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DNA damage repair (DDR) pathways play an essential role in maintaining genomic
integrity. DDR dysfunction leads to accumulated DNA damage, predisposition to
cancer, and high sensitivity to chemotherapy and radiotherapy. Recent studies have
demonstrated that DDR status is associated with response to immune checkpoint
inhibitors (ICIs). Among the DDR pathways, mismatch repair is one of the most
recognized predictive biomarkers for ICIs. Furthermore, preclinical and early clinical
studies suggest the rationale of combining agents targeting the DDR pathways, such
as poly (ADP-ribose) polymerase (PARP) inhibitors, cyclin-dependent kinase 4/6 (CDK4/6)
inhibitors, and ataxia telangiectasia and rad3-related (ATR) kinase inhibitors, with ICIs. In
the present review, we describe the predictive role of DDR pathways in ICIs and
summarize the advances in potential combination strategies of novel agents targeting
DDR with ICIs for cancer treatment.

Keywords: immune checkpoint inhibitors, predictive biomarker for prognosis, target therapy, DNA damage repair,
combined therapy
INTRODUCTION

Immunotherapy, especially immune checkpoint inhibition (ICI), has reshaped the cancer treatment
landscape and has become a standard therapy for multiple cancer types owing to its robust and
durable anti-tumor response (1–3). However, the efficacy of immune checkpoint inhibitors (ICIs)
varies widely, and only few cancer patients can benefit from ICIs. Currently, ICIs are expensive, and
accurate predictive biomarkers for ICIs are lacking. Therefore, identifying patients who will benefit
from ICIs and how to further improve the clinical outcome of ICIs represent the most significant
challenge during the clinical application of immunotherapy.

DNA damage repair (DDR) pathways, which repair DNA damage caused by endogenous and
exogenous factors, are essential for maintaining DNA fidelity in actively replicating cells.
Consequently, a dysfunction of the DDR pathways induces genomic instability and tumor
evolution, which is a hallmark of cancer. To date, accumulating preclinical and clinical evidence
indicates that alterations in tumor DDR pathways are highly correlated with tumor susceptibility to
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ICIs (4, 5). Additionally, DDR machinery dysfunction has been
demonstrated to elicit the host immune system’s activation,
suggesting a potential treatment strategy for combining agents
targeting DDR with ICIs (6–8).

In recent years, new agents targeting DDR pathways have
been developed and explored extensively (9). Furthermore, there
is an increasing number of ongoing clinical trials focusing on the
combinational therapy of DDR targeted agents with ICIs. In this
review, we address the predictive role of DDR pathways in ICIs
and the attractive strategies of combining agents targeting DDR
with ICIs for cancer treatment.
PREDICTIVE ROLE OF DDR IN ICI

The established biomarkers for ICB include programmed death-
ligand 1 (PD-L1) expression, tumor mutation burden (TMB),
and mismatch repair (MMR) deficiency. However, neither is
sufficient to precisely select beneficiaries for immunotherapy. For
instance, the response rate of ICIs in high-TMB (≥20 mutations
per Mb) cases is only 58%, whereas 20% of patients have
intermediate and low TMB response to ICIs (10). Increased
somatic copy number alteration (SCNA), which is positively
associated with high TMB, has been demonstrated to be an
immune suppression marker (11). Increased SCNA is also
associated with poor clinical outcomes from anti-programmed
Frontiers in Oncology | www.frontiersin.org 2
death-1 (PD-1) or anti-cytotoxic T lymphocyte-associated
antigen-4 (CTLA-4) blockade therapy (12, 13). Despite these
findings, the threshold of PD-L1 expression and TMB for
predicting response to ICI is still not definitive.

Recent studies have revealed that DDR profoundly impacts
the interaction between the host immune system and cancer
cells. Alterations in the DDR pathways could thus serve as
reliable predictive biomarkers for the clinical application of
ICIs (14). In total, over 450 proteins identified in the DDR
pathways have been reported. These proteins are involved in five
major functional pathways, including MMR, nucleotide excision
repair (NER), base excision repair (BER), homologous
recombination repair (HR), and non-homologous end joining
(NHEJ) (Figure 1). MMR deficiency is one of the best-
established predictive biomarkers of ICI therapy (15).

MMR
MMR is essential for correcting errors in DNA replication.
Deficient expression of any of the genes involved in the MMR
pathway, including MSH2, MSH6, MLH1, and PMS2, leads to
increased acquisition of mutations and either a gain or loss of
nucleotides from microsatellite tracts, which exhibit a molecular
feature of microsatellite instability-high (MSI-H) status (16).
MSI-H status has been shown to contribute to Lynch
syndrome and vulnerability to cancer (17). The most frequent
MSI-H phenotype has been reported in endometrial and
FIGURE 1 | DNA damage repair pathways. SSB is repaired by the BER, NER, or MMR machineries. DSB is repaired by HRR, an accurate DNA repair pathway, or
NHEJ, which is an error-prone pathway. SSB, single strand break; DSB, double strands break; MMR, mismatch repair; NER, nucleotide excision repair; BER, base
excision repair; HR, homologous recombination repair; NHEJ, non-homologous end joining; DDR, DNA Damage Repair.
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colorectal carcinomas, and more than 20 tumor types harbor the
MSI-H phenotype at lower levels (16). The MSI-H phenotype
presents high TMB and neoantigen burden, increased expression
of PD-L1, and prominent immune cell infiltration, which are all
associated with a remarkable response to ICIs (18, 19).

