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Purpose:Circulating cell-free DNA (cfDNA) level has been demonstrated to be associated
with efficacy in first generation EGFR TKIs in non-small cell lung cancer (NSCLC).
However, the role of dynamic cfDNA analysis using next-generation sequencing (NGS)
in patients with subsequent third-generation EGFR TKIs remains unclear.

Methods: From 2016 to 2019, 81 NSCLC patients with EGFR T790M mutation either in
tissue or plasma who received third-generation EGFR TKIs treatment were enrolled.
CfDNA were sequenced by NGS with a 425-gene panel. The association of clinical
characteristics, pretreatment, dynamic cfDNA and T790M level with outcomes in patients
treated with the third-generation TKIs were analyzed.

Results: In univariate analysis, the median PFS of patients with undetectable cfDNA level
during treatment was significantly longer than those with detectable cfDNA (16.97 vs. 6.10
months; HR 0.2109; P < 0.0001). The median PFS of patients with undetectable T790M
level during treatment was significantly longer than those with detectable T790M (14.1 vs.
4.4 months; HR 0.2192; P < 0.001). Cox hazard proportion model showed that cfDNA
clearance was an independent predictor for longer PFS (HR 0.3085; P < 0.001) and longer
OS (HR 0.499; P = 0.034). The most common resistant mutations of the third-generation
TKIs were EGFRC797S (24%).CDK6CNV,GRIN2A,BRCA2, EGFRD761N, EGFRQ791H,
EGFR V843I, and ERBB4 mutation genes may possibly be new resistant mechanisms.

Conclusions: Patients with undetectable cfDNA during the third-generation EGFR TKI
treatment have superior clinical outcomes, and dynamic cfDNA analysis by NGS is
valuable to explore potential resistant mechanisms.
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INTRODUCTION

EGFR gene mutations account for the most frequency of
oncogenic mutations in advanced non-small cell lung cancer
(NSCLC). The first-generation EGFR TKIs, gefitinib, erlotinib,
icotinib, have been the standard-of-care as the first-line treatment
in China for advanced NSCLC with EGFR-sensitizing mutations.
Unfortunately, acquired resistance still occurs in the majority of
patients. About 50–60% resistant mechanism of the first
generation EGFR TKIs was EGFR T790M gene mutation. Third-
generation EGFR TKIs, such as osimertinib, alflutinib, target the
T790M mutation with outstanding clinical efficacy (1, 2).

As a viable alternative for tissue biopsy, liquid biopsy with
circulating cell-free DNA (cfDNA) analysis has been used in
identifying molecular target, predicting response and prognosis,
and monitoring resistance during targeted treatment for lung
cancer (3). cfDNA clearance during anticancer therapies has
been an emerging topic in lung cancer, especially in EGFR-
mutated NSCLCs. Previous studies have reported a promising
role of cfDNA longitudinal monitoring using different liquid
biopsy methodologies (4–7). The longitudinal cfDNA monitoring
has been proposed as a follow-up tool in the identification of
acquired mechanisms of resistance that can impact sequential
treatment management (5, 8). Furthermore, several studies have
reported cfDNA clearance as a potential predictive biomarker for
NSCLC patients during immunotherapy (9).

The role of cfDNA dynamic changing in predicting the
response to the third-generation EGFR TKIs has been
investigated in small-scale studies with limited sample size
using PCR technique (10). Due to the limitation of obtaining
tissue samples at disease progression (PD), ctDNA pretreatment
and at PD time point provide hints for better understanding the
EGFR TKI resistant mechanisms (11, 12). Compared to
conventional PCR-based testing, next-generation sequencing
(NGS) is a more sensitive and comprehensive technique for
detecting uncommon actionable mutations including acquired
resistance alterations. Currently, there is a lack of research on
dynamic detection of cfDNA by NGS in patients treated with the
third-generation EGFR TKI, which limited the exploration of
resistant mechanisms and the formulation of subsequent
treatment regimens (13).

