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Objectives: The aim of this study was to establish and validate a radiomics nomogram for
predicting meningiomas consistency, which could facilitate individualized operation
schemes-making.

Methods: A total of 172 patients was enrolled in the study (train cohort: 120 cases, test
cohort: 52 cases). Tumor consistency was classified as soft or firm according to Zada’s
consistency grading system. Radiomics features were extracted from multiparametric
MRI. Variance selection and LASSO regression were used for feature selection. Then,
radiomics models were constructed by five classifiers, and the area under curve (AUC)
was used to evaluate the performance of each classifiers. A radiomics nomogram was
developed using the best classifier. The performance of this nomogram was assessed by
AUC, calibration and discrimination.

Results: A total of 3840 radiomics features were extracted from each patient, of which
3719 radiomics features were stable features. 28 features were selected to construct the
radiomics nomogram. Logistic regression classifier had the highest prediction efficacy.
Radiomics nomogram was constructed using logistic regression in the train cohort. The
nomogram showed a good sensitivity and specificity with AUCs of 0.861 and 0.960 in
train and test cohorts, respectively. Moreover, the calibration graph of the nomogram
showed a favorable calibration in both train and test cohorts.

Conclusions: The presented radiomics nomogram, as a non-invasive prediction tool,
could predict meningiomas consistency preoperatively with favorable accuracy, and
facilitated the determination of individualized operation schemes.

Keywords: machine learning, consistency, meningioma, nomogram, radiomics
INTRODUCTION

Meningioma is one of the most common intracranial tumors, with an incidence of 7.86 cases per
100,000 people per year (1). It can arise from any area where arachnoid cap cells are present.
Current treatment options for meningioma include observation, surgery and radiosurgery (2).
Though, radiosurgery may be a good choice for small tumor (<2 cm) (3), surgical resection is
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considered the primary treatment for patients with symptomatic
meningiomas (4). However, the operative safe requires a
thoroughly preoperative understanding of tumor characteristics
and surgical anatomy.

The tumor consistency is one of the most important
characteristics that affect surgical difficulty and degree of
resection (5). Soft tumors can be removed by means of
cutting and suctioning. However, firm tumors are more
difficult to be removed, especially skull base meningiomas (6).
More surgical instruments, such as ultrasonic aspiration,
electrophysiological monitoring, and intraoperative
navigation are needed. Thus, it is of vital importance to
develop a noninvasive preoperative technique to predict
tumor consistency. Previously, tumor consistency was
predicted according to the signal intensity of T2 weighted
images or Fluid attenuated inversion recovery images, but the
accuracy was low (7). Radiomics has been considered as a
potent approach for noninvasive high-throughput mining of
tumor characteristics, which has been applied in many tumors,
such as pituitary adenomas, gliomas (8, 9). Nonetheless, few
studies have focused on radiomics signatures to predict
meningioma consistency. Consequently, the current study
aimed to establish a radiomics model for preoperative
prediction of meningiomas’ consistency.
METHODS

Patients
From January 2019 to May 2020, a total of 172 patients with
meningiomas undergoing open craniotomy at the First Affiliated
Hospital of Zhengzhou University were included in this study.
The inclusion criteria were as follows: 1) meningioma diagnosis
was confirmed by pathological report, 2) medical and imaging
records were complete, 3) no history of medical treatment for
meningioma. Excluding criteria were as follow: 1) incomplete
medical records, 2) poor image quality, 3) preoperative treatment
such as radiotherapy. The study was approved by the medical
ethics committee of the First Affi l iated Hospital of
Zhengzhou University.

