes
T cells transformation (42). Even more, Tax overexpression
provokes a leukemia phenotype in transgenic mouse models (43,
44). This data suggests that Tax is indeed enough for T cells
immortalization. Moreover, the capacity of Tax to induce cell
survival, proliferation and bypass tumor suppressor processes
such as senescence and apoptosis has been vastly demonstrated
(45–50). The powerful property of Tax lies on its ability to activate a
myriad of signaling pathways including PI3K/AKT, p53 inhibition,
induction of ROS (reactive oxygen species) production and even
genome instability by direct DNA damage and impairment of
proteins related to DNA repair (51, 52). Although, those
characteristics are important in Tax-mediated transformation is
worthy to mention specially the NF-kB pathway. Tax has the ability
to activate both canonical and noncanonical NF-kB pathways
which in turn set up a broad cell survival program (53–55). Tax-
mediated initial activation of NF-kB pathways is in such a way that
it persists even after Tax expression has disappeared (52, 56).
HTLV-1 TAX RELATIONSHIP WITH THE
NF-ΚB PATHWAY

The NF-kB family of transcription factors is composed of five
members: RelA (p65), c-Rel, RelB, NF-kB1 (p50) and NF-kB2
(p52), which can form hetero or homodimeric combinations (57).
There are two major pathways for NF-kB activation: the canonical
and non-canonical NF-kB signaling pathways. Canonical NF-kB
signaling is induced upon stimulation by pro-inflammatory
cytokines, such as TNF-a, IL-1b and IL-6, pathogen-associated
molecular patterns (PAMPs) from viruses and bacteria, agonists for
the B or T cell antigen receptors (BCR or TCR), and chemicals or
radiation (58). On the other hand, non-canonical NF-kB signaling
pathway is restricted to a subset of TNF family members such as B
cell activating factor (BAFF), lymphotoxinb-(LTb) and CD40L (59).
These two pathways of NF-kB activation differ, not only in the
involved receptors, but also, in the implicated molecules and the
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generated response. The induction of the canonical NF-kB signaling
involves a variety of different adaptor molecules to engage the IKK
complex which in turn triggers the signaling pathway (60). IKK
complex consists of the regulatory subunit IKKg/NEMO, and IKKa
and IKKb, the catalytic ones (61). Once activated, IKK
phosphorylates IkBs subunits (IkBa, IkBb and IkBϵ) inducing
the IkBs ubiquitination and proteasomal degradation (62). Then,
classical NF-kB dimers, like p50/RelA and p50/c-Rel, are released
from IkB to enter the nucleus and induce the transcription of target
genes (60). This activation of the canonical NF-kB pathway under
physiological conditions, induces a rapid but transient
transcriptional response (58, 59). On the contrary, non-canonical
NF-kB signaling activation relies on NIK, which in resting cells is
constantly degraded by an E3 ligase complex consisting of the E3
ligases c-IAP1/2 and the adaptor TRAF3/TRAF2. Activation of
BAFFR, LTbR and CD40 provokes inactivation of the TRAF/c-IAP
complex and the consequent NIK stabilization. In this situation,
NIK phosphorylates IKK, which in turn phosphorylates p100/RelB
tagging it for proteasomal processing and the consequent release of
Frontiers in Oncology | www.frontiersin.org 3
p52/RelB, which translocates to the nucleus. Compared to the
canonical way, non-canonical NF-kB response is delayed, but its
transcriptional response is sustained in time (58, 59). It has been
described the existence of negative regulators of the NF-kB pathway
that could be involved in the constitutive activation of NF-kB in
ATLL such as TNF-a-induced protein 3 (TNFAIP3, A20),
Cylindromatosis (CYLD), and NSFL1 cofactor (p47) among
others. The implication of any of these negative regulators of the
NF-kB pathway could be of extreme importance in the persistence
of its activation (63–65).