Owing to the favorable response of ICIs in cancers with MSI-
H from clinical trials (4, 20), the anti-PD-1 drug pembrolizumab
was approved for advanced MMR-deficient/MSI-H solid
cancers, regardless of the tumor origin. Nivolumab, another
anti-PD-1 drug, alone or in combination with ipilimumab,
was also approved for advanced colorectal cancers with
MMR deficiency.

BRCA1/2 and HR
HR, an important pathway for the precise repair of DNA double-
strand breaks (DSBs), plays an essential role in maintaining
genome stability. Germline mutations of the core members of
HR, such as BRCA1 and BRCA2, have been revealed to be
vulnerable to hereditary breast and ovarian cancer syndromes
(21). Recent studies have also demonstrated that HR deficiency is
correlated with accumulated neoantigen load, high PD-L1
expression, increased levels of cytosolic DNA, and increased
numbers of tumor-infiltrating lymphocytes (TILs) (22, 23).
Therefore, the relationship between HR status and response to
ICIs has been widely explored. Deleterious mutations in BRCA2
were found to be enriched in anti-PD-1 responders with
melanoma, which encouraged further research (24).
Nonetheless, another study demonstrated that ovarian cancer,
even with BRCA1/2 mutations, had a modest response to anti–
PD-1/PD-L1 (25). Therefore, the effect of BRCA1/2 mutations
and HR status on ICI response remains unclear. It seems that
cancer types and molecular backgrounds have impact on the
predictive role.

DNA Polymerase Genes e (POLE)
and d (POLD1)
POLE and POLD1 encode exonuclease domains of major nuclear
polymerases responsible for the NER function. The mutational
prevalence of POLE is reported to be 2.79%, while that of POLD1
is 1.37% across various cancer types (26). Studies have
demonstrated that tumors with mutations in POLD1 and
POLE had remarkably high point mutation burden (27) and
increased TIL numbers and PD-1/PD-L1 expression, suggesting
deep and durable benefits from ICI therapy (28–30). A recent
study investigated 47,721 patients with multiple cancer types and
demonstrated a potential predictive role of POLE/POLD1
mutations in beneficial outcomes for ICIs (26). Consistently,
Junjun He et al. retrieved the genomic data of 21,074 Chinese
patients with different cancer types and revealed the predictive
value of POLE/POLD1 mutations, especially those in the
proofreading domain, in positive outcomes for ICIs. They
further suggested that POLE/POLD1 proofreading deficiency
led to the MSI phenotype (31). Another study reported that
POLE proofreading mutations elicited intra-tumoral immune
responses in 295 patients with stage II colorectal cancer. These
tumors with POLE proofreading mutations were more prone to
Frontiers in Oncology | www.frontiersin.org 3
be MSI-H and were assessed as extremely high TMB. Patients
with POLE proofreading mutations had excellent outcomes,
regardless of MSI status, suggesting that sequencing of all the
exonuclease domains of POLE gene is recommended for patients
with colorectal cancer (32). More prospective large-scale clinical
trials are warranted to verify the predictive role of POLE/POLD1
mutations for ICI, especially those in the proofreading domain.
As the FDA has approved pembrolizumab for MSI in various
cancer types, it would certainly be interesting to further explore
the underlying relationship between POLE/POLD1 mutations
with MSI. Given patients with colorectal cancer and endometrial
cancer harbor the most frequent POLE mutations (33), they
should be addressed more on this issue.

MutY Homolog (MUTYH)
MUTYH is involved in the BER pathway, which is best known
for MUTYH-associated polyposis (MAP). MAP is an autosomal
recessive condition that confers a 63% risk of colorectal cancer by
age 60 (34). Preclinical studies have revealed that mutations in
MUTYH represent distinct C>A transversion and increased
lymphocytic infiltration in colorectal cancer, suggesting that
tumors with MUTYH mutations may efficiently respond to
ICIs (35, 36). However, the predictive role of MUTYH
mutations in ICIs is still being explored.

Genome of DDR
As more than 450 proteins have been identified in the DDR
pathways, alterations in single gene contribute limitedly to the
entire function of DDR. Therefore, the status of the genome of
DDR or multiple key genes in DDR, would provide more
comprehensive insights into the whole DDR capacity and
achieve a more precise prediction of the response to ICIs. This
hypothesis has been investigated for urothelial carcinoma (UC).
Previous studies have revealed that the most common alterations
in DDR genes in UC, including ERCC2, ATM, and others, were
associated with increased mutation burden, high neoantigen
load, and improved response rates to gemcitabine, cisplatin,
and ipilimumab (anti-CTLA-4) (37–40). Teo et al. focused on
34 DDR genes, grouped into several major functional DDR
pathways, in patients with metastatic UC treated with
atezolizumab (anti-PD-L1) or nivolumab and reported that the
presence of deleterious DDR alterations was associated with an
improved response rate and survival (5). Interestingly, the DDR
alterations are absent in patients with liver metastases (5), a well-
known predictive factor for inadequate response to ICI therapy
(41, 42), suggesting the molecular mechanism underlying the
insufficient effect of ICI on liver metastases.
DDR AS A POTENTIAL TARGET
FOR COMBINATION WITH ICI

