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Breast cancer (BC) is the primary threat to women’s health, and early diagnosis of breast
cancer is imperative. Although there are many ways to diagnose breast cancer, the gold
standard is still pathological examination. In this paper, a low dimensional three-channel
features based breast cancer histopathological images recognition method is proposed to
achieve fast and accurate breast cancer benign and malignant recognition. Three-channel
features of 10 descriptors were extracted, which are gray level co-occurrence matrix on
one direction (GLCM1), gray level co-occurrence matrix on four directions (GLCM4),
average pixel value of each channel (APVEC), Hu invariant moment (HIM), wavelet
features, Tamura, completed local binary pattern (CLBP), local binary pattern (LBP),
Gabor, histogram of oriented gradient (Hog), respectively. Then support vector machine
(SVM) was used to assess their performance. Experiments on BreaKHis dataset show
that GLCM1, GLCM4 and APVEC achieved the recognition accuracy of 90.2%-94.97% at
the image level and 89.18%-94.24% at the patient level, which is better than many state-
of-the-art methods, including many deep learning frameworks. The experimental results
show that the breast cancer recognition based on high dimensional features will increase
the recognition time, but the recognition accuracy is not greatly improved. Three-channel
features will enhance the recognizability of the image, so as to achieve higher recognition
accuracy than gray-level features.

Keywords: breast cancer, histopathological images recognition, feature extraction, low dimensional features,
three-channel features
INTRODUCTION

Cancer has become one of the major public health problems that seriously threaten the health of
people. The incidence and mortality of breast cancer have been rising continuously in recent years.
Early accurate diagnosis is the key to improve the survival rate of patients. Mammogram is the first
step of early diagnosis, but it is difficult to detect cancer in the dense breast of adolescent women,
and the X-ray radiation poses a threat to the health of patients and radiologists. Computed
tomography (CT) is a localized examination, which can not be used to judge that a patient is
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suffering from breast cancer according to the observed
abnormalities. The gold standard for breast cancer diagnosis is
still pathological examination. Pathological examinations usually
obtain tumor specimens through puncture, excision, etc. And
then stain them with hematoxylin and eosin (H&E) stains.
Hematoxylin binds deoxyribonucleic acid (DNA) to highlight
the nucleus, while eosin binds proteins and highlights other
structures. Accurate diagnosis of breast cancer requires
experienced histopathologists, and it requires a lot of time and
effort to complete this task. In addition, the diagnosis results of
different histopathologists are not the same, which strongly
depends on the prior knowledge of histopathologists. It
resulting in lower diagnosis consistency, and the average
diagnosis accuracy is only 75% (1).

Currently, breast cancer diagnosis based on histopathological
images is facing three major challenges. Firstly, there is a
shortage of experienced histopathologists around the world,
especially in some underdeveloped areas and small hospitals.
Secondly, the diagnosis of histopathologist is subjective and there
is no objective evaluation basis. Whether the diagnosis is correct
or not depends entirely on the histopathologists’ prior
knowledge. Thirdly, the diagnosis of breast cancer based on
histopathological images is very complicated, time-consuming
and labor-intensive, which is inefficient in the era of big data. In
face of these problems, an efficient and objective breast cancer
diagnosis method is urgently needed to alleviate the workload
of histopathologists.

With the rapid development of computer-aided diagnosis
(CAD), it has been gradually applied to the clinical field. The
CAD system cannot completely replace the doctor, but it can be
used as a “second reader” to assist doctors in diagnosing diseases.
However, there are many false positive areas detected by the
computer, which will take a lot of time of doctors to re-evaluate
the results prompted by the computer, resulting in a decrease in
the accuracy and efficiency. Therefore, how to improve the
sensitivity of computer-aided tumor detection method, while
greatly reducing the false positive detection rate, improve the
overall performance of the detection method is a subject to
be studied.

In recent years, machine learning has been successfully
applied to image recognition, object recognition, and text
classification. With the advancement of computer-aided
diagnosis technology, machine learning has also been
successfully applied to breast cancer diagnosis (2–8). There are
two common methods, histopathological images classification
based on artificial feature extraction and traditional machine
learning methods, and histopathological images classification
based on deep learning methods. Histopathological images
classification based on artificial feature extraction and
traditional machine learning methods needs manual design of
features, but it does not require equipment with high
performance and has advantages in computing time. However,
histopathological images classification based on deep learning,
especially convolutional neural network (CNN), often requires a
large number of labeled training samples, while the labeled data
is difficult to obtain. The labeling of lesions is a time-consuming
Frontiers in Oncology | www.frontiersin.org 2
and laborious work, which takes a lot of time even for very
experienced histopathologists.

The key of traditional histopathological images classification is
feature extraction. The common features include color features,
morphological features, texture features, statistical features etc.
Spanhol et al. (9) introduced a publicly available breast cancer
histopathology dataset (BreaKHis), and they extracted LBP, CLBP,
gray level co-occurrence matrix (GLCM), Local phase quantization
(LPQ), parameter-free threshold adjacency statistics (PFTAS) and
one keypoint descriptor named ORB features, and 1-nearest
neighbor (1-NN), quadratic linear analysis (QDA), support vector
machines (SVMs), and random forests (RF) were used to assess the
aforementioned features, with an accuracy range from 80% to 85%.
Pendar et al. (10) introduced a representation learning-based
unsupervised domain adaptation on the basis of (9) and
compared it with the results of CNN. Anuranjeeta et al. (11)
proposed a breast cancer recognition method based on
morphological features. 16 morphological features were extracted,
and 8 classifiers were used for recognition, the accuracy is about
80%. The authors in (12–14) proposed breast cancer recognition
methods based on texture features. Particularly, Carvalho et al. (14)
used phylogenetic diversity indexes to characterize the types of
breast cancer. Sudharshan et al. (15) compared 12 multi-instance
learning methods based on PFTAS and verified that multi-instance
learning is more effective than single-instance learning. But none of
them considered the color channel of the image. Fang et al. (16)
proposed a framework called Local Receptive Field based Extreme
Learning Machine with Three Channels (3C-LRF-ELM), which can
automatically extract histopathological features to diagnose whether
there is inflammation. In addition, in order to reduce the
recognition time and the complexity of the algorithms, this paper
is committed to achieving high recognition accuracy with low
dimensional features.