In this study, 81 EGFR-mutant advanced NSCLC patients
who were confirmed to have acquired T790M mutation were
enrolled, and the clinical implications of dynamic plasma cfDNA
analysis using a 425-gene capture panel during the third-
generation TKI treatment was investigated. The results implied
a broad potential of cfDNA as an adjuvant tool in practical
clinical management, regarding both prognosis prediction and
resistant mechanism identification.
METHODS

Patient Cohort
Advanced NSCLC patients with EGFR T790M identified in the
tissue or plasma by NGS and prior-first-generation EGFR TKI
Frontiers in Oncology | www.frontiersin.org 2
treatment were enrolled. All patients received the third-
generation TKIs sequentially. Key exclusion criteria were cases
without NGS testing for tissue or plasma, or without disease
evaluation. The study was approved by the ethics committee of
Beijing Chest Hospital, and all patients had signed written
informed consent. Clinical staging complied with the AJCC 8th

staging system, and treatment response was assessed with the
Response Evaluation Criteria in Solid Tumors (RECIST), version
1.1. Blood samples were collected at the point of pretreatment
and during the treatment of the third-generation EGFR TKIs.

DNA Extraction and Targeted Next-
Generation Sequencing
Genomic DNA from FFPE samples and white blood cells were
extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen).
Plasma was extracted from about 10 ml whole blood in EDTA-
coated tubes within 2 h of blood withdrawing, and circulating cell
free DNA (cfDNA) was extracted using the QIAamp Circulating
Nucleic Acid Kit (QIAGEN). Genomic DNA from white blood
cells was extracted using DNeasy Blood & Tissue Kit (Qiagen,
Germany) and used as normal control. All DNA concentration
and purity were qualified by Nanodrop2000 (Thermo Fisher
Scientific). All DNA samples were also quantified by Qubit 3.0
using the dsDNA HS Assay Kit (Life Technologies) according to
the manufacturer’s protocol. The median yield for the plasma
cfDNA at baseline was 15.68 ng/ml and 18.05ng/ml at
disease progression.

Sequencing libraries were constructed using KAPA Hyper
Prep kit (KAPA Biosystems) with an optimized manufacturer’s
instructions. In brief, cfDNA or DNA was experienced with end-
repairing, A-tailing, adapter ligation and size selection using
Agencourt AMPure XP beads (Beckman Coulter). Libraries were
then subjected to PCR amplification and purification before
targeted enrichment. The size distribution of libraries was
measured by Agilent Technologies 2100 Bioanalyzer (Agilent
Technologies). The enriched libraries were sequenced on
Illumina Hiseq 4000 NGS platforms to cover mean depths of
at least 1,000×, 3,000×, and 100×, for FFPE, cfDNA, and blood,
respectively. DNA extraction and NGS were performed in
Geneseeq Technology Inc. A complete list of the genes
included in the NGS panel was in Supplementary Table 1.

Data Processing
Trimmomatic was used for FASTQ file quality control (QC).
Leading/trailing low quality (quality reading below 30) or N
bases were removed. Remaining reads were mapped to the
reference sequence data (Human Genome version 19) using
Burrows-Wheeler Aligner (BWA-mem, v0.7.12). Indel
realignment and base quality score recalibration were
performed with Genome Analysis Toolkit (GATK 3.4.0).
Somatic mutations were detected with VarScan2. Copy number
variations (CNVs) were detected using ADTEx (http://adtex.
sourceforge.net) with default parameters as reported by previous
studies (14–16). To eliminate sequencing artifact, a local
bioinformatics pipeline was performed. Firstly, we used a local
white blood cell (WBCs) database, containing recurrent somatic
March 2021 | Volume 11 | Article 643199
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alterations from WBCs of 400 patients, to eliminate the
sequencing artifacts. Specifically, if a variant was detected (i.e.
≥2 mutant reads) in >10% of the samples, it was considered a
likely artifact and was removed. Secondly, a background
denoising strategy was performed. Briefly, we performed panel
sequencing with similar sequencing depth used in this study on
plasma samples of 50 healthy individuals to assemble a database
of alterations at each site of the panel and build a background
error model. A specific alteration at a specific site was considered
sequencing noise if the allele frequency (AF) and distinct
supporting reads were not significantly beyond the background
error probability. Only alteration with an AF over three standard
deviations from the mean AF of healthy plasma-cfDNAs pool
remained and subjected for further analyze.