The patients were divided randomly into train cohort
(n=120), which was used for model building, and test cohort
(n=52), which was used for model validation. The following
patients’ data were collected: clinical features (gender, age),
conventional imaging features (tumor location, edema
surrounding meningioma, CSF space surrounding
meningioma), and pathology feature (WHO grade). The
general characteristics of patients were displayed in Table 1.
After surgery, the tumor consistency was classified as soft or
firm according to Zada’s consistency grading system (10). Soft
meningiomas were defined as those amenable to be removed
totally or mainly with suction, which corresponding to Grade 1
and Grade 2 of Zada’s consistency grading system. Firm
meningiomas were defined as those required sharp resection,
ultrasonic aspiration or with calcified lesions, which
corresponding to Grade 3, Grade 4 ad Grade 5 of Zada’s
Frontiers in Oncology | www.frontiersin.org 2
consistency grading system. We reviewed the surgical videos
and operative recordings to determine the tumor consistency.

MR Imaging Acquisition
and Preprocessing
All patients underwent head MR imaging scan before surgery.
Imaging was conducted on three models of MRI scanners,
including Prisma, TrioTim and Verio (Siemens Healthineers,
Erlangen, Germany). The MR imaging protocol included T1-
weighted contrast-enhanced imaging (T1C), T2-weighted
imaging (T2WI), Fluid attenuated inversion recovery imaging
(FLAIR), Apparent diffusion coefficient imaging (ADC). The
T1C sequence was acquired with the following range of
parameters: repetition time (TR)/echo time (TE), 163-250/
2.46-2.48msec; slice thickness, 5mm; spacing between slices,
6.50-6.75mm. The T2 sequence was acquired with the
following range of parameters: TR/TE, 3900-5220/92-150msec;
slice thickness, 5mm; spacing between slices, 6.50-6.75mm. The
FLAIR sequence was acquired with the following range of
parameters: TR/TE, 5000-8000/79-94msec; slice thickness,
5mm; spacing between slices, 6.50-6.75mm. The ADC
sequence was acquired with the following range of parameters:
TR/TE, 3000-4600/81-102msec; slice thickness, 5mm; spacing
between slices, 6.50-6.75mm.

Preprocessing was performed in 3D-Slicer software (v4.9.0).
First, image registration was performed to register T2WI, FLAIR,
ADC sequence images to the T1C sequence images for each
patient. Next, N4 bias field correction was applied to each
sequence images to correct intensity non-uniformities.

Tumor Segmentation and
Feature Extraction
The region of interest (ROI) was manually drawn on T1C
imaging by two neuroradiologists independently, using 3D-
Slicer software. The neuroradiologists were blinded to the
clinical data. The extraction of radiomic features was
performed by using PyRadiomics package, which was an open-
TABLE 1 | General characteristics of patients.

Train cohort (n=120) Test cohort (n=52)

Soft Firm P value Soft Firm P value

Age (mean, years) 52.8 52.4 0.86 53.3 55.5 0.62
Gender
Male 7 18 0.90 2 10 0.75
Female 23 72 6 34

Location
Left 10 36 0.66 3 17 0.90
Right 15 44 3 19
Midline 5 10 2 8

Peritumoral edema
No 22 57 5 27

CSF space surrounding tumor
Yes 17 51 1.0 5 29 0.83
No 13 39 3 15

WHO grade
WHO I 29 80 0.36 7 39 0.61
WHO II 1 10 1 5
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source python package for the extraction of radiomics features
from medical imaging. The detail parameter settings of feature
extraction were provided in the Supplementary Document. To
avoid data heterogeneity bias, all MRI data were normalized (the
intensity of image was scaled to 0-100) and resampled to the
same resolution (3*3*3mm) before feature extraction. For each
imaging sequence, three image types (original, Laplacian of
Gaussian (LoG), wavelet) were applied, and six feature classes
(shape, first order statistics, gray level cooccurrence matrix
(glcm), gray level run length matrix (glrlm), gray level size
zone matrix (glszm), gray level dependence matrix (gldm))
were calculated, which resulted in a total of 960 radiomic
features (14 shape features, 18 first-order statistics features, 68
texture features, 172 LoG features, and 688 wavelet features). For
each patient, a total of four imaging sequences were calculated,
which generating 3840 radiomic features. Intraclass correlation
coefficients (ICCs) analysis was performed on the two sets of
ROIs, which were drawn by the two neuroradiologists. We
defined the radiomic features with ICCs > 0.8 as stable
features, which would be used in further analysis.