Deep learning methods, especially CNN, can achieve more
accurate cancer recognition (17–25) for it’s ability to extract
powerful high-level features compared with traditional image
recognition methods. For example, Spanhol et al. (17) used the
existing AlexNet to test the BreaKHis dataset, and its recognition
accuracy was significantly higher than their previous work (9).
The authors in (18–21, 25) used different CNN frameworks and
obtained the recognition accuracy of more than 90% on the two-
class problem of the BreaKHis dataset. Benhammou et al. (22)
comprehensively surveyed the researches based on BreaKHis
datasets from the magnification-specific binary, magnification
independent binary, magnification specific multi-category and
magnification independent multi-category four aspects, and
proposed a magnification independent multi-category method
based on CNN, which is rarely considered in previous studies.
The works (23–26) also achieved good performance on the
Bioimaging 2015 dataset. Both the BreaKHis and Bioimaging
2015 are the challenging datases for breast cancer detection. Due
to the drawbacks of model training, most researchers’ research
were based on models that have been well trained through other
datasets and verified by histopathological images. Few people
trained a complete model with histopathological images for the
lack of labeled data.
June 2021 | Volume 11 | Article 657560
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In order to reduce the workload of histopathologists and
allow them to spend more time on the diagnosis of more
complex diseases, efficient and fast computer-aided diagnosis
methods are of urgent need. This paper proposed a breast cancer
histopathological images recognition method based on low
dimensional three-channel features. The features of the three
channels of the image were extracted respectively, then the three-
channel features were fused to realize better breast cancer
histopathological images recognition for the image level and
the patient level. The framework is shown in Figure 1.

The contributions of this paper are as follows:

1) proposed a histopathological images recognition method
based on three-channel features,

2) proposed a histopathological images recognition method
based on low dimensional features,

3) it is a method with high accuracy and fast recognition speed,

4) it is a method easy to implement.

The rest of the paper is organized as follows: in Section 2 the
feature extraction methods are introduced, the experiments
Frontiers in Oncology | www.frontiersin.org 3
and results analysis are given in Section 3, and Section 4
concludes the work.
FEATURE EXTRACTION

Gray Level Co-Occurrence Matrix
Gray level co-occurrence matrix is a commonmethod to describe
the texture of an image by studying its spatial correlation
characteristics. In 1973, Haralick et al. first used GLCM to
describe texture features (27). In our experiments, we
calculated the GLCM of 256 gray levels in one direction 0° and
four directions 0°, 45°, 90°, 135°, respectively. Then, according to
the GLCM, 22 related features were calculated: autocorrelation,
contrast, 2 correlation, cluster probability, cluster shade,
dissimilarity, energy, entropy, 2 homogeneity, maximum
probability, sum of squares, sum average, sum variance, sum
entropy, difference variance, difference entropy, 2 information
measures of correlation, inverse difference, inverse difference
moment (27–29).
FIGURE 1 | Proposed framework for histopathological image classification.
June 2021 | Volume 11 | Article 657560
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Average Pixel Value of Each Channel
The average value reflects the centralized tendency of the data
and is an important amplitude feature of images. For an image,
the average pixel value of each color channel is expressed as

fmean =
1

MN o
M

xc=1
o
N

yc=1
f (xc, yc), (1)

where f (xc, yc ) represents the pixel value of (xc, yc ).

Hu Invariant Moment
Geometric moments were proposed by Hu.M.K (30) in 1962.
They constructed seven invariant moments according to second-
order and third-order normalized central moments, and proved
that they are invariant to rotation, scaling and translation. Hu
invariant moment is a region-based image shape descriptor. In
the construction of Hu invariant moments, the central moment
is used to eliminate the influence of image translation, the
normalization eliminates the influence of image scaling, and
the polynomial is constructed to realize the invariant
characteristics of rotation. Different order moments reflect
different characteristics, the low order reflects the basic shape
of the target, and the high order reflects the details
and complexity.

Wavelet Features
The result of two-dimensional wavelet decomposition reflects the
frequency changes in different directions and the texture
characteristics of the image. Since the detail subgraph is the
high-frequency component of the original image and contains
the main texture information, the energy of the individual detail
subgraph is taken as the texture feature, which reflects the energy
distribution along the frequency axis with respect to the scale and
direction. In this paper, 5-layer wavelet decomposition was
carried out, and the energy of high-frequency components in
each layer was taken as the feature vector.

Tamura
Tamura et al. (31) proposed a texture feature description method
based on the psychological research of texture visual perception,
and defined six characteristics to describe texture. Namely,
coarseness, contrast, directionality, line likeness, regu larity,
and roughness. Coarseness reflects the change intensity of
image gray level. The larger the texture granularity is, the
coarser the texture image is. Contrast reflects the lightest and
darkest gray levels in a gray image, and the range of differences
determines the contrast. Directionality reflects the intensity of
image texture concentration along a certain direction. Lineality
reflects whether the image texture has a linear structure.
Regulation reflects the consistency of texture features between
a local region and the whole image. Roughness is the sum of
roughness and contrast.

Local Binary Pattern
Local Binary Pattern (32) is an operator used to describe local
texture features of an image. It has significant advantages such as
rotation invariance and gray level invariance. The original LBP
Frontiers in Oncology | www.frontiersin.org 4
operator is defined as comparing the gray values of eight adjacent
pixels with the threshold value namely the center pixel in a 3×3
window. If the value of the adjacent pixel is greater than or equal
to the value of the center pixel, the position of the pixel is marked
as 1, otherwise it is 0. That is, for a pixel (xc, yc) on the image

LBPP,R (xc, yc) = o
P−1

p=0
s(gp − gc)2

p, s(x) =
1, x ≥ 0

0, x < 0

(
(2)

Where P is the number of sampling points in the
neighborhood of the center pixel, R is the radius of
the neighborhood, gc is the gray value of the center pixel; gp is
the gray value of the pixel adjacent to the center pixel.

In this way, 8 points in the neighborhood can be compared to
generate a total of 256 8-bit binary numbers, that is, the LBP
value of the center pixel of the 3×3 window is obtained, and this
value is used to reflect the texture information of the region.

Completed Local Binary Pattern
Completed local binary pattern (33) is a variant of LBP. The local
area of the CLBP operator is represented by its center pixel and
local differential sign magnitude transformation. After the center
pixel is globally thresholded, it is coded with a binary string as
CLBP_Center (CLBP_C). At the same time, the local difference
sign magnitude transformation is decomposed into two
complementary structural components: difference sign CLBP-
Sign (CLBP_S) and difference magnitude CLBP-Magnitude
(CLBP_M). For a certain pixel (xc, yc) on the image, the
components are expressed as:

CLBP _CP,R(xc, yc) = s(gc − gN)

CLBP _ SP,R(xc, yc) = o
P−1

p=0
s(gp − gc)2

p  s(x) =
1, x ≥ 0

0, x < 0

(

CLBP _MP,R xc, ycð Þ = o
P−1

p=0
s(Dp − Dc)2

p

:

8>>>>>>><
>>>>>>>:

(3)

Where, N is the number of windows, gN = 1
N o

N−1

n=0
gnrepresents

the mean gray value about gc when the center point is constantly

moving, andDp = jgp − gcj,Dc =
1
P o
P−1

p=0
jgp − gcjrepresents the mean

magnitude. CLBP_SP,R (xc, yc) is equivalent to the traditional LBP
operator, which describes the difference sign characteristics of
the local window. CLBP_MP,R (xc, yc) describes the difference
magnitude characteristics of the local window. CLBP_CP,R (xc, yc)
is the gray level information reflected by the pixel at the center. In
our experiments, we worked with rotation-invariant uniform
patterns, with a standard value of P = 8, R = 1, yielding a 20-D
feature vector for each channel.