Bioinformatics Analyses
Trimmomatic48 was used for FASTQ file quality control (QC)
(17). Sequencing data were aligned to the reference hg19
(Human Genome version 19) with the Burrows-Wheeler
Aligner (BWA-mem, v0.7.12) (18). SNVs and Indels were
detected using SCALPEL (http://scalpel.sourceforge.net) and
Genome Analysis Toolkit (GATK). Tumor purity was
estimated by ABSOLUTE (19). Purity-adjusted gene-level and
segment-level copy numbers were calculated by CNVKit (20)
ADTEx (http://adtex.sourceforge.net).

Statistical Analysis
Progression-free survival (PFS) was defined as the first date of
third-generation EGFR TKIs until disease progression or death
resulting from any cause. Overall survival (OS) was defined as
the first date of third-generation EGFR TKIs until death from
any cause. CfDNA level was defined as the sum of total cfDNA
total mutation abundance detected by the 425-gene panel NGS.
Similarly, T790M level was reflecting the mutation abundance
detected by the 425-gene panel. Comparisons were made using
an unpaired two-tailed t-test, and analysis of variance (one-way
ANOVA) was performed using Graphpad Prism V8.0, and linear
regression analysis and some survival analysis were also analyzed
using Prism V8.0. Most of the statistical analyses were performed
using R version 3.5.3. In particular, Survival, Survminer, and Cox
analysis were used for the analysis of PFS and OS. All reported P
values were two-tailed, and P values less than 0.05 were
considered statistically significant.
RESULTS

Patient Characteristics and Samples
From May 2016 to November 2019, 81 patients with a median
age of 64 years old (range, 36–84) were enrolled. Twenty-six
patients (32.1%) were male, 79 (97.5%) were adenocarcinoma, 16
(19.8%) were smokers, 77 (95.1%) were stage IV, 27 (33.3%)
patients had central nervous system metastasis, and 57 (70.4%)
were in second-line setting (Table 1). Above all, 64 patients
(79.0%) were disease progression and 33 patients (40.7%) died at
the last follow-up time on Nov. 30, 2019. Baseline samples were
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taken before the third-generation TKI treatment. Baseline tissue
samples were obtained in 46 patients and identified with EGFR
T790M. Baseline plasma samples were obtained in 77 patients.
Sixty-six patients were cfDNA positive at baseline including 56
T790-positive cases. Fifty-nine patients had serial plasma
samples available (Figure 1). Forty-one patients received
osimertinib (80 mg, qd) and 40 patients received alflutinib (80
mg, qd). Clearing rates of cfDNA and EGFR T790M over the
third-generation TKI treatment course were shown in Figure 2.
The clearance of cfDNA as well as EGFR-T790M increased from
the treatment onset and reached the maximum at three months,
suggesting these patients responded to the treatment.

Predictors of Progression-Free Survival
The median PFS of 81 patients was 14.167 months (95%CI
11.704–16.630). There was no significant correlation between
sex, age, smoking history, clinical staging, CNS metastasis, or
treatment-line with the PFS of the third-generation TKIs,
respectively (Supplementary Table 2). Histology type was not
analyzed because 79 of 81 patients were adenocarcinoma.

Interestingly, univariate analysis showed that themedian PFS of
the patients with pretreatment undetectable cfDNA was
significantly longer than those with detectable cfDNA (18.0 vs.
12.47 months; HR 0.5140, 95%CI, 0.2749–0.9610; P = 0.0374;
Figure 3A). The PFS of patients with pretreatment undetectable
T790Mwas superior to those with detectable T790M patients (17.2
vs. 12months; HR 0.6946, 95%CI 0.4055–1.190; P = 0.0430; Figure
3B). However, multivariate analysis showed that neither
pretreatment cfDNA level (HR 0.7759, 95%CI 0.3275–1.828; P =
0.564) nor pretreatment T790M level (HR 1.0535, 95%CI 0.4927–
2.253; P = 0.893) was associated with the PFS for patients who
received the third-generation EGFR TKIs treatment.
TABLE 1 | Patient characteristics at pretreatment of third-generation EGFR TKIs.

