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Background: Gastric cancer (GC) is a malignancy with high morbidity and mortality rates
worldwide. SNHG12 is a long noncoding RNA (lncRNA) commonly involved many types of
cancers in the contexts of tumorigenesis, migration and drug resistance. Nevertheless, its
role in GC proliferation is poorly understood.

Methods: Bioinformatics and qRT-PCR assays were used to analyze the expression of
SNHG12 in GC tissues and cells. In vitro and in vivo experiments were conducted to
detect the role of SNHG12 in GC development. qRT-PCR, PCR, western blotting (WB),
RNA binding protein immunoprecipitation (RIP), immunoprecipitation (IP),
immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and in situ
hybridization (ISH) were performed to investigate the underlying mechanisms by which
SNHG12 promotes GC proliferation.

Results: SNHG12 was highly expressed in GC cells and tissues, and predicted poor
survival. In vitro and in vivo assays showed that SNHG12 knockdown inhibited GC
proliferation, while SNHG12 overexpression promoted GC proliferation. Further
experiments confirmed that SNHG12 was mainly located in the cytoplasm and bound
to HuR. Bioinformatics analysis predicted that YWHAZ was the common target of
SNHG12 and HuR, and that the “SNHG12-HuR” complex enhanced the stability of
YWHAZmRNA. Furthermore, YWHAZ, which was highly expressed in GC, predicted poor
survival and promoted GC proliferation by phosphorylating AKT. Rescue assays verified
that SNHG12 promoted GC proliferation by activating the AKT/GSK-3b pathway.

Conclusions: SNHG12 binds to HuR and stabilizes YWHAZ. SNHG12 promotes GC
proliferation via modulation of the YWHAZ/AKT/GSK-3b axis in vitro and in vivo. Thus,
SNHG12 could become a novel therapeutic target for anti-tumor therapy.
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INTRODUCTION

Gastric cancer (GC) is a malignancy that can easily invade and
proliferate in adjacent regions and poses a serious threat to
human health worldwide (1). Although neoadjuvant and
systemic radio-chemotherapy have shown some benefits for
the management of GC, its prognosis remains disappointing
due to metastasis and recurrence (2, 3). The identification of
biomarkers and their underlying mechanisms associated with
GC tumorigenesis and proliferation show promise for facilitating
early diagnosis and prompting precision therapy (4).

Long noncoding RNAs (lncRNAs) are evolutionarily
conserved RNA molecules with a length of more than 200
nucleotides that lack protein-coding ability (5). Numerous
studies indicate that lncRNAs play various functional roles in
multiple kinds of biological processes, including cell growth,
invasion, migration, and tumorigenesis (6, 7). The oncogenic role
of lncRNA small nucleolar RNA host gene 12 (SNHG12) has
been verified in recent studies (8). LncRNA SNHG12 promotes
temozolomide resistance in glioblastoma (9). In renal cell
carcinoma, SNHG12 promotes proliferation, migration,
invasion and sunitinib resistance via the SNHG12/SP1/CDCA3
axis (10). In addition, previous studies also reported that
SNHG12 promotes GC proliferation, migration by sponging
miR-320 and miR-16 (11, 12). However, the possible
interactions between SNHG12 and other genes and signaling
pathways in GC remains to be elucidated.

LncRNAs stimulate the pathogenesis of GC through their
participation in key signaling pathways: for example, linc00662
promotes colon cancer tumor growth and metastasis by
activating the ERK signaling pathway (13), and lncRNA
PSTAR inhibits hepatic carcinoma cell proliferation and
tumorigenesis by inducing p53-mediated cell cycle arrest (14).
Herein, we found that when its expression was increased,
SNHG12 reduced the overall survival of GC patients and
promoted GC tumorigenesis by activating the AKT/GSK-3b
pathway and binding with the RNA binding protein ELAVL1
(also known as HuR) and stabilizing YWHAZ expression.
Thus, SNHG12 shows promise as a biomarker for prognosis
prediction and a possible therapeutic target in GC patients.
MATERIALS AND METHODS