Gabor
Gabor feature is a kind of feature that can be used to describe the
texture information of image. The frequency and direction of
Gabor filter are similar to human visual system, and it
is particularly suitable for texture representation and
June 2021 | Volume 11 | Article 657560
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discrimination. Gabor features mainly rely on Gabor kernel to
window the signal in frequency domain, so as to describe the
local frequency information of the signal. Different textures
generally have different center frequencies and bandwidths.
According to these frequencies and bandwidths, a set of Gabor
filters can be designed to filter texture images. Each Gabor filter
only allows the texture corresponding to its frequency to pass
smoothly, while the energy of other textures is suppressed.
Texture features are analyzed and extracted from the output
results of each filter for subsequent classification tasks. we used
the Gabor filters with five scales and eight orientations, the size of
the filter bank is 39×39, the block size is 46×70, yielding a 4000-D
feature vector for each channel.

Histogram of Oriented Gradient
Histogram of Oriented Gradient (34) is a feature descriptor used
for object detection in computer vision and image processing. It
constructs features by calculating and counting the histogram of
the gradient direction in the local area of the image. The use of
gradient information can well reflect the edge information of the
target, the local appearance and shape of the image can be
characterized by the size of the local gradient. It is generally
used in pedestrian detection, face recognition and other fields,
but it does not perform well on images with complex texture
information. It is introduced as a comparison in this paper.
EXPERIMENTS AND RESULTS

Dataset
The BreaKHis dataset (9) contains biopsy images of benign and
malignant breast tumors, which were collected through clinical
studies from January 2014 to December 2014. During the period,
all patients with clinical symptoms of BC were invited to the
Frontiers in Oncology | www.frontiersin.org 5
Brazilian P&D laboratory to participate in the study. Samples
were collected by surgical open biopsy (SOB) and stained with
hematoxylin and eosin. Hematoxylin is alkaline, mainly making
the chromatin in the nucleus and nucleic acid in the cytoplasm
stained blue-purple. eosin is acidic, mainly making the
components in the cytoplasm and extracellular matrix stained
pink. These images can be used for histological studies and
marked by pathologists in the P&D laboratory. The BreaKHis
dataset consists of 7909 breast tumor tissue microscopic images
of 82 patients, divided into benign and malignant tumors,
including 2480 benign (24 patients) and 5429 malignant (58
patients). The image is obtained in a three-channel RGB (red-
green-blue) true color space with magnification factors of 40X,
100X, 200X, 400X, and the size of each image is 700×460.
Tables 1 and 2 summarize the image distribution. And Figure 2
shows the representative examples of BreaKHis dataset.

Protocol
All of the experiments were conducted on a platform with an
Intel Core i7-5820K CPU and 16G memory. The BreaKHis
dataset has been randomly divided into a training set (70%, 56
patients) and a testing set (30%, 26 patients). We guarantee that
patients use to build the training set are not used for the testing
set. The results presented in this work are the average of
five trials.

All the images we used were without any preprocessing before
feature extraction. For the SVM, we chose the RBF kernel. The
best penalty factor c=2 and kernel function parameter g=1 were
obtained by cross validation. For wavelet function, we selected
coif5 wavelet function, which has better symmetry than dbN, has
the same support length as db3N and sym3N, and has the same
number of vanishing moments as db2N and sym2N.

Here, we report the recognition accuracy at both the image
level and the patient level. For the image level, let Nrec_I be the
TABLE 2 | Image distribution by magnification factor and subclass.

Class Sub-class Magnification

40X 100X 200X 400X

Benign Adenosis (A) 114 113 111 106
Fibroadenoma(F) 253 260 264 237
Phyllodes_tumor(PT) 109 121 108 115
Tubular_adenoma(TA) 149 150 140 130

Malignant Ductal_carcinoma(DC) 864 903 896 788
Lobular_carcinoma(LC) 156 170 163 137
Mucinous_carcinoma(MC) 205 222 196 169
Papillary_carcinoma(PC) 145 142 135 138
June 20
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TABLE 1 | Image distribution by magnification factor and class.

Magnification Benign Malignant Total

40X 625 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total 2480 5429 7909
Patients 24 58 82
7560
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number of images correctly classified, N represents all the test
samples, then the recognition accuracy of the image level can be
defined as

Image _ accuracy =
Nrec _ I

N
: (4)

For the patient level, we followed the definition of (9). Let NP

be the image of patient P, S is the total number of patients, and
Nrec_P images of patient P were correctly classified, then the
patient score can be defined as

Patient score =
Nrec _P

NP
, (5)

and define the recognition accuracy of the patient level as

Patient _ accuracy = oPatient score

S
: (6)

To further assess the performance of the proposed
framework, sensitivity (Se), precision (Pr) and F1-score metrics
were used and the formulations of the metrics are described as

Se =
TP

TP + FN
, (7)

Pr =
TP

TP + FP
, (8)

F1� score =
2� TP

2� TP + FP + FN
, (9)

where true positive (TP) represents the number of malignant
samples classified as malignant, whereas true negative (TN)
represents the number of benign samples classified as benign.
Also, false positive (FP) represents the number of benign samples
Frontiers in Oncology | www.frontiersin.org 6
incorrectly classified as malignant while false negative (FN)
represents the number of malignant samples misclassified
as benign.

Experiment Results
Table 3 reports the performance of all descriptors we have
assessed. The image level recognition accuracy, the patient
level recognition accuracy, sensitivity, precision and F1-score
of 10 different three-channel descriptors under 4 magnifications
were compared. The descriptors are GLCM1, GLCM4, APVEC,
HIM, wavelet feature, Tamura, CLBP. In order to show the
effectiveness of low dimensional features, LBP, Gabor, and Hog
were introduced for comparison.