Variables N %

Sex
Male 26 32.1
Female 55 67.9

Age
Median (range) 64 (36–84)
≤60 32 39.5
>60 49 60.5

Histology
Adenocarcinoma 79 97.5
Squamous adenocarcinoma 1 1.2
Non-small cell lung cancer NOS 1 1.2

Smoking status
Non-smoking 65 80.2
Smoking 16 19.8

Clinical Staging
IIIB 4 4.9
IV 77 95.1

Central and nervous system metastasis
Yes 27 33.3
No 54 66.7

Treatment line
Second line 57 70.4
Third line 15 18.5
Beyond third line 9 11.1
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Further analysis was carried out to study the association of
dynamic changing of cfDNA with PFS. In 59 cfDNA-positive
patients who had serial plasma samples, 35 patients presented
with cfDNA clearance. The clearance rate of cfDNA level within
1, 2, 3, and beyond 3 months during the third-generation TKI
treatment was 28.8% (17/59), 35.5% (21/59), 47.5% (28/59), and
11.9% (7/59), respectively. The PFS of patients with undetectable
fDNA during treatment was significantly longer than that of
patients with detectable cfDNA (16.97 vs. 6.10 months; HR
0.2109, 95%CI 0.09580–0.4643; P < 0.0001; Figure 4A). The
PFS of patients with undetectable cfDNA during the entire time
of treatment was significantly longer than that with detectable
cfDNA within post-treatment of 1, 2, 3, or more than 3 months,
Frontiers in Oncology | www.frontiersin.org 4
respectively (Supplementary Figure 1). Nevertheless, there were
no significant differences on PFS among patients with
undetectable cfDNA in 1, 2, 3, or more than 3 months after
the third-generation TKI treatment. The duration of
undetectable cfDNA was also positively correlated with the
longer PFS during the third-generation TKI treatment (R2 =
0.4428; P < 0.0001; Supplementary Figure 2).

In 49 T790M-positive patients who had serial plasma
samples, 43 patients developed T790M clearance. Patients with
undetectable T790M during treatment benefited from the third-
generation TKI treatment compared with those with detectable
T790M patients (14.1 vs. 4.4 months; HR 0.2192, 95%CI
0.04260–1.128; P < 0.001; Figure 4B). The relationship
FIGURE 1 | Patient enrollment.
A B

FIGURE 2 | Clearing rate of cfDNA and EGFR T790M. The clearance rate of cfDNA (A) and EGFR T790M (B) within 1month, months and more than 3months
during the third generation TKIs treatment.
March 2021 | Volume 11 | Article 643199
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between T790M clearance speed and PFS is classified within 1, 2,
3 months, and more than 3 months after the third-generation
TKI treatment (Supplementary Figure 3). The clearance rate of
T790M level within 1, 2, 3 and beyond 3 months during the
third-generation TKI treatment was 4.1% (2/49), 36.7% (18/49),
55.1% (27/49), and 26.5% (13/49). Among them, one patient did
not receive continuous dynamic monitoring, and clearance was
almost 1 year after treatment, which was included in the total
number of clearance, but not in the calculation of different time
points. The PFS stratified by T790M level at different times of
treatment was shown in (Supplementary Figure 4). The
duration of undetectable T790M was also positively correlated
with longer PFS of the third-generation TKIs (R2 = 0.7235; P <
0.0001; Supplementary Figure 4).
Frontiers in Oncology | www.frontiersin.org 5
In multivariate analysis, undetectable cfDNA level or T790M
level during treatment was performed by Cox analysis. The
results showed that undetectable cfDNA level during treatment
was an independent predictor for longer PFS of the third-
generation TKIs (HR 0.3085, 95%CI 0.1617–0.5885; P =
0.000359), while undetectable T790M was not (HR 0.57, 95%
CI 0.2874–1.1303; P = 0.1075). These results suggest that
dynamic cfDNA level can predict the efficacy of the third-
generation TKIs, and negative cfDNA during treatment is
associated with better outcome.

