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Background: Clinical treatment decision making of bladder cancer (BCa) relies on the
absence or presence of muscle invasion and tumor staging. Deep learning (DL) is a novel
technique in image analysis, but its potential for evaluating the muscular invasiveness of
bladder cancer remains unclear. The purpose of this study was to develop and validate a
DL model based on computed tomography (CT) images for prediction of muscle-invasive
status of BCa.

Methods: A total of 441 BCa patients were retrospectively enrolled from two centers and
were divided into development (n=183), tuning (n=110), internal validation (n=73) and
external validation (n=75) cohorts. The model was built based on nephrographic phase
images of preoperative CT urography. Receiver operating characteristic (ROC) curves
were performed and the area under the ROC curve (AUC) for discrimination between
muscle-invasive BCa and non-muscle-invasive BCa was calculated. The performance of
the model was evaluated and compared with that of the subjective assessment by
two radiologists.

Results: The DL model exhibited relatively good performance in all cohorts [AUC: 0.861 in
the internal validation cohort, 0.791 in the external validation cohort] and outperformed the
two radiologists. The model yielded a sensitivity of 0.733, a specificity of 0.810 in the
internal validation cohort and a sensitivity of 0.710 and a specificity of 0.773 in the external
validation cohort.

Conclusion: The proposed DL model based on CT images exhibited relatively good
prediction ability of muscle-invasive status of BCa preoperatively, which may improve
individual treatment of BCa.
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INTRODUCTION

Bladder cancer (BCa) is one of the most common and lethal
malignancies worldwide (1, 2). Clinical treatment decision
making primarily relies on the absence or presence of muscle
invasion and tumor staging (3). Nonmuscle-invasive BCa
(NMIBC) and muscle-invasive BCa (MIBC) exhibit significant
differences in prognosis, management and therapeutic aims (3,
4). Accurate preoperative assessment of the muscular
invasiveness of BCa is crucial for selecting the optimal therapy
for individual patients.

Cystoscopy examination together with histological evaluation
of the resected tissues is the mainstay of diagnosis and clinical
staging of BCa. As biopsy is operator dependent and unlikely to
sample every part of the tumor, incorrect staging occurs, and up
to 25% of MIBC cases are initially misdiagnosed as NIMBC (5,
6). Repeated examinations could improve the diagnostic
accuracy, but the invasive nature has made this process
undesirable. Developing a noninvasive method for preoperative
evaluation would greatly benefit BCa patients. Computed
tomography (CT) imaging has been widely used to
preoperatively evaluate BCa patients and assist in tumor
staging, especially for T3 and T4 tumors (7). Given its inability
to differentiate among layers of the bladder wall, the role of
traditional CT in the classification of NIMBC and MIBC is
limited. Thus, developing a technique that could provide
additional information about the status of muscular invasion
of BCa would enable traditional CT to play a larger role in BCa
evaluation and assist in patient management.

Deep learning (DL) is a novel and promising technique that
has demonstrated great potential in disease diagnosis (8–10). DL
can extract and combine features from images to construct a
model that reveals the relationship between images and diseases.
It has been reported that the DL model could facilitate imaging
diagnosis in various diseases with high accuracy, including liver
fibrosis, pancreatic cancer and pulmonary nodules (9, 11, 12).
For BCa, the DL model based on CT images has demonstrated
the potential to assist in therapy evaluation (13). However, the
use of the DL based on CT images to discriminate betweenMIBC
and NIBC has not yet been reported.

Therefore, the aim of this study was to develop and validate a
DL model based on CT images for individualized prediction of
the muscle-invasive status of BCa preoperatively.
MATERIALS AND METHODS

Study Population
This retrospective study was approved by the Institutional
Review Board of the two medical centers, and the requirement
of informed consent was waived. The inclusion criteria were as
follows: (i) patients who underwent transurethral resection of
bladder tumor (TURBT) or radical cystectomy in the two centers
with pathologically confirmed urothelial carcinoma and
(ii) availability of preoperative CT urography (CTU) within 20
days before surgery. Patients were excluded if (i) they had
preoperative therapy, including chemotherapy or radiotherapy;
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(ii) they had other tumors simultaneously; (iii) their TURBT
specimens had no muscle after resection; or (iv) no visible tumor
was detected on preoperative enhanced pelvic CT images. Two
radiologists (H.S. in Center 1 and Z.W. in Center 2) identified
patients according to the above criteria, and 366 patients were
recruited from May 2014 to July 2018 from Center 1 (91 patients
with MIBC, 275 patients with NIMBC) and 75 patients from
April 2018 to May 2020 in Center 2 (31 patients with MIBC, 44
patients with NIMBC). We divided the patients into three
cohorts: 293 patients treated between May 2014 and September
2017 in Center 1 were allocated to the training cohort, 73 patients
treated between October 2017 and July 2018 in Center 1 were
allocated to the internal validation cohort, and all 75 patients
treated in Center 2 constituted the external cohort. The training
cohort was further randomly assigned into a development set
(n=183) for model training and a tuning set (n=110) for model
selection. The study flow and recruitment pathway are presented
in Figure 1.