Although ICIs are approved for indications across different
tumor types, the durable response rate for ICIs is only 10–20%
(43). As a result, combinational strategies have been extensively
explored to improve the clinical outcomes of ICI.
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Several recent studies have shown significant survival benefits
from the combinational therapy of ICIs with chemotherapy or
radiotherapy (44, 45). Based on the findings of the KEYNOTE189
trial, pembrolizumab combined with chemotherapy has
been approved as the first-line treatment for advanced non-
small cell lung cancer (NSCLC) (44). Durvalumab has also
been recognized as the standard maintenance treatment after
concurrent chemoradiotherapy for locally advanced NSCLC,
according to the results of the PACIFIC study (45, 46).
Mechanically, chemotherapy and radiotherapy cause DNA
damage, increase cytosolic DNA, and induce neoantigens,
which trigger the host immune response (14). Nonetheless,
cytotoxic chemotherapy and radiotherapy also kill host
immune cells, which are required for an anti-tumor immune
response. Moreover, chemotherapy and radiotherapy create
subclonal mutations that are correlated with immune escape
and inadequate response to ICIs (47). Therefore, basic and
clinical research studies are increasingly focusing on ICIs
combined with targeted therapy.

In addition to the predictive roles of the DDR pathways in ICI
therapy, agents targeting DDR have important therapeutic
implications in cancer, either as a monotherapy or in
combination with other drugs, such as chemotherapy and ICIs.
According to preclinical experiments, dysfunction of the DDR
pathways reshapes the immune environment and contributes to
the sensitization of ICIs (14) (Figure 2). The underlying
mechanisms of the synergy are as follows: 1. DDR deficiency
results in the accumulation of impaired DNA damage, including
somatic mutations in exons, and yields mutant proteins called
neoantigens. Neoantigens can elicit an anti-tumor immune
response, including intratumoral CD8+ T-cell infiltration and
cytolytic activity, and are associated with clinical response to ICIs
(48–50); 2. Independent of neoantigens, accumulated damaged
Frontiers in Oncology | www.frontiersin.org 4
DNA, which transfers from the nucleus to the cytoplasm and is
known as cytosolic DNA, can directly activate the stimulator of
interferon genes (STING)/TBK1/IRF3 pathway to induce type I
interferon (IFN) response and trigger the innate immune
response (51, 52). For instance, cancer cells with DDR
dysfunction, such as mutations in BRCA1/2 or ATM, show
high levels of cytosolic DNA, which activates the STING
pathway and innate immune response correlated with a
durable response to ICIs (8, 53).

Based on preclinical results, many clinical trials are currently
exploring novel agents targeting DDR pathways combined with
ICIs (Figure 3). Among these trials, PARP inhibitors combined
with PD-1/PD-L1 inhibitors are the furthest in clinical
development. Preliminary results have demonstrated that the
combination of DDR-targeting agents with ICIs is a promising
therapeutic strategy for cancer. These agents are summarized
as follows:
Poly (ADP-Ribose) Polymerase Inhibitors
Dysfunction of BRCA1/2 or other genes in the HR pathway yields
an HR-deficient phenotype and shows sensitivity to PARP
inhibitors, which are classic examples of synthetic lethal
therapy. Four PARP inhibitors, including olaparib, rucaparib,
niraparib, and talazoparib, have been approved by the FDA to
treat metastatic breast cancer, ovarian cancer, fallopian tube
cancer, prostate cancer, and primary peritoneal cancer
harboring deleterious germline mutations in BRCA1/2 or with
platinum-sensitivity properties (54). Nonetheless, PARP
inhibitors only afford a progression-free survival (PFS) benefit
of 2-4 months as a monotherapy. Even in patients with germline
BRCA mutations, the overall survival (OS) benefit was not
statistically significant (55). The incidence of intrinsic and
FIGURE 2 | Agents targeting DNA damage repair synergize with immune checkpoint inhibitors. SSB, single strand break; DSB, double strands break; DDR, DNA
damage repair; MMR, mismatch Repair; HR, homologous recombination; BER, base excision repair; PARP, poly ADP-ribose polymerase; NHEJ, non-homologous
end Joining; cGAS, cGAMP synthase; STING, stimulator of interferon genes.
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acquired resistance to PARP inhibitors is high; therefore, studies
assessing combinational strategies to improve efficacy are
encouraged. PARP inhibitors in combination with ICIs are
promising and have attracted extensive attention (Table 1).

In terms of the mechanism, PARP inhibitors inhibit DNA
repair and aggravate DNA damage, which induces neoantigens
and cytosolic DNA, activates the interferon pathway, triggers
anti-tumor immunity, and converts immunologically “cold”
tumors to “hot” tumors. Therefore, they could sensitize tumor
cells to ICIs, especially under a BRCA-deficient background (55,
56). Despite these factors, PARP inhibitors upregulate the
expression of PD-L1 through the inactivation of glycogen
synthase kinase 3a/b, providing another rationale for the
combination of PARP inhibitors with ICIs (56, 57). Moreover,
accumulated evidence suggests that cancer stem cells (CSCs) are
resistant to PARP inhibitors (58). However, CSCs exhibit a high
expression of PD-L1 compared to non-CSCs in breast and colon
cancer (59), and may be more sensitive to ICIs, which is one
possible reason for the durable response and long survival benefit
of immunotherapy. Consequently, combined ICIs may reverse
the resistance of CSCs to PARP inhibitors, although direct
evidence is still lacking (60).