Predictors of Overall Survival
The median overall survival was 25.533 months (95%CI 22.615–
28.452). Unfortunately, there were no significant correlations
A B

FIGURE 3 | Progression-free survival for patients treated with the third-generation EGFR TKIs according to pretreatment cfDNA and T790M level. (A) Kaplan–Meier
analysis stratified by cfDNA level. (B) Kaplan–Meier analysis stratified by T790M level.
A B

FIGURE 4 | Progression-free survival for patients treated with the third-generation EGFR TKIs according to dynamic cfDNA and T790M level during treatment.
(A) Kaplan–Meier analysis stratified by cfDNA level. (B) Kaplan–Meier analysis stratified by T790M level.
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between clinical characteristics and over survival time
(Supplementary Table 2), and no association was observed
between pretreatment cfDNA level (HR 0.3525, 95%CI 0.1361–
0.9129; P = 0.1336) or T790M level (HR 0.3680, 95%CI 0.1690–
0.8012; P = 0.0498) and overall survival time. The cfDNA
clearance was associated with the OS (34.9 vs. 16.3 months;
HR 0.3105, 95%CI 0.1301–0.7412; P = 0.0014; Figure 5).
Dynamic T790M level changes were not correlated with the
OS (HR 0.6472, 95%CI 0.1127–3.716; P = 0.5509). These results
demonstrated that detectable cfDNA during treatment is a poor
factor of overall survival.

Relationship of Cell-Free DNA Changing
With Imaging (Chest CT)
The association of dynamic cfDNA changes with medical
imaging presentation of patients who developed resistance to
the third-generation TKIs was analyzed. The result showed that
re-detected or re-elevated cfDNA level occurred earlier than
progression on clinical imaging in 33 patients with 4.8 months in
advance (P < 0.0001; Supplementary Figure 5), which may
predict disease progression and recurrence risk.

Resistance Mechanisms Detected by
Next-Generation Sequencing
In this cohort, thirty-nine patients had matched plasma and
tumor tissue at baseline. Overall concordance, defined as the
proportion of patients for whom at least one identical genomic
alteration was identified in both tissue and plasma (21), was
69.2%(27/39). For EGFR T790M, 53.8% (21/39) of patients with
matched plasma and tissue had T790M identified in both
samples. The gene mutation profiles at baseline and PD point
during the third-generation TKI treatment were further
explored. The top 30 somatic mutational genes at pretreatment
were showed in Figure 6A. EGFR gene mutation (19del and
Frontiers in Oncology | www.frontiersin.org 6
L858R), TP53 gene mutation, and EGFR amplification were the
most common gene variations. Other concurrent gene mutations
were also detected, including BIM, CTNNB1, and PIK3CA gene
mutations. Six gene mutations in pretreatment samples,
including CDKN1B amplification, ERBB2 amplification, ERBB2
mutation, KMT2D mutation, PTEN mutation, and SETD2
muta t ion were s i gn ifican t l y a s soc i a t ed wi th PFS
(Supplementary Table 3). The top 30 somatic mutations
profile at PD point were listed in Figure 6B. The resistant
mutation profile of the third-generation TKIs was shown in
Figure 6C, in which EGFR C797S mutation was the most
common resistant mutation (24%). MET CNV and ERBB2
p.S22I and p.E992K mutations were also found in 3 and 5%
patients, respectively. Moreover, 18 genes detected at PD were
statistically significantly correlated with PFS (Supplementary
Table 4), showing the complex mechanisms of drug resistance.
These results suggest that dynamic cfDNA analysis is helpful in
monitoring resistance to targeted therapy.
DISCUSSION

This study evaluated the role of dynamic cfDNA level based on a
large-panel NGS with 425 genes in predicting outcomes and
identifying possible resistant mutations in EGFR T790M-positive
NSCLC patients who received the third-generation EGFR TKIs.
Our results demonstrated that cfDNA clearance significantly
correlated the longer PFS and OS of the third-generation EGFR
TKIs. Moreover, cfDNA analysis depicted the resistant landscape
during TKI treatment, providing guidance for successive
treatment options.