GC Patients and Tissue Specimens
A total of 16 GC tissues and the corresponding adjacent non-
cancerous epithelial tissues were obtained from GC patients
undergoing radical surgery from March to July 2020 at Ruijin
Abbreviations: lncRNA, long non-coding Ribonucleic Acid; SNHG12, Small
Nucleolar RNA Host Gene 12; GC, Gastric Cancer; HuR, Human Antigen R;
ELAVL1, ELAV like RNA binding protein 1; YWHAZ, Tyrosine 3-
monooxygenase/tryptophan5-monooxygenase activation protein; 14-3-3 protein
zeta; PCR, Polymerase Chain Reaction; qRT-PCR, Reverse Transcription-
quantitative Polymerase Chain Reaction; shRNA, short hairpin Ribonucleic
Acid; EdU, Ethynyl deoxyuridine; FISH, Fluorescence in situ Hybridization;
ISH, In situ Hybridization; RIP, RNA-Binding Immunoprecipitation; CCK-8,
Cell counting Kit-8; IHC, Immunohistochemistry; IP, Immunoprecipitation.
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Hospital affiliated with Shanghai Jiao Tong University School of
Medicine. The patients did not undergo radiotherapy or
chemotherapy prior to surgery. All cases were independently
diagnosed histologically by two experienced pathologists and
staged according to the tumor-node-metastasis (TNM) staging
system of the American Joint Committee on Cancer (AJCC 7th
ed., 2010). All tissue samples were immediately frozen in liquid
nitrogen after resection from patients and stored at −80°C for
further analysis. The acquisition of the tissues was approved by
the Ruijin Hospital Ethics Committee.

Cell Culture
GC cell lines (MGC-803, AGS, HGC-27, MKN-28, MKN-45,
SGC-7901, BGC-823) and the non-malignant gastric mucosal
epithelial cell line (GES-1) were purchased from the Cell Bank of
the Chinese Academy of Sciences (Shanghai, China). DMEM
(Meilunbio, #MA0212-1) with 10% newborn calf serum
(Bioagrio, #S1105-100) was used for cell culture (37°C in
5% CO2).

RNA Extraction, Quantitative Reverse
Transcription PCR (qRT-PCR) and PCR
Total RNA was extracted from cultured cells and tissues using
TRIzol reagent (Vazyme, #R401-01) according to the
manufacturer’s instructions. A cytoplasmic and nuclear RNA
purification kit (#21000, 37400) was purchased from NORGEN.
RNA was reverse transcribed into cDNA using HiScript III RT
SuperMix for qPCR (Vazyme, #R323-01). cDNA was quantified
by qRT-PCR and the data were acquired with SYBR Green
(Vazyme, #Q711-02/03) using an Applied Biosystems 7500
instrument. Taq Master Mix (Dye Plus) (Vazyme, #P112-01)
was used in PCR. GAPDH and ACTB were used as internal
controls. Primers are listed in Supplementary 1.

Lentivirus Production, siRNA, Plasmids
and Cell Transfection
Lentivirus-containing short hairpin RNA (shRNA) targeting
SNHG12 was purchased from OBiO (Shanghai, China), and the
pCDH-CMV-Human vector for SNHG12 overexpression was
purchased from Allwin (Shanghai, China). SiRNAs for
YWHAZ, HuR and negative control (NC) oligonucleotides were
obtained from Sangon Biotech (Shanghai, China). GC cells were
transfected with the above-mentioned oligonucleotides and
plasmids using Lipofectamine 2000 (Invitrogen, #1875894)
according to the manufacturer’s protocol. The sequences of the
siRNAs are listed in Supplementary 1.

Western Blotting
Total proteins from cells were extracted using RIPA buffer
supplemented with protease inhibitors and phosphatase
inhibitors. Primary antibodies against YWHAZ (ABclonal,
#A13370), GAPDH (Proteintech, #60004-1-Ig), AKT (Cell
Signaling Technology, #4691S), p-AKT (Cell Signaling
Technology, #13038S), GSK-3b (Cell Signaling Technology,
#9315S), p-GSK-3b (ABclonal, #AP1088), and ELAVL1 (Cell
Signaling Technology, #12582S) were used in this study.
June 2021 | Volume 11 | Article 645832
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Cell Proliferation Detection
For the Cell Counting Kit-8 (CCK-8) assay, 100 ml of cell
suspension with 3,000 cells was seeded into each well of a 96-
well plate. Every day, 10 ml of CCK-8 solution was added to each
well and cultured for 2.5 h. Then, the absorbance at 450 nm was
measured by a microplate reader (BioTek Instruments). For
colony formation assays, 1,500 cells per well were seeded into
six-well plates and cultured for 10 days. Colonies were fixed and
stained with 0.5% crystal violet. EdU assays were conducted
according to the protocol of the Cell-Light EdU Apollo567 In
Vitro Kit (#C10310-1), which was purchased from RiboBio
company. Cells were cultured in 24-well plates, and 50 mM
EdU labeling medium was added to the cells for 2 h the next day.
The cells were then treated with 4% paraformaldehyde (pH 7.4)
for 30 min and then 0.5% Triton X-100 for 20 min at room
temperature. The samples were stained with anti-EdU working
solution and subsequently incubated with Hoechst 33342 (5 mg/
ml). The percentage of EdU-positive cells was measured under
fluorescence microscopy. Four fields of view were randomly
selected in each well to determine the percentage of EdU-
positive cells.