In HTLV-1 infection, Tax persistently activates both
canonical and non-canonical NF-kB pathways which are
required for cell survival and T lymphocyte transformation
(66, 67). Indeed, a persistent NF-kB activity is observed in
HTLV-1 transformed cell lines (54). By intervention at
different levels, Tax ensures the NF-kB pathway activation
without external signals. HTLV-1 Tax interacts with TAK1-
binding protein 2 (TAB-2) activating MEKK1 and TAK1
which in turn activate the IKK complex (68, 69) (Figure 1).
FIGURE 1 | In HTLV-1 infection, the viral protein Tax interferes at several steps of both canonical and noncanonical NF-kB pathway in order to activate it, inducing
cell survival and proliferation, and eventually resulting in oncogenesis. By interaction with IKKg/NEMO, Tax recruits and activates IKK complex (IKKg/NEMO, IKKa,
IKKb) in lipid raft domains (LRD) on the Golgi. After IKK activation, Tax recruits the autophagy proteins BECN1, Bif-1 and the PI3KC3 complex through its direct
interaction with BECN1, which in turn binds also with IKKa, IKKb. Then, Tax deregulates the autophagy pathway fostering autophagosomes biogenesis but, at the
same time, blocking the autophagosome-lysosome fusion. Autophagosomes accumulation enhances HTLV-1 replication. Moreover, recent data suggest a crosstalk
between autophagic and extracellular vesicles (EVs) biogenesis pathways. EVs from HTLV-1 infected cells bearing the viral proteins Tax and HBZ among some host
proteins, and transcriptional mRNA of Tax, HBZ and 5’LTR has been reported.
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The direct association of Tax with IKKg/NEMO in the lipid raft
domains (LRD) localized on Golgi is key for Tax goals (70–73).
This Tax-IKKg/NEMO interaction recruits the whole IKK
complex and this action is indispensable for its activation
(Figure 1) (74–76). Moreover, the resulting degradation of
IkBs and consequent release of NF-kB transcription factor
subunits are further enhanced by Tax direct interaction with
IkBs and 20S proteasome (54, 77) (Figure 1). On the other hand,
Tax also interacts with IKKg/NEMO and p100 to induce the
proteasome-mediated processing of this last in order to activate
the non-canonical NF-kB pathway (55, 78–82). These data are
supported by the fact that IKK is persistently activated in
primary ATLL and HTLV-1 transformed cells (54, 77). The
deep involvement of Tax with the NF-kB pathway is justified by
the fact that the activity of this pathway is indispensable for T cell
transformation and the maintenance of the leukemic phenotype
(81, 83).
HTLV-1 TAX DEREGULATION OF
AUTOPHAGY

The fight between cells and viruses came from a constant
competitive evolution. Cells have developed several strategies
against viral infections and autophagy is into their toolkit
repertory. For instance, xenophagy and virophagy are two
types of selective autophagy that are activated in order to clear
intracellular pathogens (84, 85). Xenophagy leads cells to
microorganisms recognition, including viruses, to target them
towards lysosome, through the autophagy machinery for
degradation by the lysosomal hydrolases (84). In a similar way,
virophagy tags specific viral components to be degraded by the
autophagy flux (86). Nevertheless, viruses also have evolved to
evade those strategies and indeed use autophagy machinery for
their own benefit (87). In dendritic cells, one strategy of human
immunodeficiency virus (HIV-1) is enhancing mTORC1
activation which in turn inhibits the autophagy pathway (88).
Another way, used by herpes simplex virus type 1 (HSV-1), is to
produce a specific viral protein that suppresses autophagy by its
binding to BECN1, which is essential for autophagosome
biogenesis initiation (89). Furthermore, most RNA viruses such
as hepatitis C virus (HCV) induce autophagy flux to use the
double membrane of autophagosome vesicles to hide themselves
and, in fact proliferate and come out from the host cell (87, 90,
91). All in all, viruses have developed several strategies with the
goal of modifying autophagy in each step, avoiding cellular
defensive mechanisms and promoting their proliferation.