Breast Cancer
In metastatic breast cancer, several trials have been designed to
explore the combination of PARP inhibitors with ICIs, especially
in triple-negative breast cancer (TNBC), which is enriched with
BRCA1 (70%) and BRCA2 (20%) mutations, and is considered
the most immunogenic subtype of breast cancer (61). The phase
2 trial, KEYNOTE-162/TOPACIO (NCT02657889), exploited
the combination of niraparib with pembrolizumab in patients
with advanced metastatic TNBC and recurrent ovarian cancer
Frontiers in Oncology | www.frontiersin.org 5
(62). In the TNBC cohort, among the 45 evaluable patients, three
(6.67%) achieved complete response (CR), and 10 (22.22%)
achieved partial response (PR). Patients with germline BRCA
mutations had a higher objective response rate (ORR) of 66.67%
(8/12) than others (62).

Additionally, patients with PD-L1-positive tumors responded
better than those with PD-L1-negative tumors (33 vs. 15%). In
the MEDIOLA trial (NCT02734004), a phase 1/2 open-label
basket study, olaparib combined with durvalumab was
investigated in solid tumors, including TNBC, ovarian cancer,
small-cell lung cancer (SCLC), and gastric cancer. Patients
received 300 mg olaparib as monotherapy daily for 4 weeks,
and intravenous durvalumab was added at 1.5 g per 4 weeks (63,
64). The disease control rate (DCR) at 12 weeks was reported to
be 80% in HER-2 negative and BRCA1/2 mutated metastatic
breast cancer (63). The most commonly reported grade 3–4
adverse events were anemia, fatigue, neutropenia, and pancreatic
enzyme elevation.

Ovarian Cancer
Higuchi et al. compared treatment with CTLA-4 or PD-1/PD-L1
antibodies alone or in combination to PARP inhibitors in BRCA-
mutated ovarian tumors. They found that the CTLA-4 antibody,
but not the PD-1/PD-L1 blockade, synergized therapeutically
with PARP inhibitors, which led to immune-mediated tumor
clearance and long-term survival (65). However, a phase 1 trial
that evaluated olaparib combined with durvalumab in female
cancers reported an ORR of 17% and a DCR of 83%. Notably, 11
of the 12 response tumors were negative for BRCA mutations.
Inconsistently, in the KEYNOTE-162 study, a phase 2 trial
exploiting the combination of niraparib with pembrolizumab,
among the 60 recurrent ovarian cancer patients, the ORR was
FIGURE 3 | The percentage of clinical trials on combinational therapy with agents targeting DDR and immune checkpoint inhibitors. The total number of the clinical
trials is 92.
May 2021 | Volume 11 | Article 648687

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Impact of DDR on Immunotherapy
25% and the DCR was 68%, whereas among the 11 patients with
BRCAmutation, the ORR was 45% and the DCR was 73%. Thus,
it is unclear whether BRCAmutation predicts a positive response
to PARP inhibitors combined with ICIs, ultimately warranting
further explanation.

A recent study using advanced genomic analyses and single-
cell imaging reported that mutational signature 3 (a specific
mutational signature reflecting defective HR) and positive
immune score (a surrogate of interferon-primed exhausted
CD8+ T-cells in the tumor microenvironment) determined
response to niraparib plus pembrolizumab in patients with
Frontiers in Oncology | www.frontiersin.org 6
platinum-resistant ovarian cancer enrolled in the TOPACIO
trial (66). Presence of one or both features associated with
significantly prolonged PFS (HR = 0.32), while concurrent
absence yielded no response. This study suggests that both
biomarkers for PARP inhibitors and ICIs should be considered
to predict the response to the combinational treatment.

Another focus of ovarian cancer is maintenance therapy using
PARP inhibitors combined with ICIs. Three phase 3
randomized, double-blind, placebo-controlled multicenter
studies have explored the effect of chemotherapy ± anti-PD-1/
anti-PD-L1 followed by maintenance with anti-PD-L1 and
TABLE 1 | Clinical trials combining PARP inhibitors with immune checkpoint inhibitors.