RNA Binding Protein Immunoprecipitation
RNA binding protein immunoprecipitation (RIP) was
performed using the EZ-Magna RIP Kit (Millipore 17-700)
according to the manufacturer’s protocol, and the antibody
used in this assay was ELAVL1 (Cell Signaling Technology,
#12582S). The primers used in this assay are listed in
Supplementary 1.

Fluorescence In Situ Hybridization (FISH)
and In Situ Hybridization (ISH)
The FISH assays of GC cells and ISH assays of tissues were
conducted according to the method described as previously
(15, 16).

Immunohistochemistry (IHC)
IHC staining was performed as previously described (15).
Primary anti-bodies against YWHAZ (ABclonal, #A13370),
AKT (Cell Signaling Technology, #4691S), p-AKT (Cell
Signaling Technology, #13038S), GSK-3b (Cell Signaling
Technology, #9315S), and p-GSK-3b (ABclonal, #AP1088)
were used in this study.

In Vivo Animal Assays
Four-week-old immunodeficient BALB/c female nude mice were
randomly divided into two groups (n = six for each group).
MGC-803 cells (2 × 107) with stable sh-SNHG12 or empty vector
were separately subcutaneously injected into the flanks of the
subjects. After 1 month, the mice were sacrificed, and the tumors
were dissected for volume measurement and further
immunohistochemical investigations.

Statistical Analysis
All statistical analyses were conducted using SPSS 23.0 (SPSS,
Chicago, IL, USA) or GraphPad Prism V8 (GraphPad Prism,
Frontiers in Oncology | www.frontiersin.org 3
Inc., La Jolla, CA, USA). Each experiment was performed at least
in triplicate, and data are presented as the mean ± SD of three
independent experiments. Student’s t-test or one-way ANOVA
was used to compare the means of two or three groups.
Differences with P values less than 0.05 were considered
statistically significant.
RESULTS

SNHG12 Is Overexpressed in GC and
Predicts a Poor Prognosis
Based on bioinformatic database analysis, we explored the
relationship between dysregulated lncRNAs and GC
development. The Cancer RNA-Seq Nexus online tool (http://
syslab4.nchu.edu.tw/) was used to analyze the upregulated
lncRNAs in GC tissues (Figure 1A). Among them, SNHG12
was significantly highly expressed in GC tissues. According to the
Gene Expression Profiling Interactive Analysis (GEPIA) online
tool (http://gepia.cancer-pku.cn/index.html), SNHG12
expression was higher in tumor tissues from patients with
various stages of GC than in matched normal tissues in the
stomach adenocarcinoma (STAD) dataset (Figures 1B, C). In
the Kaplan–Meier plotter online tool (https://kmplot.com/
analysis/), high SNHG12 expression was shown to indicate
poor survival in GC (Figure 1D). Hence, we conducted
SNHG12 expression profiling in GC tissues and GC cell lines.
SNHG12 was significantly highly expressed in GC tissues
compared with the corresponding adjacent non-cancerous
epithelial tissues (Figure 1E). On the other hand, SNHG12 was
highly upregulated in all GC cell lines assessed, and we chose
MGC-803 and AGS cells for further assays (Figure 1F).