Clinical-pathologic information, including age, sex and
pathologic T stage, was obtained from medical records. Two
experienced radiologists (6 and 14 years of experience in in
urogenital imaging) reviewed all the CT images together and
recorded data, including the number of tumors, the size and the
CT attenuation of the largest tumor. Any disagreement was
resolved by consensus.

CT Imaging
All the enrolled patients in both centers underwent preoperative
CTU with a similar protocol setup with different systems. The
CT image acquisition settings are provided in Supplementary
Table S1. Patients fasted for 4-6 hours, and then were asked to
drink about 1000 ml water about 45 minutes before the scan and
not to urinate until the scan was finished. Patients were scanned
from the hemidiaphragm to the pelvic floor. For the contrast
scans, patients were injected with 100 ml of nonionic contrast
material (Ultravist 370, Bayer Schering Pharma AG, Germany)
followed by a 100-ml saline chaser intravenously at a rate of 4–
4.5 mL/s after the unenhanced scan. Renal corticomedullary-
phase, nephrographic-phase and excretory-phase images were
acquired at 25 s, 75 s and 300 s after the bolus-triggering
threshold of 120 HU was achieved in the thoracoabdominal
aorta junction. To show BCa lesions better, coronal and sagittal
reformations were reconstructed besides axial images. But only
the axial nephrographic-phase images were used for
subsequent analysis.

Tumor Region Segmentation
Regions of interest (ROIs) were delineated semiautomatically on
thin-slice CT images of the nephrographic phase by an
experienced radiologist (G.Z., 6 years of experience in urogenital
imaging and 5 years of experience in tumor segmentation) who
was blinded to the pathological status of muscular invasion of
lesions. For patients with multiple lesions, only the largest lesion
was chosen for segmentation. A three-dimensional ROI of the
whole tumor was delineated semiautomatically using the
Deepwise Research Platform (Deepwise Inc., Beijing, China,
http://label.deepwise.com). On the platform, a level-set-based
June 2021 | Volume 11 | Article 654685
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segmentation algorithm was initially used to outline the tumor
margin automatically, and then the radiologist manually corrected
the tumor margin where it was not accurate. After 8 weeks, 93
patients in the development set were selected randomly, and their
tumors were segmented again by the same radiologist and another
radiologist (X.Z., 1 year of experience in urogenital imaging and
tumor segmentation) to evaluate intra- and interobserver
reproducibility by calculating intra- and interclass dice coefficients.

Development and Validation of the Model
The pipeline of DL modeling is presented in Figure 2. Before the
training of the model, the images were preprocessed. The voxel
size was normalized to 1.0 x 1.0 x 1.0 mm3, and the pixel values
were rescaled to (0,1). To further utilize the segmentation and
focus the model’s attention on the tumor area, the masked tumor
region and the original tumor region were stacked vertically, then
cropped it according to the tumor center to form an input volume
of 2 x 64 x 64 x 64 for channel, depth, height and width,
respectively. Our model was constructed on the basis of Filter-
guided Pyramid Network (FGP-Net), a novel 3D convolutional
network structure that was designed to capture the global feature
and the local features simultaneously in our previous study (14).
To avoid overfitting, the growth rate of the dense block was
reduced to 8, and a dropout layer with a drop rate of 0.5 was
added. In addition, the input patches were augmented by random
cropping and rotation during the training process. The output of
our model was the probability of the MIBC. Focal loss with a
gamma of 1.5 and a class weight of 3 were used to manage the
unbalanced amount of MIBC and NMIBC tumors. The Adam
optimizer was used to minimize the focal loss with an initial
learning rate of 0.001 (15). The output of our model was the
probability of the MIBC, the model that achieved the highest area
under the receiver operating characteristic curve (AUC) on the
tuning set during the training procedure was selected, and the
Frontiers in Oncology | www.frontiersin.org 3
cut-off value was selected at the points that maximized the Youden
index value on the tuning set. The AUC, accuracy, sensitivity, and
specificity of all sets were calculated. The calibration curve with
LOESS smoother was generated to assess the calibration of the DL
model (16).

Two methods that visualizing the feature extraction process
by the convolutional neural network were used to demonstrate
whether the DL model learned valuable features from
meaningful CT areas. First, the feature maps before
discriminative filter learning modules in our model were
extracted to show the target area of the model. The value of
the area on the feature map indicated its contribution to the final
result. The higher the value, the larger the contribution of the
area. Using gamma correction (g=2.0), the feature maps were
transformed, mapped to a colored scheme and overlaid on the
original images. Second, t-distributed stochastic neighborhood
embedding (t-SNE), which is an unsupervised dimension-
reduction algorithm to visualize high-dimensional data, was
used to test the effectiveness of the learned features. In this
study, t-SNE was used to reduce the dimension of features (the
output of the layer before the final fully connected layer) from
150 to 2 with a learning rate of 450 and a perplexity of 30.