DDR-targeting agents Combined immune-checkpoint inhibitors Trial registration number Disease Phase Enrollment cases

olaparib durvalumab NCT03801369 Breast cancer 2 28
durvalumab NCT03167619 2 60
durvalumab NCT03544125 1 8
durvalumab NCT03594396 1/2 25
durvalumab NCT03737643 Ovarian cancer 3 1056
durvalumab NCT03699449 2 68
Pembrolizumab NCT03740165 3 1086
durvalumab NCT02953457 Ovarian/tubal or peritoneal cancer 2 39
durvalumab ± cediranib NCT02484404 Ovarian/breast/

lung/prostate/
colon/rectum cancer

1/2 384

durvalumab NCT03923270 SCLC 1 54
Pembrolizumab NCT03976323 Non-squamous NSCLC 3 792
Pembrolizumab NCT03976362 Squamous NSCLC 3 735
Atezolizumab NCT02849496 NSCLC 2 72
durvalumab NCT03810105 Prostate cancer 2 32
Pembrolizumab NCT02861573 Prostate cancer 1 400
Pembrolizumab NCT03834519 Prostate cancer 3 780
durvalumab NCT03534492 Urothelial/

bladder cancer
2 29

durvalumab NCT03459846 Urothelial cancer 2 150
durvalumab NCT02546661 Bladder cancer 1 156
durvalumab NCT03741426 Renal cancer 2 60
durvalumab NCT03579784 Gastric cancer 2 40
durvalumab + cdk NCT03784014 Soft tissue carcinoma 3 960
durvalumab NCT02882308 HNSCC 2 41
durvalumab NCT03772561 Solid tumor 1 40
durvalumab NCT03851614 2 90
Durvalumab NCT03842228 1 102
durvalumab NCT02734004

(MEDIOLA)
1/2 427

durvalumab NCT03991832 2 78
rucaparib Nivolumab NCT03522246 Ovarian cancer 3 1012

Nivolumab NCT03958045 SCLC 2 36
Nivolumab NCT03639935 Cholangiocarci-noma 2 35
Nivolumab NCT03572478 Prostate/endometrial cancer 1/2 60
Nivolumab NCT03824704 Solid tumor 2 139

niraparib Atezolizumab NCT03695380 Ovarian cancer 1 70
Atezolizumab NCT03598270 Ovarian/tubal/peritoneal cancer 3 414
Pembrolizumab NCT02657889

(KEYNOTE162/TOPACIO)
Ovarian cancer/Breast cancer 1/2 121

Atezolizumab NCT03869190 Urothelial cancer 1/2 305
Nivolumab/
ipilimumab

NCT03404960 Pancreatic cancer 1/2 84

Pembrolizumab NCT03307785 Cancer 1 168
veliparib Nivolumab NCT03061188 Solid tumor/Lymphoma 1 50

Nivolumab NCT02944396 NSCLC 1 129
pamiparib tislelizumab NCT02660034 Solid tumor 1 230
May 2021 |
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olaparib/niraparib in newly diagnosed advanced ovarian cancer
(NCT03737643/DUO-O), BRCA non-mutated advanced
epithelial ovarian cancer (NCT03740165/KEYLYNK-001/
ENGOT-ov43), and recurrent ovarian, tubal, or peritoneal
cancer (NCT03598270). The results of the three phase 3 trials
are worth expecting. Owing to the high tolerance of PARP
inhibitors combined with ICIs, the maintenance strategy
showed appealing preliminary results and potential for
preventing tumor recurrence.

Lung Cancer
Despite the high TMB in small cell lung cancer (SCLC), most
patients respond modestly to ICI therapy (67). Preclinical
experiments suggested that olaparib activated the STING/
TBK1/IRF3 pathway in SCLC, but did not lead to T-cell
recruitment or anti-tumor efficacy in vivo. Nonetheless, a
recent study revealed that the addition of PD-L1 blockade
could reverse these effects (7). The MEDIOLA study also
included a cohort of patients with SCLC (67). In this cohort,
patients received durvalumab 1,500 mg every 4 weeks and
olaparib 300 mg twice daily. Among the 19 evaluable patients,
two patients (10.5%) achieved PR or CR, including a patient with
EGFR-transformed SCLC, and four patients (21.1%) had clinical
control with confirmed responses or prolonged stable disease (≥8
months). However, this effect does not meet the preset bar, as the
ORR of 10.5% failed to reject the null hypothesis that the ORR
should be not less than 35%. The treatment-related adverse
effects included anemia (80%), lymphopenia (60%), and
leukopenia (50%). Notably, all tumors with an inflamed
phenotype (CD8-positive T cells directly contacting the tumor)
responded to the combination. The results suggest that the
tumor immune phenotype plays a predictive role in response
to the combination of PARP inhibitors with ICIs in SCLC, which
should be confirmed in larger cohorts.

In NSCLC, two phase 3 studies are being conducted to
explore the effect of pembrolizumab combined with olaparib in
maintenance therapy following pembrolizumab combined with
chemotherapy as the first-line treatment (NCT03976323 for
non-squamous, NCT03976362 and MK-7339-008/KEYLYNK-
008 for squamous NSCLC). A phase 2 study using durvalumab
combined with olaparib in patients with NSCLC who did not
respond to anti-PD-1/PD-L1 therapy is also in progress
(NCT03334617). The results of these studies will be worth
exploring. Furthermore, predictive biomarkers are warranted
to select patients to improve the clinical outcomes of
combinational therapy.