SNHG12 Promotes GC Cells Proliferation
To verify the role of SNHG12 in GC proliferation, gain and loss
assays were conducted in MGC-803 and AGS cells: shRNA
vectors were used to knockdown SNHG12, and compared with
the NC, the expression levels in sh-SNHG12-1 or sh-SNHG12-2
were both significantly inhibited in MGC-803 and AGS cells
(p <0.01) (Figure 2A). As shown in Figures 2B, C, the results of
CCK-8 assays demonstrated that MGC-803 and AGS cells
transfected with the sh-SNHG12-1 and sh-SNHG12-2 vectors
proliferated more slowly than those transfected with the NC
vectors (p <0.01). On the other hand, to overexpress SNHG12,
pCDH-CMV-human vectors were transfected into MGC-803
and AGS cells. Figure 2D shows that SNHG12 expression in
MGC-803 cells transfected with pCDH-CMV-human vectors
was 1.25-fold higher than that in the NC cells, while in AGS cells,
it was approximately 1.7-fold higher (both p <0.05). CCK-8
assays showed that upon SNHG12 overexpression, MGC-803
and AGS cells proliferated faster than the NC cells (p <0.01)
(Figures 2E, F). Colony formation assays were conducted to
elucidate the effect of SNHG12 on GC cell proliferation. Upon
SNHG12 knockdown, the colony numbers of MGC-803 cells
decreased by approximately 40% in the sh-SNHG12-1 group or
60% in the sh-SNHG12-2 group compared with the NC, while in
June 2021 | Volume 11 | Article 645832
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AGS cells, the colony numbers decreased by approximately 60%
in the sh-SNHG12-1 group or 80% in the sh-SNHG12-2 group
(all p <0.05) (Figure 2G). On the other hand, upon SNHG12
overexpression, the colony numbers of MGC-803 and AGS cells
were 1.5-and 2.5-fold higher, respectively, than that of the NC
cells (all p <0.05) (Figure 2H). EdU assays showed that the
proportion of Edu-positive MGC-803 cells decreased by 50% in
the sh-SNHG12-1 group and 92.5% in the sh-SNHG12-2 group,
while that of AGS cells decreased by 78% in the sh-SNHG12-1
group and 77% in the sh-SNHG12-2 group upon SNHG12
suppression (all p <0.01) (Figures 2I–K). The above results
indicated that SNHG12 indeed promotes GC cell proliferation.

SNHG12 Binds to HuR and Stabilizes
mRNA ELAVL1
To elucidate the underlying mechanisms by which SNHG12
regulates GC proliferation, it is important to first confirm the
intracellular location of SNHG12. FISH assays showed that
SNHG12 was mainly located in the cytoplasm (Figure 3A),
Frontiers in Oncology | www.frontiersin.org 4
and this finding was also supported by cytoplasmic and
nuclear RNA purification assays (Figures 3B, C). These
findings suggested that SNHG12 mainly exerted its function at
the post- transcriptional level and might cooperate with RNA
binding proteins. HuR, a popular RNA binding protein (RBP)
encoded by ELAVL1, can enhance the stability of mRNAs. qRT-
PCR and western blotting (WB) assays showed that upon
knockdown or overexpression of SNHG12, the relative HuR
expression at the RNA and protein levels decreased or increased,
respectively (Figures 3D–G). However, HuR knockdown did not
change the expression of SNHG12 (Figures 3H, I). We further
used bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/) to
predict the interaction between SNHG12 and HuR, and the
random forest (RF) classifier and support-vector machine (SVM)
classifier scores were 0.9 and 0.8, respectively (Figure 3J),
suggesting that SNHG12 has a high probability of binding to
HuR. RIP assays revealed that SNHG12 bound to HuR in MGC-
803 and AGS cells (Figures 3K–M). To further investigate the
mechanisms by which SNHG12 regulates HuR, we investigated
A

B D

E F

C

FIGURE 1 | SNHG12 is highly expressed in GC tissues and cells and predicts poor survival. (A) Upregulated lncRNAs in GC tissues according to the Cancer
RNA-Seq Nexus online tool (http://syslab4.nchu.edu.tw/). (B) SNHG12 expression in GC tissues compared with matched normal epithelial tissues according to the
GEPIA online tool (http://gepia.cancer-pku.cn/index.html). (C) SNHG12 expression in various stages of GC in GEPIA. (D) Survival analysis of SNHG12 using the
Kaplan–Meier plotter online tool (https://kmplot.com/analysis/). (E) SNHG12 expression in GC tissues compared with adjacent non-cancerous tissues by qRT-PCR.
(F) SNHG12 expression in GC cell lines detected by qRT-PCR. Significant results are presented as *P < 0.05, **P < 0.01, ***P < 0.001.
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whether ELAVL1 mRNA could bind to HuR. The RNA–Protein
Interaction Prediction (RPISeq) online tool predicted the
interaction between ELAVL1 and HuR: the RF classifier and
SVM classifier scores were 0.75 and 0.9, respectively (Figure 3N).
RIP assays verified the prediction that ELAVL1 could bind to
HuR (Figures 3O–Q). Furthermore, to verify whether the
SNHG12-HuR complex could enhance the stability of ELAVL1
mRNA, MGC-803 and AGS cells were transfected with NC
shRNA, sh-SNHG12-2 or sh-SNHG12-2 and si-HuR and then
treated with actinomycin D, which can inhibit RNA synthesis.
Cells were harvested every 3 h to obtain RNA for qRT-PCR
assays. The results showed that the half-life of ELAVL1 mRNA
was significantly reduced in the SNHG12 and HuR knockdown
groups compared with the NC group (Figures 3R, S).