Subjective Image Evaluation
For subjective assessment of muscular invasion of BC based on
CT images, a tumor was defined as MIBC if it invaded perivesical
fat with the tumor bulging out or based on the presence of
abnormal enhancement of bladder wall; otherwise, it was
considered NIMBC. Examples of these imaging features were
demonstrated to two radiologists (Reader 1, L.X., Reader 2, D.Z.,
with 3 and 9 years of experience in CTU, respectively) before
they started the review process. The two radiologists reviewed all
the images in validation cohorts (n=148) and determined
whether the tumor was MIBC or NMIBC independently,
FIGURE 1 | The study flow and the recruitment pathway. BC, bladder cancer; TURBT, transurethral resection of bladder tumor; CTU, computed tomography urography.
June 2021 | Volume 11 | Article 654685
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without knowledge of pathological information (including the
status of muscular invasiveness of tumors). For patients with
multiple tumors, only the largest tumor was evaluated. The
performance of the two radiologists for diagnosing MIBC was
evaluated by calculating accuracy, sensitivity and specificity.

Statistical Analysis
A two-sided P<0.05 indicated statistically significant differences.
Analysis of variance or Kruskal-Wallis H test was used to
compare clinical characteristics among development, tuning,
internal and external validation cohorts. These statistical
analyses were performed by using SPSS version 25.0 (IBM,
SPSS; Chicago, IL, USA). The comparison of the AUC was
calculated by the DeLong test (17) which was performed by
using R (version 3.6.0). The ROC curves, decision curve analysis
(DCA) and calibration curves were calculated using scikit-learn
(version 0.22.1) and matplotlib (version 3.1.3).
RESULTS

Patient Clinical Characteristics
Patient characteristics in all the cohorts are shown in Table 1. No
significant differences in gender or CT-reported largest lesion
diameter (P > 0.05) were noted among the training, internal
validation and external validation cohorts. Patient age, CT-
Frontiers in Oncology | www.frontiersin.org 4
reported number of lesions, CT attenuation of the largest
lesion and pT stage were significantly different. The proportion
A B

D

EC

FIGURE 2 | Workflow of the deep learning model for the prediction of muscle invasiveness status in bladder cancer patients. (A) Collection of the CT images of
MIBC and NMIBC. (B) Semiautomatic segmentation of the tumor region. (C) The masked tumor region and the original tumor region were stacked vertically to form
the input volume, and the cropped 2-channel input was constructed. (D) The structure of our deep-learning model. The model was constructed on the basis of
Filter-guided Pyramid Network (FGP-Net), a novel 3D convolutional network structure that is designed to capture the global feature and the local features
simultaneously. (E) Internal and external validation of our model. CT, computed tomography; FC, fully connected layer.
TABLE 1 | Clinical characteristics of patients with bladder cancer.

Characteristics Training
cohort*
(n=293)

Internal
validation

cohort (n=73)

External
validation

cohort (n=75)

p-
value

Age 0.038
Median (IQR) 65 (56,72) 68 (61,74) 65 (59,77)
Gender 0.166
Female 75 (25.6) 13 (17.8) 13 (17.3)
Male 218 (74.4) 60 (82.2) 62 (82.7)
CT-reported number
of lesions

0.016

Unifocal 229 (78.2) 66 (90.4) 54 (72.0)
Multifocal 64 (21.8) 7(9.6) 21 (28.0)
CT-reported largest
lesion diameter (cm)

0.063

Mean ± SD 2.71 ± 1.67 2.33 ± 1.62 2.78 ± 1.70
≤3 188 (64.2) 57 (78.1) 52 (69.3)
>3 105 (35.8) 16 (21.9) 23 (30.7)
CT attenuation of the
largest lesion (HU)

0.030

Mean ± SD 67.1 ± 14.0 56.3 ± 20.9 70.5 ± 13.0
Pathologic T stage 0.010
≤T1 217 (74.1) 58 (79.5) 44 (58.7)
≥T2 76 (25.9) 15 (20.5) 31 (41.3)
J
une 2021 | Volu
me 11 | Article 6
*The training cohort (n=293) is the combination of the development (n=183) and tuning
(n=110) cohorts. IQR, interquartile; SD, standard deviation.
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of MIBC was significantly increased in the external validation
cohort (P = 0.010).

The Performance Assessment and the
Clinical Usefulness of the Model
For the semiautomatic segmented ROI, the intraclass dice
coefficient (0.800 ± 0.201) indicating favorable reproducibility,
while the interclass dice was relatively low (0.706 ± 0.253). The
ROC curves of the DL model are presented in Figure 3A. The
model produced satisfactory performance in the development
(AUC 0.936) and tuning (AUC 0.891) cohorts. The AUC in the
internal validation cohort and the external validation cohort
reached 0.861 (95% CI: 0.765, 0.957) and 0.791 (95% CI: 0.678,
0.904), respectively, demonstrating good differentiating ability
between MIBC and NMIBC and good model robustness. The
Frontiers in Oncology | www.frontiersin.org 5
cut-off value that maximized the Youden index was 0.337. The
performance of our model for differentiating between MIBC and
NMIBC on development and tuning sets is also summarized
in Table 2.

The calibration curves of the model exhibited good agreement
between the model predicted outcome and the real status of
muscular invasiveness (Figure 3C). The DCA indicated that the
DL model could add more benefit to patients than the “treat all”
or “treat none” strategies when the threshold probability was
ranged from 0 to 0.74 in the internal validation cohort and 0.21
to 0.79 in the external validation cohort (Figures 3D, E).