Several studies have shown that cfDNA clearance during first-
line EGFR TKI treatment predicts outcomes for first- and
second-generation TKI therapy (22, 23). One of the studies
showed that depletion of fDNA predicted outcome of patients
with EGFR mutant NSCLC who received first-generation EGFR
TKI using Cobas® EGFR mutation test v2 (24). Song et al.
reported that cfDNA clearance was associated with longer PFS in
a real-world NSCLC cohort involving different kinds of
treatment strategies using a 168-gene panel (25). But there was
a lack of studies concerning the role of dynamic cfDNA level
during the third-generation TKI treatment. A case report showed
that clearance of fDNA-based ddPCR can predict the response to
osimertinib (26). Ebert et al. also reported that clearing of all
EGFR cfDNA after osimertinib treatment predicts the efficacy of
Osimertinib with significant improvement in PFS, ORR, and
DCR in 82 patients with NSCLC using Cobas® EGFR mutation
test v2 (27). Another study showed that cfDNA presence at 6
weeks correlated with short PFS and OS in a phase 1/2 study of
osimertinib plus bevacizumab as first-line therapy for advanced
EGFR-mutant NSCLC using the QX200 BioRad PCR system
(28). Buder A et al. reported that cfDNA at initial and 8 weeks
after osimertinib treatment in advanced EGFR-positive NSCLC
was associated with shorter PFS and OS using droplet digital
PCR (29). However, the limitations of the above studies were
more likely due to the method of cfDNA testing, such as PCR, a
FIGURE 5 | Kaplan–Meier analysis of overall survival for patients treated with the
third-generation EGFR TKIs according to dynamic cfDNA level during treatment.
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non-quantitative analysis of cfDNA focusing on the limited
specific mutation sites, a small sample size, or a smaller gene
panel involving over 100 genes. Another important difference
was that previous studies focus on cfDNA of EGFR genes, while
our study analyzed the total cfDNA level detected by NGS. Our
study demonstrated that clearing of cfDNA predicts the longer
PFS and OS of the third-generation EGFR TKIs using a large
gene NGS panel including 425 genes, and T790M level was not
associated with outcomes. These results indicated that cfDNA
Frontiers in Oncology | www.frontiersin.org 7
was a positive predictor of prognosis of patients who received the
third-generation TKIs.

Early clearance of plasma EGFR mutations (Ex19del, L858R
and T790M) has been reported as a predictor of response to
osimeritinb in both pretreated and treatment-naïve patients in
different clinical trials (30–32). In this study, the correlation
between EGFR T790M mutation and prognosis has been further
discussed. In AURA3 trial, T790M-positive patients verified by
tissue samples had a longer PFS than those verified in plasma
A

B

C

FIGURE 6 | Gene mutation profile based on next-generation sequencing. (A) Somatic gene mutations profile containing the top 30 genes at pretreatment of the
third-generation EGFR TKIs. (B) Somatic gene mutations profile containing the top 30 genes at disease progression point for patients with third-generation EGFR
TKIs treatment. (C) Resistant gene mutation profile of third-generation TKIs.
March 2021 | Volume 11 | Article 643199
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(33), which indicated detectable plasma T790M status could be a
reflection of tumor burden. The relative mutation purity of
T790M (defined as the ratio of allelic frequency to maximum
somatic allele frequency) was associated with significantly longer
PFS of osimertinib treatment using small panel NGS (34). Bordi
P et al. reported that patients with lower EGFR sensitive
mutation ctDNA level (<2,200 copies/ml or allele frequency
(AF) <6.1%) had a better PFS of osimertinib in plasma by
ddPCR and Therascreen® (10). In our study, in univariate
analysis, pretreatment T790M level and level change during
treatment course were associated with the PFS of the third-
generation TKIs, but both were not confirmed in multivariate
analysis which might be due to the confounding factors.

In clinical practices, the diagnosis of disease progression
largely relied on radiological imaging. However, whether
plasma cfDNA T790M can be employed as a valuable marker
for changing the treatment strategy remains unknown.
Prospective clinical trials on treatment strategy based on
cfDNA level are highly expected. We observed that the re-
detectable or re-elevated cfDNA level occurred 4.8 months
earlier than progression on medical imaging, indicating
molecular events develop earlier than clinical changing, which
is accord with the previous studies focusing on cfDNA detection
in early cancer relapse (35–37).