SNHG12 Enhances the Stability of YWHAZ
by Binding to HuR
We used the StarBase online tool to collecte mRNAs positively
correlated with SNHG12 and ELAVL1 and overlapped the
results (Figure 4A and Supplementary 2). Among the 119
common genes, we chose some mRNAs that were highly
Frontiers in Oncology | www.frontiersin.org 5
positively correlated with SNHG12 and ELAVL1 and associated
with cell proliferation: YWHAZ, YES1, RNABP, RPL23 and ILF3.
Upon SNHG12 or HuR knockdown, YWHAZ expression
decreased the most, as detected by qRT-PCR (Figures 4B, C).
After comprehensive consideration, we chose YWHAZ as the
research target. YWHAZ, encodes the 14-3-3z protein, which is a
well-known protein involved in many signal transduction and
tumor progression (17). WB assays illustrated that the YWHAZ
protein was positively related to SNHG12 and HuR (Figures 4D–
F). Furthermore, we used bioinformatics to predict the interaction
betweenYWHAZandHuR,and theRFclassifierandSVMclassifier
scores were 0.75 and 0.93, respectively (Figure 4G). Then, RIP
assays were conducted, and the results showed that YWHAZ could
bind to HuR in MGC-803 and AGS cells (Figures 4H–J). Then,
RNA stability assays were conducted to verify whether the
SNHG12–HuR complex could enhance the stability of YWHAZ
mRNAs. The results showed that the half-life of YWHAZ mRNA
was significantly reduced in the SNHG12 and HuR knockdown
groups compared with the NC group (Figures 4K, L). In
conclusion, the SNHG12–HuR complex can regulate the stability
of YWHAZ.
A B
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G
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J K

C

FIGURE 2 | SNHG12 promotes GC cells proliferation. (A) Efficiencies of SNHG12 knockdown by qRT-PCR. (B, C) CCK-8 assays showing the effects of SNHG12
knockdown on cell proliferation. (D) Efficiencies of SNHG12 overexpression by qRT-PCR. (E, F) CCK-8 assays showing the effects of SNHG12 overexpression on
cell proliferation. (G, H) Colony formation assays showing the role of SNHG12 on GC cell proliferation. (I–K) EdU assays showing the regulation of SNHG12 on GC
cell proliferation. Significant results are presented as *P < 0.05, **P < 0.01, ***P < 0.001.
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YWHAZ Promotes GC Cell Proliferation Via
the AKT/GSK-3b Pathway
qRT-PCR assays showed that YWHAZ was upregulated in GC
cell lines compared to GES-1 cells (Figure 5A). We used the
GEPIA online tool (http://gepia.cancer-pku.cn/index.html) and
found that YWHAZ expression was high in tumor tissues
(Figure 5B). Kaplan–Meier survival analysis using the Kaplan–
Meier plotter online tool (https://kmplot.com/analysis/)
indicated that patients with high YWHAZ expression had poor
outcomes (Figure 5C). Upon transfection of si-YWHAZ, the
Frontiers in Oncology | www.frontiersin.org 6
efficiencies of YWHAZ knockdown were over 30% in MGC-803
and AGS cells; CCK-8 assays showed that proliferation of GC
cells was slower in the si-YWHAZ groups than in the NC groups;
colony formation assays indicated that the colony numbers for
both MGC-803 and AGS cells decreased by approximately 50%
in the si-YWHAZ groups compared with the NC group (all
p <0.05) (Figures 5D–H). Previous studies demonstrated that
YWHAZ could promote glioma cell invasion by activating the
PI3K/AKT pathway (18). Thus, WB assays showed that the
protein expression levels of YWHAZ, p-AKT, and p-GSK-3b
A B