The Comparison With Radiologists
In the subjective assessment of muscular invasion of BCa, the
two radiologists generally performed slightly worse compared
A B

D E

C

FIGURE 3 | Performance of the deep learning model for the differentiation of MIBC and NMIBC. (A) Receiver operator characteristic curves of the model in four
different cohorts. (B) Comparison of the performance between the model and two radiologists. (C) Calibration curves of the model in internal and external validation
cohorts. The calibration curve showed that the predicted probabilities generally agreed with the observed probabilities. The predictive performance of the model in
the external validation cohort exhibited a closer fit to the perfect calibration. (D, E) showed decision curve analyses (DCA) in the internal and external validation
cohorts respectively. DCA compared the net benefit of the deep learning model versus treat all or treat none are shown. The net benefit was plotted versus the
threshold probability. The net benefits of the deep learning model (blue line) were superior to the benefits of treating all or treating none.
TABLE 2 | Performance of the model in development, tuning and validation cohorts.

AUC (95%CI) Accuracy (95%CI) Sensitivity (95%CI) Specificity (95%CI)

Development cohort
(n=183)

0.936
(0.901, 0.971)

0.836
(0.773, 0.885)

0.872
(0.736, 0.947)

0.824
(0.747, 0.882)

Tuning cohort
(n=110)

0.891
(0.832, 0.950)

0.800
(0.711, 0.868)

0.828
(0.635, 0.935)

0.790
(0.683, 0.87)

Internal validation cohort (n=73) 0.861
(0.765, 0.957)

0.795
(0.681, 0.877)

0.733
(0.448, 0.911)

0.810
(0.682, 0.897)

External validation cohort (n=75) 0.791
(0.678, 0.904)

0.747
(0.631, 0.837)

0.710
(0.518, 0.851)

0.773
(0.618, 0.880)
June 2021 | Volum
AUC, area under the receiver operating characteristics curve; CI, confidence interval.
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with the DL model (Table 3 and Figure 3B). In the internal
validation cohort, the accuracy and specificity of Reader 1 (0.685
and 0.621) and Reader 2 (0.585 and 0.517) were lower than those
of the model (0.795 and 0.810), while the sensitivity of them
(0.933 and 0.800) exceeded that of the model (0.733). In the
external validation cohort, Reader 1 demonstrated comparable
performance compared to the model with the same accuracy
(0.747) and similar specificity (0.727 vs 0.773) and sensitivity
(0.774 vs 0.710). However, the performance of Reader 2 was
inferior to the model in general with a lower accuracy (0.573 vs
0.747) and specificity (0.386 vs 0.773) but higher sensitivity
(0.839 vs 0.710).

Additional Analysis
Violin plots of the predicted score for muscle invasion in the
development, tuning, internal and external cohorts are shown in
Figure 4A. NMIBC patients had significantly lower predicted
scores than those with MIBC in the development (median 0.214
[interquartile range 0.136-0.291] vs 0.813 [0.607, 0.938], P<
0.001), tuning (0.225 [0.161, 0.304] vs 0.539 [0.385, 0.846], P <
0.001), internal validation (0.216 [0.172, 0.288] vs 0.422 [0.327,
0.843], P < 0.001) and external validation (0.184, [0.124, 0.305] vs
0.759 [0.307, 0.889], P < 0.001) cohorts. The waterfall plots in
Figures 4B, C illustrate the distribution of the predicted score
and the status of muscular invasion of individual patients in the
internal and external validation cohorts, respectively.

We used feature maps and t-SNE to visualize the learned
features. Figure 5A demonstrates feature maps of four examples
(two for MIBC and two for NMIBC) from the external validation
cohort. The focus area of the model or the active area is
illustrated by bright colors. These regions represent different
characteristics of lesions and were in accord with human
observations, and the models would aid in the classification of
lesions. T-SNE visualization demonstrated that the learned
features of the DL model can distinguish MIBC and NMIBC.
The locations of BC lesions depended on the similarity of their
features. They were close to each other if they had similar
features; otherwise, they were far apart. As shown in
Figure 5B, MIBC and NMIBC clusters were basically separated
Frontiers in Oncology | www.frontiersin.org 6
except for several outliners, demonstrating that the developed
model has captured effective features for differentiation.
DISCUSSION

The aim of this double-center study was to predict the muscular
invasiveness of bladder cancer based on enhanced CT images. Our
DL model exhibited relatively good performance to discriminate
NMIBC fromMIBC. The AUCwas 0.861 in the internal validation
cohort and 0.791 in the external validation cohort.