For images at 40X magnification, GLCM1 achieved the
highest recognition accuracy of 94.12 ± 2.19% at the image
level and 93.48 ± 2.7% at the patient level, as well as the highest
precision and F1_score. The second was GLCM4 with which the
image_accuracy and the patient_accuracy were 93.4 ± 3.54% and
92.95 ± 4.02, respectively. Followed by APVEC achieving the
image_accuracy of 92.12 ± 1.09%, and the patient_accuracy of
90.55 ± 0.84%. The same conclusion was drawn for 100X. The
image level recognition accuracy and the patient level recognition
accuracy of GLCM1, GLCM4, and APVEC were 92.65 ± 3.08%,
91.74 ± 3.89%, 91.98 ± 3.79%, 91.16 ± 3.88%, 90.2 ± 2.33%, 89.18 ±
3.45%, respectively. However, for 200X, APVEC achieved the
highest image level recognition accuracy of 94.97 ± 1.35%,
followed by GLCM1 and GLCM4. GLCM1 performed best at the
patient level with an accuracy of 94.24 ± 2.86%, which is 0.3%
higher than APVEC. As for 400X, APVEC performed best at both
the image level (92.78 ± 3.14%) and the patient level (93.3 ± 3.25%)
followed by GLCM1 and GLCM4. On the whole, GLCM1, GLCM4
and APVEC performed well at both the image level and the patient
level, followed by HIM. The four descriptors all get the highest
recognition accuracy at 200X, and all descriptors except Gabor and
FIGURE 2 | Representative examples of BreaKHis dataset.
June 2021 | Volume 11 | Article 657560
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Hog obtain the worst performance at 400X, which is same as the
conclusion of (18, 35). Although the recognition accuracy of LBP
and Gabor is above 82%, which is also acceptable, it also needs more
recognition time due to the high feature dimension, as shown in
Table 4. Tamura and Hog performed slightly worse compared to
other descriptors.
Frontiers in Oncology | www.frontiersin.org 7
The reason for the above results is that the distributions of
features extracted by different feature descriptors are different.
The high dispersion of feature distribution will increase the
difficulty of image recognition, and the feature with more
concentrated distribution will achieve better recognition
performance. Figure 3 is the best illustration of the results.
TABLE 4 | Running time for feature extraction of each image and classification of different descriptors.

Methods Feature dimensions Running time for feature extraction of each image (s) Running time for classification (s)

GLCM1 22×3-D 0.26 0.30
GLCM4 88×3-D 0.05 1.34
APVEC 1×3-D 10.29 0.05
HIM 7×3-D 0.19 0.12
Wavelet 5×3-D 0.41 0.10
Tamura 6×3-D 59.17 0.55
CLBP 20×3-D 0.61 0.19
LBP 256×3-D 0.47 3.09
Gabor 4000×3-D 12.48 66.80
Hog 288×3-D 0.21 4.10
Jun
TABLE 3 | Classification performance of different descriptors based on three-channel features.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1 40X 94.12 ± 2.19 93.48 ± 2.70 94.99 ± 1.53 97.01 ± 2.31 95.98 ± 1.73
100X 92.65 ± 3.08 91.74 ± 3.89 95.61 ± 4.81 94.53 ± 1.56 95.01 ± 2.47
200X 94.67 ± 2.02 94.24 ± 2.86 97.17 ± 3.49 95.81 ± 2.01 96.44 ± 1.54
400X 90.98 ± 2.17 91.43 ± 2.19 91.80 ± 4.09 95.76 ± 3.01 93.66 ± 1.81

GLCM4 40X 93.42 ± 3.54 92.95 ± 4.02 94.72 ± 3.94 96.26 ± 2.22 95.46 ± 2.83
100X 91.98 ± 3.79 91.16 ± 3.88 96.57 ± 3.62 92.85 ± 2.76 94.65 ± 2.86
200X 93.53 ± 3.50 92.81 ± 4.72 96.14 ± 3.98 95.36 ± 2.75 95.70 ± 2.37
400X 90.65 ± 2.93 90.76 ± 3.28 93.54 ± 3.49 93.72 ± 3.76 93.56 ± 2.20

APVEC 40X 92.12 ± 1.09 90.55 ± 0.84 94.67 ± 2.04 94.83 ± 1.31 94.72 ± 0.66
100X 90.20 ± 2.33 89.18 ± 3.45 94.05 ± 2.36 93.16 ± 4.15 93.52 ± 1.40
200X 94.97 ± 1.35 94.21 ± 2.37 98.30 ± 0.73 95.21 ± 1.79 96.72 ± 0.84
400X 92.78 ± 3.14 93.30 ± 3.25 94.07 ± 4.91 96.04 ± 2.54 94.96 ± 2.35

HIM 40X 89.21 ± 1.59 86.44 ± 3.46 93.96 ± 2.36 91.81 ± 2.46 92.85 ± 2.31
100X 88.99 ± 2.45 87.67 ± 3.14 94.17 ± 3.38 91.62 ± 3.84 92.78 ± 1.48
200X 92.93 ± 1.89 92.19 ± 2.87 95.06 ± 2.28 95.59 ± 1.60 95.30 ± 1.20
400X 88.64 ± 3.97 88.61 ± 4.94 91.77 ± 6.21 92.73 ± 2.11 92.14 ± 3.03

Wavelet 40X 80.98 ± 4.23 80.03 ± 7.16 97.66 ± 4.23 80.78 ± 8.00 88.38 ± 4.81
100X 80.36 ± 3.66 80.24 ± 1.03 97.02 ± 4.62 80.82 ± 4.39 88.04 ± 2.53
200X 78.99 ± 4.47 76.50 ± 3.33 97.37 ± 3.63 79.46 ± 4.22 87.43 ± 2.86
400X 76.08 ± 2.22 76.79 ± 1.45 89.65 ± 4.31 80.27 ± 3.99 84.56 ± 1.74

Tamura 40X 78.91 ± 3.30 78.62 ± 1.27 97.23 ± 3.93 79.30 ± 6.16 87.31 ± 2.17
100X 78.68 ± 4.03 78.09 ± 1.17 99.27 ± 0.43 78.18 ± 4.08 87.43 ± 2.66
200X 77.37 ± 1.89 76.00 ± 2.09 94.43 ± 3.02 79.41 ± 2.38 86.23 ± 1.59
400X 75.88 ± 2.86 75.66 ± 1.72 94.04 ± 2.18 77.68 ± 2.64 85.06 ± 2.18

LBP 40X 84.38 ± 2.32 86.51 ± 2.43 93.23 ± 2.92 87.07 ± 3.48 89.87 ± 2.37
100X 83.91 ± 4.84 85.20 ± 3.78 95.95 ± 2.63 84.66 ± 5.15 89.89 ± 3.33
200X 83.26 ± 4.04 84.05 ± 3.27 92.24 ± 4.23 86.39 ± 4.03 89.15 ± 3.13
400X 82.35 ± 5.56 82.76 ± 4.84 91.64 ± 4.12 85.57 ± 6.45 88.35 ± 3.81