It is clear that HTLV-1 infection induces cytoplasmic
autophagosomes accumulation and indeed this event increases
viral particles production, measured by the viral capsid protein
p19 (92). The single transfection of Tax in HeLa and Jurkat cells
is enough to accumulate cytoplasmic LC3 positive dots (58).
Interestingly, Tax co-localizes with cytoplasmic LC3 puncta but
its capacity to accumulate autophagosomes is highly increased
when cells are transfected with a Tax targeted by myristoylation
to LRDs (83). Worth to note, HTLV-1 capacity to increase
Frontiers in Oncology | www.frontiersin.org 4
cytoplasmic autophagosomes relies also on Tax ability to
activate the NF-kB pathway (92). For instance, a mutated Tax
without the ability to activate IKK complex is also unable to
induce autophagy (83, 93). Besides, impairment of any member
of the IKK complex, by abolition of the catalytic activity of IKKa
or IKKb, or the knockdown of IKKg/NEMO, decreases the
cytoplasmic LC3 positive autophagosomes (83). As commented
above, Tax activates the IKK complex by recruiting IKKg/
NEMO, and the IKK complex, to the LRD located at the Golgi
(71, 73). Additionally, in those LRD, Tax recruits BECN1 and
Bif-1, and indeed there is an interaction with PI3KC3 (56, 83).
All those proteins belong to the autophagy PI3KC3 complex, the
first structural complex of the autophagosome biogenesis (94). In
Tax-immortalized T cells Tax co-precipitates with BECN1 and
PI3KC3 but not with UVRAG which form with BECN1 another
complex related to the autophagosome maturation (95, 96).
Without BECN1, Tax is unable to co-precipitated PI3KC3
suggesting that the interaction is through BECN1. Moreover,
the sequence of BECN1 that goes from aminoacids 250 to 300 is
implicated in the BECN1-Tax interaction (96). Worthy, Tax-
mediated recruitment and subsequent activation of IKK complex
in the LRDs is a prerequisite to further recruitment of BECN1
and Bif-1 forcing the activation of those autophagy proteins to
trigger the autophagosomes biogenesis. This process seems to be
exclusive of HTLV-1 infected cells because the co-distribution in
LRDs of IKK complex with BECN1 and Bif-1 is only observed in
Tax expressing cells (83). Furthermore, the entire IKK complex is
key in this Tax-mediated autophagy dysregulation since Tax
does not colocalizes in the LRD in absent of IKKg/NEMO and
depletion or impairment of any of the three IKK complex
members impedes BECN1 and Bif-1 recruitment to the LRD.
The importance of this recruitment is highlighted by the fact that
myristoylation of either BECN1 or Bif-1 to target them towards
the LRDs induces autophagy (83). It is important to consider the
key role that this function of Tax over autophagy seems to have
for HTLV-1 infection. Wang and colleagues described how Tax-
mediated autophagy provides to infected cells resistance to cell
death and, in fact, they suggest to explore autophagy inhibition as
a possible treatment against HTLV-1 infection (93).

The relationship between HTLV-1 infection and the
autophagy pathway is intricate and the roles of Tax/IKK over
the autophagy proteins go in both directions. BECN1 is needed
to maintain NF-kB and STAT3 activity in HTLV-1 infected cells
(96). STAT3 cooperates with NF-kB in HTLV-1 infected cells.
When silencing BECN1, in HTLV-1 transformed cells, a
decreased NF-kB and STAT3 activity as well as an impairment
in cellular growth is observed (96). Furthermore, PI3KC3 or
BECN1 depletion significantly slows the proliferation of HTLV-1
infected T lymphocytes (83). Co-precipitation experiments show
that BECN1 interacts directly with the catalytic subunits of IKK
complex (i.e. IKKa and IKKb) through its C-terminal 150 amino
acids region. Neither IKKa nor IKKb alone can co-precipitate
BECN1 and the PI3KC3 complex suggesting that both are
indispensable for the interaction (60). Altogether, in the LRDs
Tax recruits the IKK complex, by its interaction with IKKg/
NEMO, and the autophagy PI3KC3 complex by its interaction
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with BECN1. In that context BECN1 interacts with IKKa and
IKKb and it might suggest that LRDs function as a platform
where Tax engages the NF-kB and autophagy pathways by the
local interaction of Tax, BECN1 and IKK complex (Figure 1).
Furthermore, as the autophagy is required for the maintenance
of NF-kB activity and the LRD recruitment and activation of IKK
is needed for Tax-mediated autophagosomes biogenesis, it is
logical to speculate about a positive feedback loop between NF-
kB and autophagy pathways in HTLV-1 infection (Figure 1).