Feature Selection and Establishment of
Prediction Model
To avoid overfitting, feature selection was performed before model
establishment. Features were selected by a two-stage process based
on the radiomic features extracted by PyRadiomcs package. First,
variances of each feature between soft and firm cases were calculated
by t-test (11). Then, the features whose p-values of t-test were less
than 0.05 were further analyzed by the least absolute shrinkage and
selection operator (LASSO) regression algorithm. 10-fold cross-
validation with a maximum area under the curve (AUC) criterion
was performed to find the optimal l. Finally, the features with non-
zero coefficients were used to construct the prediction model, and
the corresponding non-zero coefficients were defined as the Rad-
score. The radiomics signature for each patient was generated using
the linear combination of the values of selected features that were
weighted by the Rad-score.

We applied five supervised machine-learning algorithms to
establish the prediction model, including Random Forest (RF),
K-nearest Neighbor (KNN), Support Vector Machine (SVM),
Logistic Regression (LR), Adaboost Classifier (Ada), which
generated 5 prediction models.

Predictive Performance of Model
The test cohort was applied to evaluate performance of the
model. The performance of both train and test cohorts was
evaluated using AUC, sensitivity, specificity, and accuracy. The
model with the highest AUC in test cohort was established as the
final prediction model. The flowchart of this study is shown in
Figure 1.

Statistical Analysis
Differences in clinical characteristics between train and test
cohort were assessed by Student’s t-test or chi-square test, as
appropriate, and a two-sided p-value < 0.05 was considered
Frontiers in Oncology | www.frontiersin.org 3
FIGURE 1 | The flowchart of our study.
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statistically significant. Statistical analysis was conducted in
Python (v3.7.6) and R software (v4.0.0).
RESULTS

Patient Clinical Characteristics
A total of 172 patients were included in the study (120 cases in
the train cohort, 52 cases in the test cohort). No significant
differences between the soft and firm groups were detected in
age, gender, tumor location, peritumoral edema, CSF space
surrounding tumor and WHO grade.
Frontiers in Oncology | www.frontiersin.org 4
Feature Selection and Radiomic Machine-
Learning Classifier Selection
In total, 3840 radiomics features were extracted in this study.
3719 radiomics features were stable features after being selected
by ICCs. Finally, through variances selection and LASSO
regression algorithm, 28 features were selected. The details of
the selected features were shown in Table 2. The selected
radiomics features were statistically different between the two
tumor consistencies.

The performances of the five prediction models were shown
in Table 3. Notably, the LR and Ada models performed well in
the validation, with AUCs of 0.83 and 0.82, respectively. The
sensitivities of LR and Ada models were 0.91 and 0.89 in the test
TABLE 2 | The details of selected radiomics features.