CLBP 40X 82.63 ± 3.54 83.18 ± 3.68 93.29 ± 3.77 85.03 ± 6.84 88.89 ± 2.95
100X 82.64 ± 4.69 84.31 ± 3.66 95.46 ± 3.93 83.83 ± 5.31 89.14 ± 3.10
200X 78.72 ± 2.61 78.20 ± 2.36 95.65 ± 4.81 80.13 ± 3.58 87.08 ± 1.91
400X 75.26 ± 4.01 75.97 ± 2.28 94.39 ± 5.78 77.40 ± 5.36 84.81 ± 2.42

Gabor 40X 86.11 ± 4.46 84.87 ± 4.85 97.00 ± 1.34 86.45 ± 6.92 91.29 ± 3.20
100X 89.98 ± 2.15 89.79 ± 2.74 93.45 ± 2.87 93.37 ± 3.78 93.33 ± 1.39
200X 91.04 ± 2.66 89.65 ± 3.97 97.14 ± 1.86 91.58 ± 3.78 94.23 ± 1.72
400X 88.94 ± 2.87 87.84 ± 2.69 96.96 ± 1.74 88.94 ± 3.07 92.75 ± 1.99

Hog 40X 76.59 ± 4.42 76.82 ± 7.21 95.42 ± 2.97 78.68 ± 10.21 85.94 ± 4.74
100X 76.06 ± 4.00 75.54 ± 2.64 95.13 ± 5.36 78.21 ± 5.80 85.59 ± 2.50
200X 76.83 ± 3.35 76.28 ± 2.18 93.32 ± 3.38 79.60 ± 4.38 85.81 ± 2.30
400X 77.88 ± 3.23 78.20 ± 1.72 89.69 ± 4.25 82.28 ± 5.96 85.59 ± 1.94
e 2021 | Volume 11 |
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FIGURE 3 | Visualization of feature distribution. (A) Feature distribution of 40X, 100X, 200X, (B) feature distribution of 400X.
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Figure 3 is the visualization of feature distribution. The
ordinate represents the feature values. Since the feature values
of 40X, 100X, and 200X are relatively small, while the feature
values of 400X are relatively large, the feature distribution cannot
be displayed in the same figure at the same time. Here are two
figures showing the data distribution, Figure 3(A) shows the
feature distribution of 40X, 100X, 200X, and Figure 3(B) shows
the feature distribution of 400X. It can be seen from Figure 3 that
for 40X, 100X, 200X, the outliers of GLCM1, GLCM4, APVEC,
and HIM are much less than other feature descriptors, indicating
that the distributions of these four features are relatively
concentrated, which is beneficial for breast cancer
identification. In addition, comparing the feature distributions
of benign and malignant samples under different magnifications,
it can be found that the data distribution of benign and
malignant samples of Hog are very similar, indicating the weak
ability to discriminate between benign and malignant, which is
also the reason for its poor performance. The outliers of GLCM1
Frontiers in Oncology | www.frontiersin.org 9
and GLCM4 under 400X are obviously more compared to other
magnifications, and the similarity of the benign and malignant
feature distributions of all descriptors is relatively high, resulting
in the poor performance of 400X.

Compared with RGB images, grayscale images only retain the
brightness information of the images, but lose the chroma and
saturation information of the images. Three-channel features can
make up for the lost information of single-channel features,
increasing the recognition capability of features, so as to achieve
better recognition performance. To further illustrate the
advantages of three-channel features, Table 5 shows the
performance of different descriptors of gray-level features.

Comparing Table 3 and Table 5, it can be seen that the
performance of the three-channel features is much better than
that of gray-level features, especially GLCM1, GLCM4, APVEC,
HIM and Gabor. The accuracy for most of them has increased by
more than 10% for both the image level and the patient level.
Figure 4 shows the average recognition accuracy of three-
TABLE 5 | Classification performance of different gray-level features.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1 40X 82.88 ± 5.27 83.48 ± 3.65 97.39 ± 4.75 83.08 ± 6.41 89.47 ± 2.98
100X 83.71 ± 4.66 85.07 ± 2.69 99.45 ± 0.69 82.53 ± 4.93 90.12 ± 2.87
200X 77.56 ± 4.64 76.44 ± 4.02 99.31 ± 0.83 77.44 ± 4.35 86.95 ± 2.54
400X 78.51 ± 6.32 80.02 ± 4.46 96.45 ± 2.45 79.42 ± 5.33 86.86 ± 3.22

GLCM4 40X 82.06 ± 4.14 82.71 ± 4.75 98.61 ± 0.94 81.48 ± 3.75 89.14 ± 2.20
100X 82.78 ± 4.69 83.58 ± 3.50 99.66 ± 1.17 81.56 ± 4.02 89.64 ± 2.42
200X 77.38 ± 5.02 76.35 ± 3.46 99.18 ± 1.12 77.38 ± 3.95 86.85 ± 2.30
400X 80.93 ± 6.43 82.37 ± 6.44 93.09 ± 3.70 83.28 ± 4.88 87.75 ± 3.46

APVEC 40X 74.83 ± 3.31 73.06 ± 4.12 99.86 ± 0.30 74.88 ± 5.58 85.56 ± 3.51
100X 75.41 ± 3.78 73.73 ± 3.22 99.5 ± 0.66 75.51 ± 5.37 85.81 ± 3.33
200X 75.39 ± 3.11 73.27 ± 0.49 99.86 ± 0.98 75.42 ± 3.51 85.91 ± 2.04
400X 75.17 ± 3.62 75.58 ± 2.52 99.16 ± 1.43 75.06 ± 4.69 85.40 ± 2.60

HIM 40X 74.89 ± 3.27 73.17 ± 2.05 100.00 ± 1.83 74.88 ± 5.01 85.60 ± 2.54
100X 76.06 ± 4.60 74.70 ± 2.91 99.06 ± 1.19 76.31 ± 5.51 86.11 ± 3.10
200X 75.36 ± 3.08 73.27 ± 0.33 99.54 ± 0.94 75.51 ± 2.95 85.85 ± 2.03
400X 73.97 ± 3.31 74.03 ± 1.41 99.48 ± 1.63 74.00 ± 4.42 84.83 ± 2.36

Wavelet 40X 81.47 ± 4.95 81.38 ± 1.56 99.41 ± 0.74 80.50 ± 3.77 88.90 ± 2.58
100X 80.54 ± 3.78 80.51 ± 1.16 99.80 ± 0.16 79.50 ± 3.66 88.45 ± 2.27
200X 77.50 ± 4.04 76.55 ± 0.73 99.09 ± 2.14 77.41 ± 4.10 86.87 ± 1.90
400X 74.82 ± 3.87 74.77 ± 2.90 98.15 ± 1.54 75.15 ± 5.11 85.08 ± 2.90