The cfDNA analysis based on NGS testing was also valuable in
monitoring targeted drug resistance during rebiopsy. The resistant
mechanism of osimertinib in pretreated and treatment-naïve
patients has been shown to be different (38–40). In pretreated
patients, MET amplification was observed in 19% of patients at
disease progression and/or discontinuation with concurrent EGFR
C797S (7%) and EGFR C797S+HER2 amplification (1%). In those
samples with MET amplification, there was an almost equal split
between samples that lost T790M (43%) versus those that retained
T790M (57%) at disease progression and/or discontinuation. In
treatment-naïve patients, the most frequently observed
Osimertinib-resistant alterations were MET amplification (15%)
and EGFR C797S (7%). Here in this study, the frequency of MET
amplification was relatively low (3%), whereas the incidence of
EGFRC797Smutation was higher than previously reported (24%).
Meanwhile, cell cycle gene alterations such as CDK6 CNV were
presented at higher ratio compared to previous studies. Here
ABCB1 gene mutation which has been demonstrated as one of
the resistant mechanisms of Osimertinib was also identified at a
ratio of 5% (41, 42). These discrepancies in the detection of
resistant mechanism could be due to the different panel using in
each study as well as difference in the ethnic background of
patients enrolled.

It is worth mentioning that several novel resistant gene
alterations are firstly reported in our study, including CDK6
CNV, GRIN2A, BRCA2, EGFR D761N, EGFR Q791H, EGFR
V843I, and ERBB4 gene alteration. CDK6 CNV has been
reported to correlate with first-generation EGFR TKI resistance
and shorten PFS to osimeritinib (43). The clinical impact of rare
and compound mutations of EGFR including EGFR D761N,
EGFR Q791H, EGFR V843I has been mentioned in EGFR TKI
treatment, however, without conclusions thus far (44). ERBB4
Frontiers in Oncology | www.frontiersin.org 8
alterations have also been reported in NSCLC and found to be
activated (45). Further studies are warranted to validate these
potential resistant gene alterations. Besides, six gene alterations
have been found at pretreatment and 18 gene alterations at PD
point. The PFS of patients with these novel resistance gene
alterations was shorter than that of patients without the gene
alterations based on the small sample sizes, which
needs validation in larger cohort and further studies.

Although plasma cfDNA-based re-biospy showed advantage
in identifying off-target genetic resistance, histologic
transformation which is a frequent early resistance mechanism
to first-line osimertinib still might require tissue re-biopsy for
further evaluation, especially for patients with co-mutation of
EGFR, TP53 and RB1 (46). To overcome these emerging
resistance mechanisms during osimeritinib treatment,
combinational approaches have been proposed including
CDK4/6 dual inhibitor plus osimertinib (47), MET-TKI plus
osimertinib (48), checkpoint inhibitor plus EGFR TKI (49) in
preclinical and clinical settings.

There are some limitations in our study. Firstly, not all of the
patients had matched tissue and dynamic plasma samples
resulting in partial data missing. The lack of matched tissue
and dynamic plasma to compare the genetic background of
multiple samples in the same patients partially invalidated the
result obtained. Secondly, not all of the patients had the re-biopsy
tumor tissue at resistant point of the third-generation EGFR
TKIs. But censored data was allowed in terms of statistics. The
over survival follow-up is on the way. Thirdly, the detailed
function of these newly identified resistant gene alterations is
unclear, which requires more functional studies.

Taken together, we observed the association of cfDNA clearance
with the better PFS and OS in T790M-positive advanced NSCLC
patients who received the third-generation EGFR TKIs through
serial NGS testing. The dynamic plasma cfDNA level may be helpful
for monitoring tumor response, predicting patient outcomes, and
identifying resistance mechanisms during the third-generation
EGFR TKI treatment in clinical practice. Prospective clinical trials
of guiding the treatment strategy based on cfDNA level during
targeted therapy are expected.
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