Preoperative evaluation ofmuscle invasion in bladder cancer is
important for patient management. Currently, transurethral
resection of bladder tumor is the standard for preoperative T
staging evaluation (3, 7, 18–21). As the procedure highly depends
on surgeon experience and biopsy quality, its diagnostic accuracy
for MIBCs varies. MRI is also recommended, and the Vesical
Imaging-Reporting and Data System based on multiparametric
MRI has been proposed for the diagnosis of MIBCs (22). But it is
still a subjective evaluation process based on the experience of
radiologists. In recent years, researchers have investigated
alternative techniques to assist muscle invasiveness evaluation.
Garapati et al. (23) explored machine learning methods to
discriminate between MIBC and NMIBC in 84 BC lesions from
76 CTU cases retrospectively. They found thatmorphological and
texture features achieved comparable performance with AUCs of
about 0.90. Some other studies developed MRI-based radiomic
models for preoperative prediction of the muscle-invasive status
of BCa with AUCs ranging from 0.87 to 0.98 (24–27). These
studies revealed encouraging results for avoiding subjectivity in
the preoperative assessment of BCa, but external validation in
larger cohorts is required to verify the clinical validity of these new
techniques. In contrast to the above studies, we investigated the
feasibility of using DL on CT images to differentiate between
MIBC and NMIBC. We used a well-designed deep learning
structure, which utilizes the dense block and the pyramid
structure to extract the features effectively and integrate the
global features and the local features (14). Considering the
relatively small sample size, several methods were utilized to
alleviate the problem of overfitting, including reducing the
growth rate of the dense block and data augmentation. The focal
loss, which is designed to handle the imbalance of the data amount
and the difficulty, was employed (15). Regarding diagnostic
performance, the AUCs in this study were slightly lower than
those in other studies. When we analyzed what went wrong and
why, we found that most true NMIBC cases that were mistakenly
identified asMIBCwere large (typically >4 cm), and almost all the
MIBC cases falsely recognized as NIMBC were small (typically <
1 cm). These findings suggest that the DL model considers the
tumor size as one of the key features to determine the muscle-
invasive status of BCa.

In general, the DL model outperformed the two radiologists in
terms of accuracy, and the DL model also demonstrated increased
specificity. But the DL model exhibited reduced sensitivity. This
finding may be explained by the fact that radiologists are more
prone to suspect a tumor to bemuscularly invasive due to their fear
of the negative consequences of missing MIBC. Moreover,
TABLE 3 | Performance of two radiologists and the deep learning model on
validation cohorts.

Validation
cohort

Reader Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Internal Reader 1 0.685
(0.564, 0.786)

0.933
(0.660, 0,.997)

0.621
(0.483, 0.742)

Reader 2 0.585
(0.454, 0.688)

0.800
(0.514, 0.947)

0.517
(0.383, 0.649)

Model 0.795
(0.681, 0.877)

0.733
(0.448, 0.911)

0.810
(0.682, 0.897)

Reader 1 0.747
(0.631, 0.837)

0.774
(0.585, 0.897)

0.727
(0.570, 0.845)

External Reader 2 0.573
(0.454, 0.685)

0.839
(0.655, 0.939)

0.386
(0.247, 0.545)

Model 0.747
(0.631, 0.837)

0.710
(0.518, 0.851)

0.773
(0.618, 0.880)
AUC, area under the receiver operating characteristics curve; CI, confidence interval.
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surprisingly, Reader 1, who had less experience in urogenital
imaging, demonstrated better performance than Reader 2. Thus, a
radiologist’s experience may not necessarily have a positive
correlation with prediction accuracy. On the other hand, our
results also indicated that the DL model could produce a more
stable, objective and balanced outcome for discrimination
between MIBC and NMIB compared to subjective assessment
by radiologists.
Frontiers in Oncology | www.frontiersin.org 7
ROI segmentation is an essential part of the research process.
Currently, 3D segmentation of the whole tumor is widely
adopted by researchers because it is thought to provide a more
comprehensive evaluation compared to one ROI from the largest
cross-sectional area of the tumor. Researchers typically need to
manually draw the outline of the tumor on each image slice,
which is time consuming, especially when the study population is
large. Automated segmentation has been proposed, but the
A

B

C

FIGURE 4 | Illustrations of the performance of the deep learning model. (A) Violin plots of predictive scores in the development, tuning, internal validation and
external validation cohorts. (B, C) showed waterfall plots of the distribution of predictive scores and muscle invasive status of each patient in the internal and external
validation cohorts respectively.
June 2021 | Volume 11 | Article 654685
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accuracy for BCa remains unclear. In this study, we applied a
semiautomatic approach to segment each tumor. This method is a
combination of automated segmentation by the platform and small
modification by the radiologist. According to our experience, this
semiautomatic method not only greatly accelerates the study
process but also ensures the accuracy of ROI delineation. The
interclass dice coefficient of 0.706 forROI segmentationwas slightly
low. We analyzed those significantly different segmentations
between the two radiologists and found that the radiologist with
less experiencemistakenly identifiedBCa lesions inpatientswith an
irregular bladder shape or with prostate hyperplasia. This
radiologist also failed to correctly segment some BCa lesions that
presented as abnormal enhancement of the focal bladder wall. This
result reminded us of the importance of the experience and the
training of radiologists for ROI segmentation to reach a solid and
reliable result.