Tamura 40X 78.55 ± 4.12 77.83 ± 1.05 99.08 ± 1.75 78.16 ± 3.94 87.33 ± 2.17
100X 79.45 ± 4.07 79.16 ± 1.61 99.27 ± 1.28 78.85 ± 4.40 87.83 ± 2.41
200X 76.54 ± 2.14 75.33 ± 2.56 98.60 ± 1.59 76.81 ± 2.50 86.33 ± 1.53
400X 73.30 ± 2.98 73.08 ± 2.16 100.00 ± 0.64 73.30 ± 4.24 84.57 ± 2.58

LBP 40X 84.97 ± 3.54 87.04 ± 3.96 94.61 ± 4.40 86.51 ± 1.54 90.31 ± 2.79
100X 84.31 ± 4.98 86.05 ± 3.24 97.31 ± 1.54 84.31 ± 4.31 90.25 ± 3.03
200X 83.12 ± 4.99 84.17 ± 5.72 92.48 ± 4.47 86.04 ± 2.53 89.09 ± 3.39
400X 80.05 ± 5.54 80.72 ± 4.94 91.65 ± 4.58 82.93 ± 4.95 86.99 ± 3.97

CLBP 40X 83.19 ± 5.15 84.63 ± 3.17 96.40 ± 1.73 83.89 ± 6.26 89.57 ± 3.07
100X 84.06 ± 4.80 86.12 ± 2.23 97.77 ± 2.25 83.89 ± 6.08 90.17 ± 3.01
200X 78.56 ± 3.55 78.58 ± 3.30 96.38 ± 3.92 79.75 ± 8.05 87.12 ± 3.13
400X 74.79 ± 3.80 74.94 ± 4.33 97.74 ± 4.66 75.19 ± 8.13 84.98 ± 3.59

Gabor 40X 80.06 ± 4.64 79.84 ± 2.61 98.03 ± 2.59 79.96 ± 5.82 88.01 ± 2.55
100X 81.25 ± 4.89 81.57 ± 2.57 98.91 ± 1.94 80.6 ± 5.84 88.75 ± 3.01
200X 76.94 ± 2.88 75.43 ± 1.90 98.17 ± 1.71 77.36 ± 4.68 86.49 ± 2.23
400X 77.40 ± 4.68 78.70 ± 3.54 92.37 ± 2.37 80.19 ± 7.64 85.71 ± 3.28

Hog 40X 76.46 ± 4.03 76.30 ± 2.29 97.50 ± 1.98 77.18 ± 4.00 86.09 ± 2.31
100X 75.80 ± 3.51 74.31 ± 1.73 97.63 ± 2.91 76.56 ± 3.87 85.76 ± 2.27
200X 76.22 ± 2.59 74.74 ± 1.60 97.78 ± 1.86 76.85 ± 2.43 86.05 ± 1.81
400X 76.02 ± 3.23 75.84 ± 1.84 91.15 ± 4.68 79.30 ± 4.34 84.70 ± 2.76
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channel features and gray-level features for the image level and
the patient level. The advantages of the three-channel features
can be seen more clearly from Figure 4.

Although the advantages of the three-channel features are
obvious, we still have no idea about which channel plays a more
important role in the classification results. Table 6 shows the
classification performance of single-channel features under
Frontiers in Oncology | www.frontiersin.org 10
different magnifications. Observing the experimental results,
we can find that R channel have a greater impact on the
classification results under 40X, 100X, 200X magnifications,
while B channel performs better under 400X. This is consistent
with the actual situation of H&E histopathological images under
different magnifications. The images of 40X, 100X, and 200X
have more cytoplasm and appear pink. The image of 400X
A

B

FIGURE 4 | Classification accuracy for different features. (A) Image_accuracy for three-channel features and gray-level features, (B) patient_accuracy for three-
channel features and gray-level feature\s.
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contains more information about the precise lesion locations,
which is usually presented through the nucleus, and appear
blue-purple.

Different descriptors extract different features. It often cannot
obtain all the effective information of the image only by one
method. There may be a complementary relationship between
different methods, and sometimes more redundant information
may be added. In this paper, GLCM1 with the best recognition
Frontiers in Oncology | www.frontiersin.org 11
performance is combined with 8 other methods except GLCM4.
Different features are fused in a cascade way. The results are
shown in Table 7.

Table 7 shows that after the combination of GLCM1 and
APVEC, the recognition accuracy of 40X and 100X is better than
a single method whether it is for the image level or the patient
level, and the accuracy of 200X and 400X is slightly lower than
that of APVEC. The combination of GLCM1 and HIM improves
TABLE 6 | Classification performance of single-channel features under different magnifications.

Features 40X

R G B

Image_accuracy (%) Patient_accuracy (%) Image_accuracy (%) Patient_accuracy (%) Image_accuracy (%) Patient_accuracy (%)

