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Acute Myeloid Leukemia (AML) is a heterogeneous neoplasm characterized by
cytogenetic and molecular alterations that drive patient prognosis. Currently established
risk stratification guidelines show a moderate predictive accuracy, and newer tools that
integrate multiple molecular variables have proven to provide better results. In this report,
we aimed to create a new machine learning model of AML survival using gene expression
data. We used gene expression data from two publicly available cohorts in order to create
and validate a random forest predictor of survival, which we named ST-123. The most
important variables in the model were age and the expression of KDM5B and LAPTM4B,
two genes previously associated with the biology and prognostication of myeloid
neoplasms. This classifier achieved high concordance indexes in the training and
validation sets (0.7228 and 0.6988, respectively), and predictions were particularly
accurate in patients at the highest risk of death. Additionally, ST-123 provided
significant prognostic improvements in patients with high-risk mutations. Our results
indicate that survival of patients with AML can be predicted to a great extent by applying
machine learning tools to transcriptomic data, and that such predictions are particularly
precise among patients with high-risk mutations.

Keywords: acute myeloid leukemia, cancer, survival, machine learning, gene expression, prognosis
INTRODUCTION

Acute Myeloid Leukemia (AML) is a heterogeneous neoplasm characterized by cytogenetic and
molecular alterations that drive patient prognosis. Currently established AML risk stratification
guidelines, like the European Leukemia Net (ELN) risk classification (1), are based primarily on a
limited number of cytogenetic and molecular variables. However, these guidelines don’t take into
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account the whole mutational profile of AML, the different layers
of biological complexity in the tumor and the complex
intertwining between patient outcomes and the complexity of
molecular interactions. Therefore, there is substantial room for
improving predictions of AML survival. In this report we present
a new machine learning model of AML patient survival based on
gene expression data, which achieves high predictability
independently of high risk mutations.

In the last years, the emergence of artificial intelligence has
brought new expectations to the field of medicine, particularly
for disease diagnosis and prognostication. Machine learning
(ML) is a field of artificial intelligence that performs outcome
prediction based on complex interactions between multiple
variables by making little assumptions about the relationship
between the dependent and independent variables (2). In ML, a
model is trained with examples and not programmed with
human-made rules (3). The implementation of ML-based
survival models is becoming increasingly popular in order to
provide patient-centered risk information that can assist both the
clinician and the patient.

Survival prediction of AML patients has been extensively
improved in the last decades. Several biomarker panels based on
next-generation sequencing of multiple recurrently mutated or
aberrantly expressed genes have been proposed to facilitate
improved prognostic stratification. Although multiple somatic
alterations have been associated with patient outcome, such as
those in NPM1, CEBPA, FLT3, IDH1, IDH2, KIT, WT1 and
RUNX1 (4), only mutations a few mutations are broadly
employed in current clinical routine (5). Multiple studies have
proposed novel biomarker panels and personalized survival
prediction models aimed to improve AML prognostication.
Sherve et al. (6) developed a novel prognostic model that
incorporates clinical, cytogenetic and mutational data to
determine personalized outcomes for each particular patient
(6). In the same line, Patkar et al. (7) created a scoring model
that provides a mechanism to risk stratify AML patients with
mutated NPM1 (7); whereas Gerstung et al. (8) reported
statistical models that can generate personally tailored clinical
decision support from all of the available prognostic information
arising from a knowledge bank of AML cases (8). These studies
evidence that the application of ML to clinical and molecular
data has the potential to predict patient outcomes since the
moment of diagnosis, and therefore it may help to improve
therapeutic strategies in the field of AML.

In the present study, we applied ML algorithms to gene
expression data from AML cases in order to create new
individualized models of survival based on retrospective data,
and to understand their relationship with high-risk mutations.
METHODS

Two databases available in the Gene Expression Omnibus were
used for model training and validation. The GSE37642 database
was used for training, as it contains gene expression data from
Frontiers in Oncology | www.frontiersin.org 2
562 adult patients diagnosed with AML who were treated in the
multicenter phase III AMLCG-1999 trial. Median age was 45
years (range 18-85 years, 32% aged ≥ 65). The GSE68833
database was used for validation, and it contains gene
expression data from 137 adult patients with AML included in
The Cancer Genome Atlas (TCGA) cohort, with a median age of
59 years (range 18-88 years, 33% aged ≥ 65). Both databases used
partially overlapping microarray chips, so that we rank-
normalized the log2-transformed expression estimates and
selected a set of 44,366 common gene expression probes
between both cohorts.