Although the resultswerenot very satisfactory, our study still has
several strengths. First, this study explored the capacity of a DL
model based on CT images to determine the status of muscle
invasiveness of BCa, which provided a basis for subsequent studies
to apply this technique to tackle relevant clinical problems. Second,
unlike some other studies that used cross validation or single-center
validation, this study used an external validation cohort enrolled
from a different hospital, which allowed us to investigate the
generalizability of the DL model. In addition, the study
population of this study was larger than many other studies
focusing on the application of machine learning in BCa. Third,
CT-related studies of discriminating MIBC from NMIBC are
limited. There is no doubt that CT has its limitations due to its
Frontiers in Oncology | www.frontiersin.org 8
low resolution of soft tissue. However, our study indicated thatwith
the help ofnovel techniques, such asDL,we can also obtain valuable
information fromroutineCTimages toguidepatient therapy.Thus,
it is still worth performing CT-based studies to solve clinical
problems in BCa management.

Our study has some limitations. First, this is a two-center
study, but the number of patients in Center 2 is relatively small.
Multicenter studies with larger population or prospective clinical
trials should be conducted to validate the results in the future.
Second, the proposed DL model exhibited its potential but the
performance was less than satisfactory and has yet to be
improved. Constant efforts should be made to optimize the
model before it could be applied in real clinical practice. Third,
the model was based on visible tumors on enhanced CT given
that we excluded tumors detected by cystoscopy but invisible on
CT images. Although these tumors constitute a small proportion
of BCa, they may still limit the scope of the model’s application to
some extent. Fourth, in this study, we did not incorporate other
clinical information which may be helpful for determining the
invasiveness of BCa, such as urine DNA or RNA. We aimed to
investigate the potential of deep learning to facilitate CT
evaluation of BCa, thus we focused on CT images only. It’s
possible that integrating those useful clinical information into
the model might further improve the prediction accuracy. Fifth,
we only chose the largest one among multiple lesions for
segmentation and there is a chance that the largest one didn’t
have the highest T stage. But usually larger lesions are supposed
to have higher T stage, and it’s very difficult to make one-to-one
correspondence between the lesion on CT images and the lesion
A

B

FIGURE 5 | Examples of feature maps from validation cohorts and visualization of the effectiveness of the learned features. (A) Two cases from MIBC and two
cases from NMIBC are shown. The active regions were mainly overlaid on the areas with visual characteristics that were helpful for discriminating between MIBC and
NMIBC, including the internal region of the tumor, corresponding bladder wall, and the surrounding outside pelvic fat. (B) Colored points represent the NIMBC (blue)
and MIBC (orange). Effective features were learned by the model, and the two categories of nodules were well clustered. The eight examples show images
corresponding to circled points. Nodules in sets a and c were highly discriminated by the model, whereas nodules in sets b and d were less discriminated because
they shared similar features with the opposite tumor.
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pathologist evaluated, we think choosing the largest one for
analysis is acceptable.

In conclusion, we developed a DL model based on enhanced
CT images to predict muscle invasiveness of BCa. This model
should favorable performance. It could provide more useful
information for individual preoperative evaluation, may
facilitate clinical decision making and improve patient care.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Institutional Review Board of Peking Union
Medical College Hospital and Fushun Central Hospital of
Liaoning Province. Written informed consent for participation
was not required for this study in accordance with the national
legislation and the institutional requirements.
AUTHOR CONTRIBUTIONS

GZ: conception and design, acquisition of data, analysis and
interpretation of data, manuscript drafting and revision, and
Frontiers in Oncology | www.frontiersin.org 9
statistical analysis. ZW: acquisition of data, manuscript drafting
and revision, and administrative and material support. LX:
acquisition of data. XZ: analysis and interpretation of data. DZ:
analysis and interpretation of data. YX: acquisition of data. LM:
analysis and interpretation of data, and statistical analysis. XL:
conception and design, manuscript drafting and revision, and
administrative and material support. JG: acquisition of data.
ZhiJ: administrative and material support. HS: conception and
design, manuscript drafting and revision, administrative and
material support, and supervision. ZheJ: administrative and
material support, and supervision. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by the National Natural Science
Foundation of China [81901742, 91859119], the Natural
Science Foundation of Beijing Municipality [7192176], the
Clinical and Translational Research Project of Chinese
Academy of Medical Sciences [XK320028], and the National
Public Welfare Basic Scientific Research Project of Chinese
Academy of Medical Sciences [2018PT32003, 2019PT320008].
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2021.
654685/full#supplementary-material
REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2020. CA Cancer J Clin
(2020) 70:7–30. doi: 10.3322/caac.21590

2. Svatek RS, Hollenbeck BK, Holmang S, Lee R, Kim SP, Stenzl A, et al. The
Economics of Bladder Cancer: Costs and Considerations of Caring for This
Disease. Eur Urol (2014) 66:253–62. doi: 10.1016/j.eururo.2014.01.006

3. Spiess PE, Agarwal N, Bangs R, Boorjian SA, Buyyounouski MK, Clark PE,
et al. Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in
Oncology. J Natl Compr Cancer Network (2017) 15:1240–67. doi: 10.6004/
jnccn.2017.0156

4. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmstrom PU, Choi W,
et al. Bladder Cancer. Lancet (2016) 388:2796–810. doi: 10.1016/S0140-6736
(16)30512-8