GLCM1 89.03 ± 2.28 87.46 ± 2.23 82.25 ± 4.51 82.03 ± 2.30 83.62 ± 3.07 82.84 ± 2.12
GLCM4 88.47 ± 1.99 86.06 ± 1.58 81.53 ± 4.12 82.05 ± 2.68 83.58 ± 3.62 82.00 ± 3.23
APVEC 83.43 ± 1.51 79.73 ± 1.30 77.00 ± 3.95 77.39 ± 2.60 74.97 ± 3.32 73.18 ± 0.23
HIM 81.08 ± 1.03 77.26 ± 0.86 77.30 ± 4.28 77.81 ± 2.54 74.83 ± 3.31 73.08 ± 0.00
Wavelet 80.74 ± 4.69 80.24 ± 2.28 81.35 ± 5.17 81.21 ± 3.16 81.28 ± 5.12 80.97 ± 2.89
Tamura 76.90 ± 3.50 75.57 ± 0.64 79.32 ± 4.22 78.84 ± 1.85 77.17 ± 3.06 75.97 ± 0.77
LBP 84.70 ± 3.75 86.65 ± 3.63 84.11 ± 3.52 85.53 ± 2.93 84.64 ± 3.01 86.35 ± 2.02
CLBP 82.64 ± 4.17 83.29 ± 2.78 83.79 ± 3.75 84.90 ± 2.81 83.36 ± 4.40 84.18 ± 3.11
Gabor 83.46 ± 4.47 82.09 ± 3.56 78.63 ± 3.25 78.31 ± 3.32 80.60 ± 4.86 80.12 ± 2.49
Hog 76.59 ± 4.22 76.09 ± 3.13 76.38 ± 3.95 75.77 ± 1.91 76.07 ± 3.79 75.33 ± 2.18
Features 100X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 90.32 ± 1.59 88.52 ± 1.87 84.00 ± 4.99 84.95 ± 4.6 87.43 ± 1.10 85.00 ± 1.05
GLCM4 88.94 ± 1.46 86.83 ± 2.17 83.17 ± 4.99 84.62 ± 3.67 87.14 ± 1.54 85.58 ± 1.03
APVEC 77.70 ± 4.37 74.96 ± 2.26 78.29 ± 5.93 78.91 ± 4.77 75.00 ± 3.74 73.08 ± 0.00
HIM 78.83 ± 2.58 75.92 ± 1.32 78.32 ± 4.74 77.11 ± 3.99 76.17 ± 2.90 73.70 ± 0.44
Wavelet 79.94 ± 3.77 79.73 ± 1.38 81.00 ± 3.84 81.08 ± 1.01 79.46 ± 4.64 79.13 ± 2.12
Tamura 78.01 ± 3.83 77.31 ± 1.67 79.91 ± 4.28 79.69 ± 1.72 78.83 ± 4.26 78.41 ± 1.99
LBP 84.48 ± 4.98 85.68 ± 3.83 84.61 ± 5.02 86.51 ± 3.21 83.25 ± 4.49 84.54 ± 2.32
CLBP 81.75 ± 4.38 82.78 ± 3.12 81.41 ± 4.13 83.49 ± 1.73 81.83 ± 3.58 82.66 ± 1.55
Gabor 88.42 ± 2.99 87.27 ± 2.69 82.25 ± 5.07 83.63 ± 3.32 83.45 ± 3.64 83.31 ± 1.63
Hog 76.04 ± 3.86 74.73 ± 1.97 75.76 ± 4.05 74.40 ± 0.65 75.67 ± 3.93 74.34 ± 1.15
Features 200X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 91.31 ± 3.14 90.11 ± 3.82 79.05 ± 3.82 77.86 ± 2.81 88.62 ± 3.76 86.74 ± 5.37
GLCM4 90.45 ± 2.90 89.35 ± 3.65 78.18 ± 3.86 78.42 ± 3.27 88.77 ± 3.30 86.91 ± 4.72
APVEC 83.95 ± 0.97 81.71 ± 2.93 79.40 ± 5.22 79.00 ± 4.83 76.46 ± 1.57 73.89 ± 1.12
HIM 83.89 ± 1.56 81.72 ± 2.61 78.46 ± 5.16 77.63 ± 4.28 79.09 ± 2.46 77.02 ± 1.37
Wavelet 77.67 ± 4.12 76.68 ± 2.27 77.69 ± 3.76 76.58 ± 2.48 76.59 ± 3.99 75.16 ± 2.18
Tamura 75.98 ± 2.10 74.17 ± 2.44 76.48 ± 1.77 74.84 ± 2.52 76.01 ± 2.08 74.05 ± 2.18
LBP 83.21 ± 4.75 84.35 ± 3.95 82.66 ± 4.97 83.36 ± 4.19 82.48 ± 4.07 82.87 ± 3.39
CLBP 79.21 ± 3.43 79.24 ± 2.83 77.08 ± 3.15 75.97 ± 2.15 77.59 ± 3.37 77.19 ± 1.29
Gabor 88.38 ± 1.91 86.82 ± 2.72 78.46 ± 4.83 77.66 ± 3.66 84.03 ± 1.9 80.46 ± 2.54
Hog 75.75 ± 2.97 74.3 ± 1.25 76.39 ± 2.55 74.99 ± 1.12 75.99 ± 2.91 74.16 ± 1.06
Features 400X

R G B
Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%) Image_accuracy(%) Patient_accuracy(%)

GLCM1 83.48 ± 1.11 81.67 ± 1.35 80.22 ± 5.84 81.96 ± 5.05 83.09 ± 2.20 82.28 ± 3.23
GLCM4 83.14 ± 1.11 81.24 ± 1.55 82.25 ± 5.36 83.43 ± 5.00 84.51 ± 2.73 83.75 ± 3.71
APVEC 73.34 ± 2.99 73.10 ± 0.05 79.31 ± 6.57 80.75 ± 5.89 73.37 ± 2.85 73.03 ± 0.11
HIM 74.27 ± 3.01 74.07 ± 1.10 78.08 ± 5.87 79.33 ± 5.53 76.01 ± 1.36 74.51 ± 2.39
Wavelet 75.47 ± 3.87 75.80 ± 2.41 75.18 ± 3.90 75.20 ± 2.50 75.54 ± 4.67 75.83 ± 3.40
Tamura 73.34 ± 2.99 73.10 ± 0.05 73.47 ± 2.76 73.25 ± 0.29 75.37 ± 4.01 75.92 ± 2.36
LBP 80.81 ± 5.01 81.87 ± 3.61 80.78 ± 5.77 82.31 ± 3.97 82.3 ± 6.32 83.35 ± 5.19
CLBP 74.88 ± 3.31 75.00 ± 1.70 74.07 ± 3.55 74.40 ± 1.21 74.63 ± 3.50 75.11 ± 1.60
Gabor 78.71 ± 3.73 76.82 ± 4.35 80.12 ± 5.34 81.46 ± 4.02 79.27 ± 2.88 77.86 ± 2.79
Hog 75.41 ± 3.02 74.66 ± 0.76 76.75 ± 3.68 76.91 ± 1.54 77.03 ± 3.31 76.62 ± 1.83
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the image level accuracy, while for the patient level, the accuracy
of 40X and 100X is slightly lower than GLCM1. This shows the
complementary relationship between GLCM1 and APVEC,
HIM. The performance of the combination of GLCM1 and
other methods is lower than that of single GLCM1, which
shows that the fusion of different texture features increases the
redundancy of features and reduces the recognizability.