Prostate Cancer
In prostate cancer, several clinical trials are currently being
conducted. The KEYNOTE-365, a phase 1b/2 umbrella study,
evaluated pembrolizumab with olaparib in heavily pretreated
metastatic castration-resistant prostate cancer (mCRPC).
Among the 39 evaluable patients, the PSA response rate
(reduction of ≥50% in serum PSA levels) was 13%, while the
radiological ORR was 7%, and the DCR was 29%. None of the
tumors harbored mutations in the HR genes. A phase 2 clinical
trial (NCT02484404) demonstrated that olaparib combined with
Frontiers in Oncology | www.frontiersin.org 7
durvalumab was effective for mCRPC, and the toxicity was
acceptable (68). The PSA response rate was 53%, while the
radiological ORR was 24%, and the PFS rate at 1 year was
51%. Interestingly, patients with DDR gene alterations achieved a
PFS rate at 1 year of 83% compared to 36% in those without DDR
gene alterations (p = 0.031). These results suggest that DDR gene
alterations may be used as predictive markers for guiding
combinational therapy in patients with prostate cancer.

Other Cancers
In the MEDIOLA study, 40 patients with gastric cancer who
relapsed after platinum-based chemotherapy received durvalumab
and olaparib (64). The DCR was only 26% at 12 weeks, and the
ORR was 10%. Due to the poor activity of olaparib as a single agent
in this setting, all responses occurred after the addition of
durvalumab, which suggests that the combination strategy
deserves additional large-scale prospective investigation for
recurrent gastric cancer.

The most recently published multicenter, open-label, phase
1a/b trial (NCT02660034) from Australia, investigated the safety
and anti-tumor effects of pamiparib, an oral PARP1/2 inhibitor,
combined with tislelizumab, a humanized anti-PD-1 monoclonal
antibody, in patients with advanced solid tumors (60). Ten
patients (10/49, 20%) achieved objective responses, including
two CR and eight PR. Twenty-three patients (23/49, 47%) had
immune-related adverse events, of whom nine (39%) had
asymptomatic grade 3-4 hepatic injury, which was reversible
with corticosteroid treatment.

The combination of PARP inhibitors with ICIs has also been
widely explored in head and neck squamous cell carcinoma
(HNSCC), soft tissue sarcoma, renal cancer, other solid cancers,
and lymphoma (Table 1). More randomized trials are needed to
confirm whether the efficacy of the combination is superior to
PARP inhibitor or ICIs monotherapy.

Inhibitors of Cyclin-Dependent Kinase 4/6
Inhibitors of CDK4/6, including palbociclib, ribociclib, and
abemaciclib, have been approved to treat patients with
hormone receptor-positive, HER2-negative metastatic breast
cancer (69–71). As outlined earlier, CDK4/6 inhibitors inhibit
the proliferation of cancer cells by suppressing retinoblastoma
(RB) phosphorylation and maintaining the repressive effect of
RB on the E2F family, thereby reducing the transcription of pro-
proliferative proteins and inhibiting cell cycle progression.
Several studies have revealed that CDK4/6 inhibitors can
inhibit DDR and enhance the radiosensitivity of NSCLC,
glioblastoma, and HNSCC cells (72–74). Importantly, CDK4/6
inhibition was demonstrated to repress HR by inhibiting critical
HR factors, such as Rad51 (75).

CDK4/6 inhibitors not only induce cell cycle arrest, but also
enhance tumor immunogenicity, which provides the rationale for
combination with ICIs (76). Several mechanisms underlying this
synergy have been identified. The mechanisms include: CDK4/6
inhibitors reduce the proliferation of immunosuppressive T-reg cells
(76), increase tumor antigen presentation in breast cancer cells,
stimulate type III IFN production (76), and promote the infiltration
and activation of T-cells. However, the proliferation of T-cells is
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suppressed (77). The inhibition of CDK4/6 increases the expression
level of the PD-L1 protein by suppressing ubiquitination-mediated
PD-L1 degradation (78). Additionally, the synaptonemal complex
protein 3 (SCP3)-cyclin D1-CDK4/6 axis is activated during the
immunoediting process, which drives tumor cells to generate
acquired resistance to immunotherapy. However, CDK4/6
inhibitors could reverse the multi-aggressive phenotypes of SCP3
in immune-refractory cancer and lead to a long-term response to
ICIs (79). Finally, the resistance program of ICI inmelanoma, which
is associated with T cell exclusion and immune evasion, could be
repressed by CDK4/6 inhibitors (80).

Findings from a preclinical study showed that CDK4/6
inhibitors combined with anti-PD-L1 therapy led to tumor
regression in animal cancer models (81). Similarly, Teo et al.
demonstrated that the combination of CDK4/6 inhibitors with
ICIs (targeting PD-1 and CTLA-4) and PI3Ka inhibitors
induced complete and durable regression (>1 year) in
established xenograft mouse models of human TNBC (82).

In a clinical trial, the first phase 1/2 study was designed to
explore the potential of abemaciclib (LY2835219) plus
pembrolizumab in patients with HR-positive metastatic breast
cancer (NCT02779751) (83). A total of 28 patients were enrolled.
The preliminary results showed that four patients (14%) achieved
an objective response at 24 weeks, which was higher than the
response rate (11%) reported in the MONARCH 1 study with
abemaciclib monotherapy (70). Currently, a multicenter phase 2
study is being conducted to evaluate the combination of letrozole,
palbociclib, and pembrolizumab in postmenopausal women with
HR-positive advanced breast cancer (NCT02778685) (84). All three
FDA-approved inhibitors of CDK4/6 are now in clinical trials in
combination with ICIs to treat cancers, such as breast cancer,
HNSCC, NSCLC, and liver cancer (Table 2).