Unsupervised Gene Expression
Clusterization
Briefly, theMclust algorithm (9) was used in order to detect the 2
most likely clusters of patients according to the expression of
each probe (Mclust function, parameter G = 2). Briefly, the
Mclust algorithm determines the most likely set of clusters
according to geometric properties (distribution, volume, and
shape). An expectation-maximization algorithm is used
for maximum likelihood estimation, and the best model
is selected according to Bayes information criteria. The
association of each of these probe-level clusters with overall
survival was calculated using cox regression. Thereafter, those
probes whose clusterization was significantly associated with
survival (Bonferroni adjusted p-value < 0.05) were selected for
multivariate clusterization using the same Mclust algorithm.
Cluster prediction was performed on the test set using
parameters estimated in the training cohort, and cox regression
was used to verify the association of this clusterization with
overall survival. The Shoenfeld’s test was used to assess the
proportional hazards assumption.
Survival Analysis
We analyzed gene expression association with overall survival
using cox regression implemented in R. Assumption of
proportional hazards was checked with Schoenfeld’s method.

Random Forest Survival Analysis
We started our analysis by testing the association of each probe
with overall survival in the training set using multivariate cox
regression. Schoenfeld’s method was used to assess the
proportional hazards assumption.

Random forest survival models were created with the rfsrc
function implemented in the randomForestSRC package in R
(10). We decided to use this type of model because, in contrast
with deep networks, random forest can quantify the relative
importance of each variable, and thus enable the filtering of low-
importance variables for model reduction and performance
improvement. Parameter tuning was performed using the
tune.rfscr function, which optimizes the mtry and nnodes
variables. Random forests were implemented on survival data
of the training cohort. Bootstrapping without replacement was
performed with the default by.node protocol. Continuous rank
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probability score (CRPS) was calculated as the integrated Brier
score divided by time, and represents the average squared
distances between the observed survival status and the
predicted survival probability at each time point. CRPS is
always a number between 0 and 1, being 0 the best possible
result. Survival prediction on the test cohort was performed
using the predict.rfsrc function with default parameters. Harrel’s
concordance index (c-index) was used to assess model
discriminative power on the bootstrapped training set and on
the test set. C-index reflects to what extent a model predicts the
order of events (e.g., deaths) in a cohort. C-indexes below 0.5
indicate poor prediction accuracy, c-indexes near 0.5 indicate
random guessing and c-indexes of 1 represent perfect prediction.

Variable selection was selected by fitting age-adjusted cox
regression models of overall survival in the training set. We
initially analyzed different sets of genes in order to select the best
input sets. Afterwards, we selected different sets of genes
according to their multiple testing adjusted p-values; either
False Discovery Rate (FDR) or Bonferroni-adjusted p-values
below 0.01, 0.05, 0.1. Variable reduction was performed by
iteratively removing those variables with low importance.
Variable importance was calculated with the vimp function,
and we iteratively removed those samples with negative or low
weight (importance < 1 × 10−4). We replicated the models in the
independent set.
RESULTS

Model Selection
We created six different survival models by taking into
consideration different sets of transcripts at various thresholds
of statistical significance. Importantly, all models achieved
c-indexes > 0.67 in both the training and the validation sets.
The best model contained 123 variables (absolute age, age ≥ 65,
and the expression of 121 probes) (Supplementary Table 1). We
name this model Stellae-123 (ST-123). ST-123 achieved
c-indexes of 0.7228 in the training set and 0.6988 in the test
set, indicating a high reproducibility of the personalized risk
prediction (Figures 1A, B). Apart from age, the most important
variables in ST-123 were the expression of KDM5B and
LAPTM4B (Supplementary Table 2).
Performance of ST-123 Over Time
The predictive accuracy of ST-123 was sustained over time, as
reflected by the similar c-indexes obtained at 5 years of follow-up.
Furthermore, mortality predictions were more accurate among
those patients at high-risk of death according to the model.
Additionally, CRPS plots indicate a rapid loss of predictability in
the first days after diagnosis followed by an stabilization of
survival predictions over time (Figure 1C). Indeed, c-indexes
were less predictive for patients who died in the first days since
diagnosis (Table 1). (ST-123 could clearly stratify patients in 4
different quartiles with different and reproducible mortality rates
(Figures 2A, B).
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ST-123 Performance in Patients With
High-Risk Mutations
We tested the performance of the classifier in patients with
high risk mutations in the TCGA cohort (validation set). We
selected cases harboring TP53 mutation and/or deletion (16
patients), RUNX1mutation (14 patients) and ASXL1mutation
(6 patients) (1). We didn’t include FLT3-ITD cases because
this mutation type was not reported in the TCGA cohort.
Using two-year survival predictions, we could observe a
statistically significant association with overall survival
within these high-risk patients (p-value 4.04 x 10-4, age-
adjusted p-value 2.16x 10-3) (Figure 2C). Indeed, both cox
models achieved high concordance measures: c-indexes of
0.774 (standard error 0.052) and 0.767 (standard error
0.042), respectively.
DISCUSSION