Class Feature name Feature type Sequence Soft Firm p-value

Log filter (sigma=5.0mm) glszm_GrayLevelNonUniformityNormalized Texture CET1 0.3152 ± 1.0513 -0.1098 ± 0.9469 0.0183
LLH wavelet filter gldm_DependenceVariance Wavelet CET1 0.4287 ± 1.4918 -0.1169 ± 0.7826 0.0355
LHL wavelet filter firstorder_Minimum Wavelet CET1 0.3146 ± 0.8763 -0.0993 ± 1.0174 0.0239
LHL wavelet filter glszm_GrayLevelNonUniformityNormalized Wavelet CET1 0.2645 ± 1.0801 -0.1028 ± 0.9171 0.0379
LHH wavelet filter glcm_MaximumProbability Wavelet CET1 0.3129 ± 1.1039 -0.0927 ± 0.9607 0.0277
HLL wavelet filter firstorder_Entropy Wavelet CET1 -0.2845 ± 1.1074 0.0980 ± 0.9413 0.0351
HLL wavelet filter firstorder_Uniformity Wavelet CET1 0.3099 ± 1.1197 -0.1033 ± 0.9389 0.0231
HLL wavelet filter glszm_LargeAreaLowGrayLevelEmphasis Wavelet CET1 0.4034 ± 1.6223 -0.1508 ± 0.5664 0.045
HLH wavelet filter firstorder_Mean Wavelet CET1 -0.3336 ± 1.0352 0.0725 ± 0.9484 0.0237
HHL wavelet filter glrlm_ShortRunEmphasis Wavelet CET1 -0.3436 ± 1.2254 0.0965 ± 0.9164 0.045
HHL wavelet filter gldm_DependenceVariance Wavelet CET1 0.4039 ± 1.5169 -0.1109 ± 0.7745 0.0498
HHH wavelet filter firstorder_Maximum Wavelet CET1 -0.3615 ± 0.6751 0.1149 ± 1.0500 0.0012
Original glszm_SmallAreaHighGrayLevelEmphasis Texture T2WI 0.2909 ± 1.2717 -0.0770 ± 0.9037 0.0459
Log filter (sigma=3.0mm) firstorder_Mean Histogram T2WI -0.5663 ± 0.9451 0.1659 ± 0.9639 0.0001
LHL wavelet filter firstorder_Median Wavelet T2WI -0.3615 ± 1.1908 0.0972 ± 0.9249 0.0125
HLL wavelet filter firstorder_Median Wavelet T2WI -0.3454 ± 1.0061 0.0841 ± 0.9758 0.0185
HLL wavelet filter firstorder_Skewness Wavelet T2WI 0.3982 ± 1.0452 -0.1097 ± 0.9685 0.0056
HLL wavelet filter glcm_Correlation Wavelet T2WI 0.3704 ± 1.0205 -0.1194 ± 0.9641 0.007
LLL wavelet filter firstorder_10Percentile Wavelet T2WI 0.2768 ± 0.8975 -0.0912 ± 1.0122 0.0443
Original glrlm_LongRunHighGrayLevelEmphasis Texture T2flair 0.3360 ± 1.1224 -0.0834 ± 0.9445 0.0218
Original glszm_HighGrayLevelZoneEmphasis Texture T2flair 0.3152 ± 1.2024 -0.0777 ± 0.9196 0.0319
Log filter (sigma=3.0mm) glcm_ClusterShade Texture T2flair 0.3666 ± 1.1785 -0.1018 ± 0.9300 0.0109
LLH wavelet filter firstorder_Median Wavelet T2flair -0.3452 ± 1.2631 0.1007 ± 0.9009 0.0475
HHH wavelet filter firstorder_Mean Wavelet T2flair 0.2956 ± 0.8445 -0.0713 ± 1.0252 0.045
LHL wavelet filter firstorder_Skewness Wavelet ADC 0.3221 ± 1.0248 -0.0928 ± 0.9849 0.0244
HLL wavelet filter firstorder_Skewness Wavelet ADC 0.3258 ± 1.0802 -0.1050 ± 0.9557 0.0183
HLH wavelet filter firstorder_Median Wavelet ADC 0.2946 ± 0.7405 -0.1275 ± 0.9200 0.0102
HLH wavelet filter firstorder_Skewness Wavelet ADC -0.2725 ± 1.1742 0.0911 ± 0.9284 0.0467
May 202
1 | Volume 11 | Article
TABLE 3 | The performances of five prediction models.