Inhibitors of Ataxia Telangiectasia and
Rad3-Related (ATR) Kinase
ATR kinase is a known master regulator of DDR. Therefore,
ATR is an attractive therapeutic target for cancer treatment,
especially in combination with DNA-damaging agents. A
previous study showed that ATR inhibition decreased the
expression of PD-L1 by destabilizing PD-L1 in a proteasome-
dependent manner to attenuate PD-1/PD-L1 interaction and
Frontiers in Oncology | www.frontiersin.org 8
sensitized cancer cells to T cell killing, which provided a rationale
for the combination therapy of ATR inhibitors with other types
of ICIs, such as anti-CTLA-4 or anti-TIM-3 (85).

Clinical trials exploring the ATR inhibitor, AZD6738,
combined with durvalumab in patients with advanced solid
tumors (NCT02264678, phase 1/2) and NSCLC who have
progressed on anti-PD-1/PD-L1 containing therapy
(NCT03334617, phase 2) are ongoing. The initial data showed
an acceptable toxicity profile and promising preliminary anti-
tumor activity. A patient with HNSCC and another patient with
NSCLC also achieved PR (86). Another study recruited
participants to evaluate the efficacy and safety of avelumab in
combination with an ATR inhibitor (M6620) and carboplatin in
PARP inhibitor-resistant, recurrent, platinum-sensitive ovarian,
primary peritoneal, or fallopian tube cancer.

Inhibitors of WEE1
WEE1 is a protein kinase that activates the G2/M cell cycle
checkpoint by inhibiting cyclin-dependent kinase 1 and 2
(CDK1/2) and provides time for DDR (87). Inhibition of
WEE1 impairs G2/M cell cycle arrest, hampers DDR, and
increases replication stress. To date, AZD1775 (MK1775,
Adavosertib) is the only WEE1 inhibitor used in clinical trials.
Currently, two clinical trials are exploring the combination of
adavosertib with durvalumab. One is NCT02546661 (BISCAY), a
phase 1b randomized multi-drug biomarkerdirected study in
patients with metastatic muscle-invasive bladder cancer. In this
clinical trial, patients with any HR deficiency will receive
durvalumab ± olaparib, and patients with CDKN2A or RB1
deficiency and/or amplifications of CCNE1, MYC, MYCL, or
MYCN will receive durvalumab ± adavosertib (88). The other
trial is NCT02617277, a phase 1 trial to assess the safety and
pharmacokinetics of adavosertib plus durvalumab in patients
with advanced solid tumors (89). In this trial, 54 patients with
colorectal, lung, and breast cancer were enrolled. The overall
DCR of the combination was 36%, and the dose-limiting
toxicities were fatigue, nausea, and diarrhea. The promising
results of this phase 1 clinical trial called for additional phase 2
study, and the schedule of adavosertib 150 mg twice per day on
days 15-17 and 22-24 combined with durvalumab 1,500 mg on
day 1 of a 4-week cycle was recommended for phase 2 study. The
TABLE 2 | Clinical trials combining CDK4/6 inhibitors with immune checkpoint inhibitors.

DDR targeting agents Combined immune checkpoint inhibitors Trial registration number Disease Phase Enrollment

abemaciclib nivolumab NCT03655444 HNSCC 1/2 32
pembrolizumab NCT02079636 NSCLC 1 150
pembrolizumab NCT02779751 NSCLC/

breast cancer
1 100

pembrolizumab NCT03997448 GEA 2 34
nivolumab NCT03781960 Liver cancer

palbociclib pembrolizumab NCT02778685 Breast cancer 2 22
Avelumab (+Fulvestrant) NCT03147287 2 220
Avelumab (+Tamoxifen) NCT03573648 2 40

trilaciclib atezolizumab NCT03041311 SCLC 2 105
Dinacidib Pembrolizumab NCT01676753 Breast cancer 1 32
May 2021 | V
olume 11 | Ar
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exploration of predictive biomarkers in the BISCAY study will
help to select suitable patients for this combinational strategy.

Inhibitors of Checkpoint Kinase 1 (CHK1)
CHK1 plays a crucial role in DDR and genome stability. CHK1
inhibition has been explored as a potential anti-tumor therapy.
Recently, the inhibitor of CHK1, prexasertib (LY2606368), was
demonstrated to remarkably activate the STING/TBK1/IRF3
innate immune pathway and increase the expression of PD-L1,
which contributes to the infiltration and activation of cytotoxic T
lymphocytes and significantly potentiates the efficacy of ICIs in
SCLC in vivo (7). Another preclinical study demonstrated that
SAR737, an oral CHK1 inhibitor, combined with low-dose
gemcitabine, enhanced the effect of PD-L1 blockade in SCLC
by modulating the immune microenvironment (90). These
findings suggest that the combination of CHK1 inhibitors and
ICIs deserves further evaluation in clinical trials, especially for
patients with SCLC.

Currently, there are no well-established predictive markers
for CHK1 inhibitors. Sen et al. identified MYC as a biomarker of
prexasertib through proteomic analysis and suggested that
CHK1 inhibitors might be especially effective in SLCL with
MYC amplification or MYC protein overexpression (91). The
predictive marker of CHK1 inhibitors combined with ICIs is
being explored in ongoing clinical trials. However, further
investigation of the combination’s safety is needed, as
preliminary results demonstrated that neutropenia was the
most frequent and severe adverse event, which can be harmful,
although manageable (92).