5. Shariat SF, Palapattu GS, Karakiewicz PI, Rogers CG, Vazina A, Bastian PJ,
et al. Discrepancy Between Clinical and Pathologic Stage: Impact on
Prognosis After Radical Cystectomy. Eur Urol (2007) 51:137–49. doi:
10.1016/j.eururo.2006.05.021

6. Mariappan P, Zachou A, Grigor KM, Edinburgh Uro-Oncology G. Detrusor
Muscle in the First, Apparently Complete Transurethral Resection of Bladder
Tumour Specimen Is a Surrogate Marker of Resection Quality, Predicts Risk
of Early Recurrence, and Is Dependent on Operator Experience. Eur Urol
(2010) 57:843–9. doi: 10.1016/j.eururo.2009.05.047

7. Bellmunt J, Orsola A, Leow JJ, Weigel T, Santis MD, Horwich A, et al. Bladder
Cancer: ESMO Practice Guidelines for Diagnosis, Treatment and Follow-Up.
Ann Oncol (2014) 25(Suppl 3):iii40–8. doi: 10.1093/annonc/mdu223

8. Zhang XY, Wang L, Zhu HT, Li ZW, Ye M, Li XT, et al. Predicting Rectal
Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning
of Diffusion Kurtosis Mri. Radiology (2020) 296:56–64. doi: 10.1148/
radiol.2020190936

9. Liu KL, Wu T, Chen PT, Tsai YM, Wang W. Deep Learning to Distinguish
Pancreatic Cancer Tissue From Non-Cancerous Pancreatic Tissue: A
Retrospective Study With Cross-Racial External Validation. Lancet Digital
Health (2020) 2:e303–13. doi: 10.1016/S2589-7500(20)30078-9

10. Dong D, Fang MJ, Tang L, Shan XH, Gao JB, Giganti F, et al. Deep Learning
Radiomic Nomogram Can Predict the Number of Lymph Node Metastasis in
Locally Advanced Gastric Cancer: An International Multicenter Study. Ann
Oncol (2020) 31:912–20. doi: 10.1016/j.annonc.2020.04.003

11. Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, et al. Deep Learning
Radiomics of Shear Wave Elastography Significantly Improved Diagnostic
Performance for Assessing Liver Fibrosis in Chronic Hepatitis B: A
Prospective Multicentre Study. Gut (2019) 68:729–41. doi: 10.1136/gutjnl-
2018-316204

12. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-
End Lung Cancer ScreeningWith Three-Dimensional Deep Learning on Low-
Dose Chest Computed Tomography. Nat Med (2019) 25:954–61. doi:
10.1038/s41591-019-0447-x

13. Cha KH, Hadjiiski L, Chan H-P, Weizer AZ, Alva A, Cohan RH, et al. Bladder
Cancer Treatment Response Assessment in CT Using Radiomics With Deep-
Learning. Sci Rep (2017) 7:8738. doi: 10.1038/s41598-017-09315-w

14. Huang C, Lv W, Zhou C, Mao L, Xu Q, Li X, et al. Discrimination Between
Transient and Persistent Subsolid Pulmonary Nodules on Baseline CT Using
Deep Transfer Learning. Eur Radiol (2020) 30:6913–23. doi: 10.1007/s00330-
020-07071-6

15. Lin TY, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object
Detection. IEEE Trans Pattern Anal Mach Intell (2020) 42:318–27. doi:
10.1109/TPAMI.2018.2858826
June 2021 | Volume 11 | Article 654685

https://www.frontiersin.org/articles/10.3389/fonc.2021.654685/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.654685/full#supplementary-material
https://doi.org/10.3322/caac.21590
https://doi.org/10.1016/j.eururo.2014.01.006
https://doi.org/10.6004/jnccn.2017.0156
https://doi.org/10.6004/jnccn.2017.0156
https://doi.org/10.1016/S0140-6736(16)30512-8
https://doi.org/10.1016/S0140-6736(16)30512-8
https://doi.org/10.1016/j.eururo.2006.05.021
https://doi.org/10.1016/j.eururo.2009.05.047
https://doi.org/10.1093/annonc/mdu223
https://doi.org/10.1148/radiol.2020190936
https://doi.org/10.1148/radiol.2020190936
https://doi.org/10.1016/S2589-7500(20)30078-9
https://doi.org/10.1016/j.annonc.2020.04.003
https://doi.org/10.1136/gutjnl-2018-316204
https://doi.org/10.1136/gutjnl-2018-316204
https://doi.org/10.1038/s41591-019-0447-x
https://doi.org/10.1038/s41598-017-09315-w
https://doi.org/10.1007/s00330-020-07071-6
https://doi.org/10.1007/s00330-020-07071-6
https://doi.org/10.1109/TPAMI.2018.2858826
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Deep Learning for Bladder Cancer
16. Detmer FJ, Chung BJ, Mut F, Slawski M, Hamzei-Sichani F, Putman C, et al.
Development and Internal Validation of an Aneurysm Rupture Probability
Model Based on Patient Characteristics and Aneurysm Location, Morphology,
and Hemodynamics. Int J Comput Assist Radiol Surg (2018) 13:1767–79. doi:
10.1007/s11548-018-1837-0