Comparisons Cohorts RF KNN SVM LR Ada

AUC Train 1.0 0.95 1.0 0.89 1.0
Test 0.56 0.67 0.73 0.83 0.82

Sensitivity Train 1.0 0.91 1.0 0.87 1.0
Test 1.0 0.84 0.95 0.91 0.89

Specificity Train 1.0 0.99 1.0 0.92 1.0
Test 0.13 0.50 0.50 0.75 0.75

Accuracy Train 1.0 0.95 1.0 0.89 1.0
Test 0.87 0.79 0.88 0.88 0.87

F1-score Train 1.0 0.95 1.0 0.89 1.0
Test 0.93 0.87 0.93 0.93 0.92
65
RF, Random Forest; KNN, K-nearest Neighbor; SVM, Support Vector Machine; LR, Logistic Regression; Ada, Adaboost Classifier; AUC, Area Under the Curve.
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cohort, respectively, and the accuracies were 0.88 and 0.87 in the
test cohort, respectively, the F1-scores were 0.93 and 0.92 in
the test cohort, respectively. It revealed that LR model
performed best.

Evaluation of Radiomics Signature and
Clinical Risk Factors
The radiomics signatures for each patient in train and test
cohorts were calculated. The formula of radiomics signatures
was presented in Supplementary Document. The soft tumors
presented lower radiomics signatures than firm tumors (see
Figure 2). The mean radiomics signature of soft tumor in train
cohort was -0.286, which was significantly lower than that offirm
tumor (0.075, p<0.001). In test cohort, the mean radiomics
signatures of soft and firm tumors were -0.311 and 0.122,
respectively (p<0.001). Radiomics signature and clinical factors
were further analyzed using logistic regression to identified the
independent predictors of meningioma consistency. The
univariate logistic regression showed that only radiomics
signature was the significant prediction factor. The logistic
regression results were listed in Table 4. It showed that only
radiomics signature was the independent predictor.
Frontiers in Oncology | www.frontiersin.org 5
Radiomics Nomogram Construction
and Validation
Based on the logistic regression, a radiomics nomogram was
constructed to make it easier to use clinically (see Figure 3).
According to the radiomics signature, the probability of firm
meningioma was obtained. The ROC curve was used to evaluate
the sensitivity and specificity of the nomogram (see Figure 4).
The nomogram showed a good sensitivity and specificity with
AUCs of 0.861 and 0.960 in train and test cohorts, respectively.
Moreover, the calibration graph of the nomogram showed a
favorable calibration in both train and test cohorts (see Figure 4).
These findings revealed the satisfying ability of the radiomics
nomogram to classify meningiomas consistency.

Figure 5 showed the flowchart of prediction. We wrote a
python script to facilitate radiomics signature calculation, which
was provided in the Supplementary Document.
DISCUSSION

Meningiomas are intracranial extra-axial lesion, which are primarily
managed by operation. About 40% of meningiomas patients can
achieve Simpson I resection, while 35% achieve Simpson II (12). It
has been reported that the risk factors of incomplete resection are
skull-base location, bone invasion, firm consistency, adhesion to
vessels (13). Multiple studies have reported the significance of
meningiomas’ consistency to determine surgical planning and
length of operation time. Especially for meningiomas in skull base
area, firm tumor may need more instruments, such as ultrasonic
aspirator. Therefore, determination of meningiomas consistency
before surgery is important to make the operation plan, avoid the
multistage surgical procedure.

There have been several studies that make efforts to predict
the consistency of meningiomas. Most of the literatures predict
tumor consistency utilizing the conventional MRI techniques.
Many studies have reported that hyperintensity on T2WI was
associated with soft consistency (14). However, Kashimura et al.
A B

FIGURE 2 | Radiomics signature for each patient in the train cohort (A) and test cohort (B). The red bars show the radiomics signature values for the soft
meningiomas, and the blue bars show the values for the firm meningiomas.
TABLE 4 | The logistic regression results of radiomics signature and clinical risk
factors.