D

E

F

G

I

H

J K L M

N

C

O P Q

R S

FIGURE 3 | SNHG12 binds to HuR and stabilizes ELAVL1 mRNA. (A–C) FISH assays and cytoplasmic and nuclear RNA purification assays indicate that SNHG12
is mainly located in the GC cell cytoplasm. (D–G) qRT-PCR and WB assays showing the expression of HuR at the RNA and protein levels upon SNHG12
knockdown and overexpression. Numbers show the quantification of the relative protein amount. (H, I) qRT-PCR assays showing the efficiency of HuR knockdown
and its effect on the regulation of SNHG12. (J) Prediction of the interaction probabilities of SNHG12 and HuR by bioinformatics (http://pridb.gdcb.iastate.edu/
RPISeq/). Predictions with probabilities >0.5 were considered as “positive”, indicating that the RNA more likely to interact with the protein than not to interact.
(K–M) RIP assays showing that SNHG12 binds to HuR. (N) Prediction of the interaction probabilities of ELAVL1 and HuR by bioinformatics (http://pridb.gdcb.iastate.
edu/RPISeq/). (O–Q) RIP assays showing that ELAVL1 binds to HuR. (R, S) RNA stability assays were conducted using actinomycin D to disrupt RNA synthesis
in MGC-803 and AGS cells, and the degradation rates of ELAVL1 mRNAs were tested every 3 h. Significant results are presented as ns P > 0.05, *P < 0.05,
**P < 0.01, ***P < 0.001. Magnification ×400; scale bar, 20 mm.
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were decreased upon YWHAZ knockdown, while the total
expression of AKT and GSK-3b did not change in MGC-803
and AGS cells (Figure 5I).

SNHG12 Promotes GC Cell Proliferation
Via the YWHAZ/AKT/GSK-3b Axis
It has been previously reported that YWHAZ can mediate signal
transduction by binding to phosphoserine-containing proteins
(19). To further investigate its role in the AKT pathway, IP assays
were conducted, and the results showed that compared with that
in the NC groups, AKT and p-AKT expression was enriched in
the si-YWHAZ group but decreased in the sh-SNHG12 groups,
while total AKT protein expression in the NC and sh-SNHG12
groups was not different (Figure 6A). In addition, SNHG12
knockdown led to decreased expression of YWHAZ, p-AKT, and
p-GSK-3b, but the expression of AKT and GSK-3b did not
change (Figure 6B). Moreover, overexpression of SNHG12
resulted in increased expression of YWHAZ, p-AKT, and p-
GSK-3b, and the expression of AKT and GSK-3b did not change
(Figure 6C). Then, we conducted rescue assays, and transfected
MGC-803 and AGS cells with NC siRNA, si-YWHAZ, pcDNA-
SNHG12, or pcDNA-SNHG12 plus si-YWHAZ. CCK-8 assays
Frontiers in Oncology | www.frontiersin.org 7
showed that YWHAZ knockdown suppressed GC cell
proliferation and that SNHG12 overexpression promoted GC
cell proliferation. On the other hand, YWHAZ knockdown and
SNHG12 overexpression resulted in no differencein GC
proliferation compared to the NC groups (Figures 6D, E). WB
assays showed that the expression of YWHAZ, p-AKT, and p-
GSK-3b decreased upon YWHAZ knockdown; while the
expression of YWHAZ, p-AKT, and p-GSK-3b increased upon
SNHG12 overexpression. Furthermore, when YWHAZ was
knocked down and SNHG12 was overexpressed simultaneously,
the expression of YWHAZ, p-AKT, and p-GSK-3b was rescued
compared to knockdown YWHAZ or overexpression SNHG12.
However, the total protein levels of AKT and GSK-3b did not
change (Figure 6F).