Beyond all above comments, HTLV-1 possesses other goals
for autophagy deregulation. The p47 protein was recently found
in an attempt to find IKKg/NEMO interactors. Interestingly, p47
is found highly decreased in HTLV-1 infected cells and in cells
from ATLL patients (97). Among its different functions, p47 with
its UBA domain is related to degradation of ubiquitinated
proteins (98, 99). In CD4+ T lymphocytes, p47 recognizes
ubiquitinated IKKg/NEMO and induces its lysosomal
degradation since lysosomal inhibitor but not MG132
(proteasome inhibitor) restore the IKKg/NEMO levels (97). In
this way, p47 negatively regulates IKKg/NEMO independently of
the other two known regulators of the IKK complex, A20 and
CYLD (97, 100). Worth to note, shRNA-mediated depletion of
p47 significantly potentiates IkBa phosphorylation induced by
transfection of Tax in HeLa cells (97). This means that p47
opposes the action of Tax over the NF-kB pathway. In fact, in co-
precipitation assay p47 is unable to precipitate IKKg/NEMO in
presence of Tax suggesting that Tax disrupts the p47 binding to
IKKg/NEMO. The regulation of p47 seems to be mediated by its
stability since cells from patients with the acute type of ATLL the
expression of p47 is similar to uninfected CD4+ T lymphocytes
but the amount of p47 protein is significantly lower (65). This
degradation of p47 is avoided upon lysosomal inhibition but not
with MG132. Moreover, in MEFs Atg5+/+ the induction of
autophagy by starvation reduces the levels of p47 in stark
contrast to Atg5-/- MEFs where the lack of autophagy does not
perturb p47 levels upon cell starvation. Finally, similar results
were obtained in HTLV-1 infected cells where shRNA-mediated
depletion of ATG5 increased the amount of p47, and
concomitantly a decrease in IKKg/NEMO, phosphorylated
IkBa and even CADM1 (which is a receptor dependent on
NF-kB activity) was detected (65). All these data confirm the
degradation of p47 by the autophagy pathway and give an
additional reason for Tax-mediated deregulation of the
autophagy pathway (Figure 1).

The Tax-mediated deregulation of autophagy by Tax/BECN1/
IKK in the LRDs is completed with its effects on late steps of
autophagosome maturation. Data shows that inhibition of
autophagosome-lysosome fusion, by means of bafilomycin A1,
improves Tax stability suggesting that Tax could be degraded into
the lysosome through the autophagy pathway (92). In
consequence, they proved that Tax inhibits the fusion of those
degradative vesicles (92). Then, HTLV-1 Tax exerts a deep
interference in the autophagy pathway fostering autophagosomes
biogenesis but, at the same time, inhibiting the autophagosome-
lysosome fusion (Figure 1). Additionally, new points of contacts
between autophagy and HTLV-1 Tax are still being described such
Frontiers in Oncology | www.frontiersin.org 5
as the case of SQSTM-1/p62. In MEFs and HEK293T cells, but not
in Jurkat cells, depletion of SQSTM-1/p62 impair the Tax-
mediated NF-kB activity. Indeed, SQSTM-1/p62 directly
interacts with Tax in the Tax/IKK complex located in Golgi-
associated structures (101). SQSTM-1/p62 is an autophagy
receptor with domains for recognition of ubiquitin chains and
LC3 to canalize cargoes towards the autophagy-mediated
degradation (102, 103). Similar data is obtained with Optineurin,
another autophagy selective receptor, but interestingly in both
cases Tax interaction with those proteins seems to be related to
Tax-mediated NF-kB activation and not with Tax degradation
(101, 104). By the side of HBZ, it negatively regulates the
autophagy pathway. In cytoplasm, HBZ associates and inhibits
GADD34 which has been demonstrated to be a mTOR inhibitor.
Then, HBZ enhances mTOR activity probably for allowing its
anabolic functions, though mTOR inhibits the autophagy
triggering and in consequence HBZ indirectly inhibits the
autophagy pathway (105, 106). This is interesting because it
might be related to the strategy used by Tax to induce
autophagy that is going directly to BECN1/PI3KC3 complex in a
manner independent of mTOR activity status. All in all, these data
demonstrate that we are not yet watching the whole panorama.
Future work would shed light about the complex mechanisms in
Tax-autophagy close relationship and whether it includes other
autophagy related processes such as selective autophagy, non-
canonical forms of autophagy, etc.