The concordance measure of ST-123 is substantially superior to
that described for the ELN risk classification (0.59) (6), which
suggests an increased performance. Furthermore, ST-123
seems particularly useful to better stratify high-risk patients.
These results are in line with other ML-based models of
survival based on mutational data described so far (8), which
emphasizes the possibility of improving risk stratification in
AML by implementing artificial intelligence. Although other
prognostic models, such as that published by Sherve et al. (6),
report a higher predictive accuracy, these also incorporate
several baseline clinical variables. Indeed, CRPS plots indicate
that the highest loss of prediction accuracy in our model occurs
early after disease diagnosis, which reflects the fact that clinical
variables are the main predictors of early mortality in AML (8).
On the contrary, we can see how the CRPS curve of our model
rapidly reaches a plateau, maintaining values ∿0.15 for long
periods of time, reflecting the stability of the predictions over
time. It seems reasonable that the incorporation of clinical
variables (such as performance status and leukocytosis) will
improve the overall predictive accuracy of ST-123 by
identifying those patients at risk of early death. On the
contrary, little contribution of mutations to gene expression
patterns has been observed in myelodysplastic syndromes, and
this issue needs to be addressed in AML (11).

It has been hypothesized that a better risk stratification
based on the integration of different layers of clinical and
biological complexity could, for example, reduce the number
of allogeneic stem cell transplants performed in patients with
AML by 20-25% while maintaining the same overall survival
rate as that with the current treatment recommendations (8). In
the same line, high-risk older patients might benefit from
innovative drugs and drug combinations (12). This could
help to restrict the most aggressive or innovative treatments
to those AML patients who really are at the highest risk of
death. Therefore, it becomes increasingly important to
incorporate these new personalized models of survival in the
risk stratification of AML, rather than keep relying on imperfect
March 2021 | Volume 11 | Article 657191
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predefined risk groups. There is a need to analyze all
these predictors in systematic and independent cohorts in
order to provide further evidence about their effectiveness,
and also to potentially integrate their individual predictive
accuracies in more precise estimations of patient outcomes
(13). Importantly, accumulated experience indicates that
dichotomized molecular classifiers in AML can be reproduced
in an unbiased and independent approach (14), but further
efforts need to be made to compare the performance of
personalized predictors such as ours.

From a biological point of view, the most important genes in
ST-123 were KDM5B and LAPTM4B. Not surprisingly, both genes
are deeply vinculated with carcinogenesis. KDM5B (Lysine
Demethylase 5B) encodes a master epigenetic regulator of H3K4
methylation that regulates the expression of several oncogenes and
Frontiers in Oncology | www.frontiersin.org 4
tumor suppressors during carcinogenesis (15). KDM5B
downregulates the oncogenic potential of leukemic stem cells by
inducing H3K4-specific demethylation in murine and human
MLL-rearranged AML cells , thereby promoting cell
differentiation (16). Indeed, the KDM5B protein is the target of
various inhibitors that are under study for the treatment of cancer
(17). In the same line, the oncogene LAPTM4B (Lysosomal
Protein Transmembrane 4 Beta) plays several roles in
carcinogenesis, such as promoting tumor growth and metastasis,
inhibiting apoptosis, initiating autophagy and driving multidrug
resistance mechanisms (18). Interestingly, the expression of
LTPM4B has been shown to be prognostic in myelodysplastic
syndromes and in different types of solid tumors (19, 20).

In conclusion, our results indicate that survival of
patients with AML can be predicted by applying ML tools to
A B

C

FIGURE 1 | Predicted individual survival curves according to the best random forests model. (A) Out-of-bag survival curves predicted for patients within the training
cohort. The thick red line represents overall ensemble survival and the thick green line indicates the Nelson-Aalen estimator. (B) Individual survival curves predicted
for patients within the test cohort. The thick red line represents overall ensemble survival. (C) Representation of out-of-bag CRPS over time. Red line is the overall
CRPS. Additionally, stratified CRPS by quarters of predicted ensemble mortality are provided. Vertical lines above the x axis represent death events.
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transcriptomic data, and that such predictions are
particularly precise among patients with high-risk mutations.
Frontiers in Oncology | www.frontiersin.org 5
The possibility to enrich transcriptomic models such as ours with
clinical and mutational data will lead to a more precise and
holistic prediction of AML survival, paving the way for the
development of new personalized treatment strategies.
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FIGURE 2 | Kaplan-Meyer plots representing the survival of patients depending on their classification to each quartile of predicted survival by ST-123 in the training
(A) and validation (B) cohorts. (C) Kaplan-Meyer plots representing the outcomes of patients affected by high-risk mutations (TP53 mutation/deletion, ASXL1
mutation or RUNX1 mutation) depending on their classification to the upper or lower median of predicted mortality by ST-123 in the validation set.
TABLE 1 | C-indexes of ST-123 after restricting the analysis to different time
points since diagnosis.

Days since diagnosis C-index (Training set) C-index (Test set)

<10 68.65 59.66
<20 70.13 59.54
<30 71.88 60.19
<60 73.86 62.13
<100 74.06 63.11
>100 71.94 69.17
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González Peŕez, Antelo Rodrıǵuez, Alonso Vence, Bao Peŕez, Ferreiro Ferro,
Albors Ferreiro, Abuín Blanco, Fontanes Trabazo, Cerchione, Martinnelli,
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