The recognition accuracy of GLCM1, GLCM4, APVEC, and
HIM based on the three-channel features is better than many
existing studies, particularly, better than the performance of
some deep learning models. Table 8 shows that the method
proposed in this paper is superior to many state-of-the-art
methods in benign and malignant tumor recognition, both for
the image level and the patient level. It is worth mentioning that
works (35–43) did not split training and test set according to the
protocol of (9), works (44, 45) adopted the existed protocol, and
works (46, 47) randomly divided training set (70%) and test set
(30%), but they did not mention whether it was the same as the
protocol. Although the recognition accuracy of the works (37, 39,
41–43, 46, 47) is significantly higher than that of our method,
they all use deep learning model, which requires a large number
of labeled training samples and consumes longer training time.
In addition, in these works, except (42), they only calculated the
image level recognition accuracy. George et al. even only tested
their method based on the data of 200X.
Frontiers in Oncology | www.frontiersin.org 12
CONCLUSION

In this paper, a breast cancer histopathological images recognition
method based on low dimensional three-channel features is
proposed. There have been many related studies, but in traditional
methods, most scholars did not consider the color channel of the
image, so that the extracted features lost part of the effective
information. This paper compares the performance of 10 different
feature descriptors in the recognition of breast cancer
histopathological images. We extracted the three-channel features
of different descriptors and fused the features of each channel. Then
SVMwas used to assess their performance. The experimental results
show that the recognition accuracy of GLCM1, GLCM4, APVEC
can reachmore than 90% regardless of the image level or the patient
level. And the performance based on three-channel features is much
better than that of gray-level features, especially for GLCM1,
GLCM4. We also proved that the R channel has a greater impact
on the classification results of 40X, 100X, and 200X,while for 400X, it
is more dependent on the B channel. In addition, high dimensional
features consume more recognition time, this paper dedicates to
achieving accurate recognition based on low dimensional features.
Experiment results verify that the high dimensional features
extracted by LBP, Hog, and Gabor require more recognition time,
but the accuracy has not been greatly improved.Ourmethod is based
on the existing traditionalmethods and is easy to implementwithout
TABLE 7 | Classification performance of GLCM1 combined with other descriptors.

Features Magnification Image_accuracy (%) Patient_accuracy (%) Sensitivity (%) Precision (%) F1-score (%)

GLCM1+APVEC 40X 94.22 ± 2.18 93.70 ± 2.68 95.77 ± 2.19 96.39 ± 1.57 96.07 ± 1.77
100X 92.78 ± 2.88 91.80 ± 3.67 95.47 ± 4.45 94.83 ± 1.84 95.09 ± 2.29
200X 94.77 ± 2.18 94.33 ± 2.99 97.23 ± 3.64 95.89 ± 2.13 96.50 ± 1.65
400X 91.20 ± 2.17 91.59 ± 1.94 91.82 ± 3.90 96.03 ± 2.9 93.80 ± 1.80

GLCM1+ HIM 40X 94.13 ± 1.85 93.15 ± 2.52 95.26 ± 2.24 96.75 ± 1.33 95.99 ± 1.56
100X 92.69 ± 2.71 91.17 ± 3.58 95.46 ± 4.74 94.75 ± 1.71 95.03 ± 2.22
200X 94.88 ± 2.39 94.30 ± 3.17 96.98 ± 4.00 96.29 ± 2.47 96.56 ± 1.76
400X 91.19 ± 2.73 91.54 ± 2.26 91.55 ± 4.75 96.26 ± 2.44 93.76 ± 2.27

GLCM1+Wavelet 40X 93.24 ± 3.45 92.85 ± 3.75 94.67 ± 3.7 96.06 ± 2.14 95.35 ± 2.61
100X 92.37 ± 3.47 91.38 ± 4.29 95.03 ± 4.67 94.66 ± 1.98 94.80 ± 2.73
200X 94.25 ± 1.64 93.47 ± 2.39 96.35 ± 3.45 96.06 ± 2.33 96.15 ± 1.27
400X 90.62 ± 1.45 90.35 ± 1.52 91.49 ± 3.33 95.59 ± 3.08 93.42 ± 1.27

GLCM1+Tamura 40X 93.76 ± 2.89 93.35 ± 3.24 94.81 ± 3.14 96.64 ± 1.80 95.71 ± 2.35
100X 92.28 ± 3.73 91.07 ± 4.44 95.63 ± 5.63 94.04 ± 1.97 94.75 ± 2.95
200X 94.88 ± 1.89 94.45 ± 2.90 97.36 ± 2.98 95.98 ± 2.71 96.61 ± 1.30
400X 90.97 ± 1.76 91.26 ± 1.84 92.23 ± 3.63 95.34 ± 2.91 93.69 ± 1.52

GLCM1+LBP 40X 88.02 ± 3.43 88.28 ± 3.79 90.60 ± 3.33 93.33 ± 3.70 91.83 ± 2.82
100X 89.03 ± 4.85 89.12 ± 4.08 93.05 ± 2.69 92.30 ± 5.04 92.64 ± 3.45
200X 89.71 ± 3.10 89.26 ± 3.22 92.49 ± 3.25 93.68 ± 2.35 93.06 ± 2.33
400X 87.18 ± 4.14 86.42 ± 3.79 89.18 ± 3.76 93.08 ± 5.15 90.99 ± 3.15

GLCM1+CLBP 40X 93.86 ± 2.62 93.07 ± 3.55 95.69 ± 4.12 96.03 ± 2.36 95.84 ± 2.14
100X 91.72 ± 3.07 90.46 ± 3.82 94.06 ± 3.75 94.70 ± 1.62 94.36 ± 2.39
200X 94.34 ± 1.99 93.51 ± 2.61 97.48 ± 1.60 95.15 ± 2.21 96.29 ± 1.29
400X 89.66 ± 3.23 88.94 ± 3.64 90.87 ± 5.22 94.83 ± 3.75 92.69 ± 2.66

GLCM1+Gabor 40X 87.63 ± 4.43 87.22 ± 4.8 93.86 ± 2.38 90.47 ± 6.57 91.92 ± 3.15
100X 90.28 ± 2.04 89.95 ± 2.72 93.44 ± 2.97 93.71 ± 3.22 93.51 ± 1.34
200X 91.28 ± 2.64 89.81 ± 4.09 97.06 ± 1.88 91.92 ± 3.66 94.37 ± 1.70
400X 89.02 ± 2.83 87.80 ± 2.54 96.72 ± 1.77 89.22 ± 3.37 92.79 ± 1.96

GLCM1+Hog 40X 85.55 ± 5.78 86.56 ± 5.32 93.02 ± 2.53 88.39 ± 6.82 90.56 ± 4.20
100X 86.62 ± 5.08 88.34 ± 3.18 94.06 ± 3.22 89.23 ± 7.32 91.35 ± 3.14
200X 90.47 ± 3.78 90.04 ± 3.61 93.68 ± 4.40 93.55 ± 2.85 93.57 ± 2.92
400X 88.15 ± 4.05 88.13 ± 3.72 91.45 ± 2.54 92.28 ± 4.56 91.82 ± 3.01
June
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complex image preprocessing. Experimental results and comparison
with other methods confirm that our method requires less training
time than deep learning methods, which cannot be ignored in
practical applications.

In the future work, we will continue to propose more efficient
and rapid methods for breast cancer recognition. The target is to
realize multi-class recognition of breast cancer based on the
research of benign and malignant tumor recognition. In addition
to improving the recognition accuracy, we also hope to extract
Frontiers in Oncology | www.frontiersin.org 13
more effective information about cancer, which can help doctors
find the lesion faster and reduce the workload on doctors.
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