To further investigate whether SNHG12-mediated GC
proliferation depended on the activation of the AKT pathway,
we treated MGC-803 and AGS cells with wortmannin, a specific
PI3K inhibitor. SNHG12 significantly elevated the protein
levels of p-AKT and p-GSK-3b, and the effects were reversed
by wortmannin (Figure 6G). In summary, SNHG12 promotes
GC cell proliferation in a manner dependent on AKT
pathway activation.
A B
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FIGURE 4 | The SNHG12-HuR complex enhances the stability of YWHAZ. (A) mRNAs positively correlated with SNHG12 and HuR according to StarBase.
(B, C) qRT-PCR assays showing the changes in several mRNAs involved in cell proliferation upon SNHG12 or HuR knockdown. (D–F) WB assays showing the
expression of YWHAZ protein levels upon SNHG12 and HuR knockdown. Numbers show the quantification of the relative protein amount. (G) Prediction of the
interaction probabilities of YWHAZ and HuR by bioinformatics (http://pridb.gdcb.iastate.edu/RPISeq/). Predictions with probabilities >0.5 were considered as
positive, indicating that the RNA was more likely to interact with the protein than to not interact. (H–J) RIP assays showing that YWHAZ binds to HuR. (K, L) RNA
stability assays showing the degradation rates of YWHAZ mRNAs tested every 3 h. Significant results are presented as ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001.
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SNHG12 Promotes GC Proliferation In Vivo
To further validate the tumor-formation potential of SNHG12 in
vivo, MGC-803 cells stably transfected with sh-SNHG12 or empty
vector were inoculated into nude mice. After 1 month, tumors in
the sh-SNHG12 groups were found to be much smaller in size
than those in the NC groups (Figure 7A). Tumor volume in the
NC groups was significantly higher than that in the sh-SNHG12
groups (Figure 7B). ISH analysis of SNHG12 and IHC analysis of
Ki67 levels in tumor tissues showed that tumors in the NC groups
had higher densities than those in the sh-SNHG12 groups
(Figure 7C). Furthermore, we performed IHC assays to measure
the levels of YWHAZ, AKT, p-AKT, GSK-3b, and p-GSK-3b
proteins in the NC and sh-SNHG12 groups. The results showed
that the sh-SNHG12 groups exhibited lower protein levels of
YWHAZ, p-AKT, and p-GSK-3b than the NC groups, while the
expression of AKT and GSK-3b showed no difference
(Figures 7D–H). The above data indicated that SNHG12 indeed
promotes GC proliferation.
DISCUSSION

Abundant evidence illustrates that lncRNAs usually exhibit
aberrant expression in various tumors and serve as vital
modulators of biological processes, including cell proliferation,
Frontiers in Oncology | www.frontiersin.org 8
migration, epithelial-mesenchymal transition (EMT) and so on,
which aremeaningful to cancer diagnosis and therapy (20, 21). The
oncogenic role of SNHG12 has been verified in recent studies, but
themechanisms underlying its role inGC are unclear. In this study,
we confirmed by bioinformatics analysis and qRT-PCR assays that
SNHG12 expression was upregulated in GC tissues and cells, and
we also validated that SNHG12 was mainly distributed in the
cytoplasm, suggesting that SNHG12 plays a role at the post-
transcriptional level. Functional assays including CCK-8, colony
formation assays and EdU assays illustrated that SNHG12
upregulation promotes GC cell proliferation.

To further clarify themolecular mechanisms of SNHG12 in GC
proliferation, we investigated the relationship between SNHG12
and HuR, an established tumor-associated RBP. qRT-PCR showed
that SNHG12 positively regulated the expression of HuR at the
RNA and protein levels, while HuR could not regulate the
expression of SNHG12. Furthermore, RIP assays verified that
SNHG12 binds to HuR and RNA stability assays demonstrated
that the SNHG12-HuR complex stabilized ELAVL1 mRNA. This
newly formed complex with ELAVL1 formed a loop. Many
lncRNAs can bind to HuR to stabilize mRNAs. LncRNA RMST
can enhance DNMT3 expression through interaction with HuR
(22); LINC00707 promotes GC proliferation and metastasis by
interacting with HuR (23). Nevertheless, this is the first report that
SNHG12 can regulate the expression of HuR, and that the
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FIGURE 5 | YWHAZ is highly expressed in GC and promotes GC cell proliferation. (A) qRT-PCR assays showing YWHAZ expression in GC cells normalized to
GES-1. (B) YWHAZ expression in GC tissues from the GEPIA online tool (http://gepia.cancer-pku.cn/index.html). (C) Survival analysis of YWHAZ using the Kaplan–
Meier plotter online tool (https://kmplot.com/analysis/). (D) Efficiencies of YWHAZ knockdown in MGC-803 and AGS cells by qRT-PCR. (E, F) CCK-8 assays
showing the effects of YWHAZ on GC cell proliferation. (G, H) Colony formation assays showing the potential of YWHAZ to affect GC cell proliferation. (I) WB assays
showing the effect of YWHAZ on the AKT/GSK-3b pathway. Numbers show the quantification of the relative protein amount. Significant results are presented as
*P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 6 | SNHG12 promotes GC proliferation via the AKT/GSK-3b pathway. (A) IP assays showing that YWHAZ interacts with and phosphorylates AKT. (B, C)
WB assays showing the effect of SNHG12 on the AKT/GSK-3b pathway. (D–F) Rescue assays validated that SNHG12 promotes GC cell proliferation by regulating
YWHAZ via the AKT/GSK-3b pathway. (G) SNHG12 activates AKT pathway. Numbers show the quantification of the relative protein amount. Significant results are
presented as *P < 0.05, ***P < 0.001.
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FIGURE 7 | SNHG12 promotes GC proliferation in vivo. (A, B) Comparison of tumor formation between the NC groups and sh-SNHG12 groups. (C) SNHG12 and
Ki-67 levels between the NC groups and sh-SNHG12 groups by ISH and IHC. (D–H) Expression of YWHAZ, AKT, p-AKT, GSK-3b, and p-GSK-3b proteins in the
NC and sh-SNHG12 groups by IHC. (I) Schematic illustration of the mechanism underlying SNHG12 regulation of GC proliferation. Significant results were presented
as ***P < 0.001. Magnification ×200, magnification ×400, scale bar 20,000 nm.
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SNHG12-HuR complex could enhance the stability of ELAVL1
mRNA. HuR has emerged as an attractive drug target for cancer
therapy (24), and our works verified that SNHG12 could target
HuR, thus regulating many mRNAs associated with cancer
progression, which is meaningful and helpful for the development
of drugs targeting HuR.