Inhibitors of ATM
ATM is an apical kinase of the DDR pathway, which makes it an
attractive anti-tumor therapeutic target. Two ATM inhibitors,
M3541, and AZD0156 are currently in phase 1 trials for the
treatment of solid tumors. A recent study reported that the
inhibition of ATM increased IFN signaling and sensitized
pancreatic cancer to ICI therapy (93). We recently reported
that the inhibition of the ATM/CHK2 pathway could activate the
innate immunity of ARID1A-deficient cancers and enhance the
anti-tumor effect of PD-L1 antibody (94). The promising effect of
the preclinical studies demonstrated that the combination of an
ATM inhibitor with ICIs is urgent to be investigated in
clinical trials.

Inhibitors of DNA-PK
DNA-PK plays a crucial role in the NHEJ pathway of DDR.
Currently, three inhibitors of DNA-PK, namely M9831 (VX984),
nedisertib (M3814, MSC2490484A), and CC115, are being
evaluated in phase 1/2 trials. Recent studies have reported that
human DNA-PK activates a STING-independent DNA sensing
pathway to drive a robust and broad immune response (95). For
the combined treatment, a clinical trial, NCT03724890, is now
being carried out to determine a safe and tolerable DNA-PK
inhibitor (nedisertib) dose combined with ICIs (avelumab) ±
radiotherapy for participants with selected advanced
solid tumors.
Frontiers in Oncology | www.frontiersin.org 9
CONCLUSIONS AND REMAINING
CHALLENGES

In conclusion, emerging evidence supports that alterations in the
DDR pathways play potential predictive roles for ICIs. The
combination of agents targeting DDR with ICIs has resulted in
appealing anti-tumor effects in preclinical and clinical studies.
These advances may contribute to a major step forward in cancer
treatment. However, there are many questions still to
be answered.

Although the FDA has approved MMR deficiency for the
application of PD-1 blockade, the impact of DDR alterations on
the response to ICIs is largely unknown. First, the underlying
relationship between DDR gene alterations and other known
biomarkers of ICIs, such as TMB, should be subject to intense
investigation. Although DDR deficiency usually leads to a high
TMB, it is not always the same. TMB refers to the overall
quantity of tumor gene mutations, while a specific DDR
deficiency may represent the quality of the gene alterations. It
seems that only a small amount of tumor-specific neoantigens
aroused from DDR alterations is highly immunogenic, which
may explain why patients with low TMB still respond to ICIs. It
is crucial to identify these neoantigens or the related DDR gene
alterations, which will ultimately help to select patients for
immunotherapies. Second, standardized and practical methods
to assess DDR defects, such as HR deficiency (96), should
be established.

For the combination strategy, developing predictive
biomarkers to identify patients who will respond to agents
targeting DDR combined with ICIs is essential (9). Although
most ongoing clinical trials have been conducted with unselected
patients, several clinical trials have been designed to explore the
possible predictive markers for combinational therapy, including
alterations in genes such as ARID1A, ATM, ATRX, BRCA1,
BRCA2, CDK12, CHEK1, CHEK2, CCNE1, MYC, MRE11,
MSH2, PARP1, PIK3CA, POLD1, PPP2R2A, PTEN, RAD51B,
XRCC2, and MMR status (NCT03842228, NCT02546661).
However, individual predictive biomarker for DDR-targeted
agents or ICIs was unable to predict the response to the
combinational therapy (66). The success of mutational
signature 3 and immune score in selection of patients with
ovarian cancer who would benefit from niraparib/
pembrolizumab (66), suggests that the predictive biomarkers
should be cooperated in future clinical trials of combinational
therapy. Furthermore, the optimal combination timing and
sequences, which should stimulate the anti-tumor immune
response and improve anti-tumor efficacy with minimal
toxicity, are still unclear. Various schedules of combinations
have been utilized in multiple clinical trials. However, it is
unlikely to find a unified pattern for all combination regimens.
In fact, it seems to vary widely across tumor settings and genetic
backgrounds. For example, in clinical trials, PARP inhibitors and
CKD4/6 inhibitors were administered concurrently, before or
after ICIs, in various situations. Briefly, concurrent
administration of PARP inhibitors or CKD4/6 inhibitors with
ICIs was carried out in most trials. However, when PARP
May 2021 | Volume 11 | Article 648687
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inhibitors were used as maintenance therapy (for ovarian cancer,
NCT03737643, NCT03740165 and NCT03598270; for NSCLC,
NCT02944396), they were used following ICIs, while in some
other clinical trials, PARP inhibitors and CDK4/6 inhibitors
were used before ICIs (NCT03579784, NCT03842228
and NCT03781960).

Collectively, it is challenging to define the optimal predictive
biomarker, clinical setting, and combining schedule. To answer
these questions, it is essential to understand how tumor intrinsic
genetic alterations affect anti-tumor immunology and how the
drugs synergize with each other. In light of the recent promising
preclinical and early clinical findings in this field, additional basic
and clinical studies are warranted in the future.
Frontiers in Oncology | www.frontiersin.org 10
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