Going even further, it has been demonstrated that a
constitutively activated IKK complex induces autophagy in
vitro and in vivo (107). IKK is implicated in early
carcinogenesis inducing autophagy in several tumors in order
to cope with the stress related to tumor microenvironment (108).
IKKb seems to be crucial in this intricate mechanism since this
molecule transactivates BECN1 to induce autophagy (109). With
very interesting data, Peng and colleagues show that IKKb
induces accumulation of autophagosomes, but at the same
time enhances the fusion of those autophagic vesicles with the
MVBs, resulting in amphisomes (110). They also observed the
IKKb-mediated driving of amphisomes toward the plasma
membrane with the consequent release of small extracellular
vesicles (EVs) which are positive for the autophagic proteins LC3
and SQSTM-1/p62 (110). Importantly, Tax has recently been
found in EVs fromHTLV-1 infected T cell lines (111). Moreover,
those EVs bear the viral proteins Tax and HBZ among some host
proteins, and transcriptional mRNA of Tax, HBZ and 5’LTR
(Figure 1) (111). The incubation of those EVs with uninfected
cell cultures (CTLL-2 and PBMC) increases survival under stress
conditions (111, 112). This was further confirmed in EVs from
ATLL patients derived leukemia cells where Tax was also
detected (113). In the same work, EVs purified from ATLL cell
line HUT-102 were taken up by bone marrow mesenchymal
stem cells (MSC) with the consequent activation of NF-kB
pathway, observable morphological changes, proliferation,
activation of a migratory phenotype and presence of
angiogenic markers (Figure 1) (113). Putting together the
effect of IKKb over the autophagy pathway and the release of
EVs with presence of EVs containing Tax from infected cells and
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ATLL patients cells it is not difficult to speculate that both events
might be connected, though it needs to be confirmed. For sure,
these results broaden the views about the possible roles of Tax,
and/or other HTLV-1 proteins, regarding all these pathways.
Finally, we are just observing the tip of the iceberg about HTLV-
1, autophagy, and their relationship in the development of ATLL.
CONCLUSIONS AND PERSPECTIVES

Most viruses have developed different strategies to overcome cell
defenses over evolution, and even more, to use those cellular
mechanisms for their own viral cycle. Autophagy is an important
homeostatic cellular process and as such it has an antiviral
program of action like virophagy and xenophagy. Indeed,
HTLV-1 virus induces autophagy to foster viral production.
Tax protein seems to be the wild card weapon of HTLV-1,
which is able to orchestrate most of the viral action to success in
its infective attempt. In the same movement, Tax engages the
autophagy and the NF-kB pathways in such a way that it is
enough to produce the oncogenic transformation of the cell and,
indeed, go on even when Tax is not more detectable. The recent
results around IKK, autophagy, the vesicular trafficking and the
EVs carrying Tax let us imagine that this is just the beginning in
our comprehension of this intricate process. Finally, during
Frontiers in Oncology | www.frontiersin.org 6
HTLV-1infection, Tax is in the middle of a complex crossroad
that includes inflammatory signal pathways, apoptosis,
autophagy, and intercellular communication, that could be the
key to uncover its oncogenic transformation ability.
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