Based on previous reports and bioinformatic analysis, we
hypothesized that YWHAZ is a target mRNA positively
correlated with SNHG12 and HuR. The RPIseq online tool
predicted that YWHAZ was highly likely to interact with HuR,
and this hypothesis was supported by RIP assays. RNA stability
assays demonstrated that SNHG12 and HuR regulated the
stability of YWHAZ. Although previous studies reported that
SNHG12 or YWHAZ could bind to HuR in other cancer types,
this study is the first report that SNHG12 regulates the stability of
YWHAZ by binding to HuR. Subsequently, we demonstrated
that YWHAZ is highly expressed in GC cell lines and tissues by
qRT-PCR and that high YWHAZ expression is related to poor
survival. Cell proliferation-associated assays and WB assays
demonstrated that YWHAZ promoted GC cell proliferation via
the AKT/GSK-3b pathway. YWHAZ is of great significance in
the diagnosis and treatment of various types of tumors (17). Our
studies demonstrated the direct relationships among SNHG12,
HuR and YWHAZ, which provides new evidence for improving
tumor therapy and diagnosis.

AKT is the central node of many signaling pathways and
modulates many downstream proteins involved in cellular survival,
proliferation, and migration (25). It has been demonstrated that
lncRNAs regulate AKT activity in direct or indirect ways (6).
Previous studies reported that SNHG12 could activate the AKT
pathway (26), but further elucidation is required. We found that
YWHAZ could interact and phosphorylate AKT; thus, we
hypothesized that SNHG12 activates the AKT pathway via
YWHAZ. In this study, WB assays verified that AKT, p-AKT and
YWHAZ expression was decreased in the sh-SNHG12 groups
compared to the normal control groups. Rescue assays further
demonstrated that SNHG12 promoted GC cell proliferation via the
YWHAZ/AKT/GSK-3b axis and that this process was dependent on
the AKT signaling pathways. Furthermore, according to previous
studies, YWHAZ, PI3K, AKT and b-catenin can form a protein
complex to stabilize b-catenin (27); YWHAZ interacts and stabilizes
b-catenin by decreasing its ubiquitination degradation (19). In
addition, GSK-3b can increase the degradation of b-catenin by
forming a complex with APC. Axin, which upon phosphorylation
by AKT, is inhibited (28, 29). Based on the above findings, we
hypothesized that SNHG12 can stabilize b-catenin and increase its
expression.Nevertheless, thishypothesisneeds further investigations.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSION

SNHG12 functions as an oncogene in GC development and can
be a biomarker for predicting prognosis. In this study, we show
that SNHG12 binds to HuR to target ELAVL1 and YWHAZ,
both of which are established tumor progression-related genes,
and promotes GC cell proliferation via the YWHAZ/AKT/GSK-
3b axis (Figure 7I).
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