17. DeLong ER DD, Clarke-Pearson DL. Comparing the Areas Under Two or
More Correlated Receiver Operating Characteristic Curves: A Nonparametric
Approach. Biometrics (1988) 44:837–45. doi: 10.2307/2531595

18. Power NE, Izawa J. Comparison of Guidelines on Non-Muscle Invasive
Bladder Cancer (Eau, CUA, Aua, NCCN, Nice). Bladder Cancer (2016)
2:27–36. doi: 10.3233/BLC-150034

19. Woldu SL, Bagrodia A, Lotan Y. Guideline of Guidelines: Non-Muscle-
Invasive Bladder Cancer. BJU Int (2017) 119:371–80. doi: 10.1111/bju.13760

20. Gurram S, Muthigi A, Egan J, Stamatakis L. Imaging in Localized Bladder
Cancer: Can Current Diagnostic Modalities Provide Accurate Local Tumor
Staging? Curr Urol Rep (2019) 20:82. doi: 10.1007/s11934-019-0948-7

21. Mirmomen SM, Shinagare AB, Williams KE, Silverman SG, Malayeri AA.
Preoperative Imaging for Locoregional Staging of Bladder Cancer. Abdom
Radiol (NY) (2019) 44:3843–57. doi: 10.1007/s00261-019-02168-z

22. Ueno Y, Takeuchi M, Tamada T, Sofue K, Takahashi S, Kamishima Y, et al.
Diagnostic Accuracy and Interobserver Agreement for the Vesical Imaging-
Reporting and Data System for Muscle-Invasive Bladder Cancer: A Multireader
Validation Study. Eur Urol (2019) 76:54–6. doi: 10.1016/j.eururo.2019.03.012

23. Garapati SS, Hadjiiski L, Cha KH, Chan HP, Caolili EM, Cohan RH, et al.
Urinary Bladder Cancer Staging in CT Urography Using Machine Learning.
Med Phys (2017) 44:5814–23. doi: 10.1002/mp.12510

24. Zheng J,Kong J,WuS, Li Y,Cai J, YuH, et al. Development of aNoninvasive Tool
to Preoperatively Evaluate the Muscular Invasiveness of Bladder Cancer Using a
Radiomics Approach. Cancer (2019) 125:4388–98. doi: 10.1002/cncr.32490
Frontiers in Oncology | www.frontiersin.org 10
25. Wang H, Xu X, Zhang X, Liu Y, Ouyang L, Du P, et al. Elaboration of a
Multisequence MRI-Based Radiomics Signature for the Preoperative
Prediction of the Muscle-Invasive Status of Bladder Cancer: A Double-
Center Study. Eur Radiol (2020) 30:4816–27. doi: 10.1007/s00330-020-
06796-8

26. Xu S, Yao Q, Liu G, Jin D, Chen H, Xu J, et al. Combining DWI Radiomics
Features With Transurethral Resection Promotes the Differentiation Between
Muscle-Invasive Bladder Cancer and Non-Muscle-Invasive Bladder Cancer.
Eur Radiol (2020) 30:1804–12. doi: 10.1007/s00330-019-06484-2

27. Xu X, Zhang X, Tian Q, Wang H, Cui LB, Li S, et al. Quantitative
Identification of Nonmuscle-Invasive and Muscle-Invasive Bladder
Carcinomas: A Multiparametric MRI Radiomics Analysis. J Magn Reson
Imaging (2019) 49:1489–98. doi: 10.1002/jmri.26327

Conflict of Interest: LM and XL are employees of Deepwise AI Lab, Deepwise
Inc., which contributed to the development of radiomics models described
in the study.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2021 Zhang, Wu, Xu, Zhang, Zhang, Mao, Li, Xiao, Guo, Ji, Sun and Jin.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums is
permitted, provided the original author(s) and the copyright owner(s) are credited and
that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.
June 2021 | Volume 11 | Article 654685

https://doi.org/10.1007/s11548-018-1837-0
https://doi.org/10.2307/2531595
https://doi.org/10.3233/BLC-150034
https://doi.org/10.1111/bju.13760
https://doi.org/10.1007/s11934-019-0948-7
https://doi.org/10.1007/s00261-019-02168-z
https://doi.org/10.1016/j.eururo.2019.03.012
https://doi.org/10.1002/mp.12510
https://doi.org/10.1002/cncr.32490
https://doi.org/10.1007/s00330-020-06796-8
https://doi.org/10.1007/s00330-020-06796-8
https://doi.org/10.1007/s00330-019-06484-2
https://doi.org/10.1002/jmri.26327
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Deep Learning on Enhanced CT Images Can Predict the Muscular Invasiveness of Bladder Cancer
	Introduction
	Materials and Methods
	Study Population
	CT Imaging
	Tumor Region Segmentation
	Development and Validation of the Model
	Subjective Image Evaluation
	Statistical Analysis

	Results
	Patient Clinical Characteristics
	The Performance Assessment and the Clinical Usefulness of the Model
	The Comparison With Radiologists
	Additional Analysis

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