Univariate logistic regression

OR (95%CI) P value

Gender (female vs male) 1.074 (0.712-1.367) 0.851
Age 0.987 (0.960-1.014) 0.343
Peritumoral edema (yes vs
no)

0.954 (0.520-1.747) 0.877

Tumor location (right side or
middle vs left side)

0.947 (0.599-1.496) 0.816

CSF space surrounding
tumor (yes vs no)

1.094 (0.607-1.974) 0.764

Radiomics signature 1407.372 (202.969-13879.683) <0.001
May 2021 | Volume 11 | Article 657288
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FIGURE 3 | Radiomics nomogram for the meningiomas consistency. As an example, if one patient had the radiomics signature of -0.2, the corresponding total
points was about 46, which corresponding to a 30% probability of a firm meningioma. That’s to say, using the nomogram, the patient’s meningioma consistency
was predicted to be soft before surgery.
A B

C D

FIGURE 4 | The performance evaluation of the radiomics nomogram. (A) the ROC curve in train cohort; (B) the ROC curve in test cohort; (C) the calibration curve in
train cohort; (D) the calibration curve in test cohort.
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reported that there was no association between T2WI intensity
and consistency (15). Romani et al. also reported negative results
using T1WI, T2WI or FLAIR sequences (16). Both of sensitivity
and specificity were low using the conventional MRI prediction
method, which providing limited information of consistency
before the operation.

Radiomics is a new area of study in which quantitative and high-
throughput data are extracted, processed and analyzed to explore
their relationships with valuable information. Radiomics technique
and machine learning algorithm have been widely used in many
tumors’ differential diagnosis and consistency prediction before
operation (17–20). Yang Zhang et al. developed a radiomics
model that could be used in discrimination of lesions located in
the anterior skull base (8). In glioblastoma, Xi Zhang reported a
radiomics nomogram including 25 selected features, which
performing better than clinical risk factors in survival
stratification, and the C-index reached up to 0.974 (21).

Only one article that using radiomics features to predict
meningiomas consistency was published (22). The author
established a model with the Naive Bayes algorithm with an
AUC of 0.961. However, the enrolled cases were few, and the
model was not validated in the test group, which reduced the
Frontiers in Oncology | www.frontiersin.org 7
reliability. In our study, we have certain advantages. Firstly, a
total of 172 patients were enrolled. The large sample size
provided reliable results. Secondly, the patients were divided
into train and test cohorts. The prediction model was validated in
test group for internal validation. The result showed that the
AUC in test cohorts was up to 0.960, which meaning that the
constructed model can successfully classify soft and firm
meningiomas. Thirdly, the model displayed good calibration
and discrimination. Fourth, we provided a python script,
which could calculate the radiomics signature conveniently.
With the help of radiomics nomogram, neurosurgeon can get
the consistency prediction result accurately.

This study also had some limitations. First, although we had
validated the model in the test cohort, this was not a multicenter
study. More prospective datasets are needed for independent
verification of the robustness and repeatability of the radiomics
nomogram. Second, the patients’MRI imaging were acquired by
different scanners, which would increase the data heterogeneity
bias. To avoid it, all MRI imaging were subjected to imaging
normalization before feature extraction. Finally, although
variance selection and LASSO regression methods were highly
efficient, they may be less stable when huge number of features
A B

FIGURE 5 | The example flowchart of prediction. (A) after ROI delineating, image preprocessing, the value of radiomics signature was 0.3444, which
was calculated by the python script including radiomics extraction and model calculation. The result corresponded to >90% probability of a firm
consistency. Thus, the meningioma consistency was predicted to be firm, which was confirmed in surgery. (B) the radiomics signature was -0.2181,
which corresponding to a 30% probability of a firm consistency. Thus, the meningioma consistency was predicted to be soft, which was confirmed
in7nbsp;surgery.
May 2021 | Volume 11 | Article 657288
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were involved in the model. Other feature selection methods
should be investigated in the future work.

In conclusion, our study developed and validated a radiomics
nomogram based on the multiparametric MRI imaging. The
radiomics nomogram demonstrated a favorable predictive
accuracy of meningiomas consistency before surgery, which
showing the potential of clinical application.
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