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Background: Emerging evidence indicates that the tumor microenvironment influences
tumor progression and patient prognosis through various inflammatory cells.
Polymorphonuclear neutrophils (PMNs) and their functional structures termed neutrophil
extracellular traps (NETs) are prominent constituents of several malignant tumors and
affect the tumor microenvironment and cancer evolution. Here, we investigate the
prognostic value of PMNs and NETs for recurrence in patients with cervical cancer.

Methods: The study comprised 126 cervical cancer patients who were retrospectively
enrolled. CD66b+ neutrophils and myeloperoxidase/citrullinated histone H3 (MPO/H3Cit)-
labeled NETs were assessed by immunofluorescence, and the relationships with clinical
and histopathologic features and patient outcome were evaluated.

Results: The highest density of CD66b+ neutrophils were observed in the stromal
compartment (median 55 cells/mm2). Above median densities of stromal CD66b+

neutrophils and NETs were significantly associated with short recurrence-free survival
(RFS) (P = 0.041 and P = 0.006, respectively). Multivariate analysis identified high clinical
stage (hazard ratio [HR] 6.40; 95% confidence interval [CI] 3.51-11.64; P < 0.001), lymph
node metastases (HR 4.69; 95% CI 3.09-9.66; P = 0.006) and high density of NETs (HR
2.66; 95% CI 1.21-5.82; P = 0.015) as independent prognostic factors for short RFS,
whereas a high density of CD66b+ neutrophils was not significant. Patients with a high
NET density showed worse recurrence status in every stage, but the difference was only
significant for stage I (P = 0.042), not stages II, III, or IV (all P > 0.05). Combining stromal
NET density and the tumor, nodes, metastasis (TNM) staging system had better
prognostic accuracy for cervical cancer than the TNM staging system alone at five and
six years respectively (P = 0.010 and P = 0.023).

Conclusion: Stromal NET density is an independent prognostic factor for RFS in cervical
cancer. Combining NETs with the TNM staging system may further improve prognostic
stratification.

Keywords: polymorphonuclear neutrophils (PMNs), neutrophil extracellular traps (NETs), cervical cancer,
recurrence-free survival (RFS), prognosis
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INTRODUCTION

Cervical cancer is the third most frequent cancer in the world
and causes more than 270,000 deaths annually (1). Although
advances in surgery, chemoradiotherapy, and immunotherapy have
substantially improved outcomes, ∼40% of patients will experience
recurrence after curative intent treatment and eventually die (2). The
Union for International Cancer Control (UICC) tumor, nodes,
metastasis (TNM) and the Federation International of Gynecology
and Obstetrics (FIGO) classification system are used for
prognostication and treatment recommendations in cervical cancer
based on the anatomical extent of tumor, and the clinical
outcome varies significantly among patients with the same
tumor stage (3).

This “tumor cell-oriented” paradigm was recently replaced by
a holistic vision including the tumor environment as a major
player in cancer formation and development. Tumor behavior
should now be considered as a balance between the tumor
process and host reaction (4). Tumor progression is the
product of evolving crosstalk between malignant cells and
various stromal and immune cell subsets of the surrounding
microenvironment (5). Immunological data (i.e., the type,
density, and location of immune cells within the tumor
samples) were found to be a better predictor of patient survival
than histopathological methods currently used to stage a variety
cancer such as colorectal, breast, and lung cancers (6, 7).
However, in cervical cancer there are no prognostic factors
that reflect the functional status in tumor environment and
patients’ outcomes.

The tumor microenvironment represents an integral part of
cancer (8) and is composed of cancer cells and various
nonmalignant host cells (8, 9). Neutrophils (polymorphonuclear
neutrophils, PMNs) comprise 50% to 75% of circulating
leukocytes, constitute a significant portion of the tumor
microenvironment, play major roles linking inflammation and
cancer, and are actively involved in progression and metastasis,
depending on their pro-tumoral or anti-tumoral status (10).
Following stimulation, neutrophils can form structures called
neutrophil extracellular traps (NETs) (11). These neutrophil-
derived extracellular structures exist in the inflammatory
environment and consist of decondensed DNA complexed with
citrullinated histones (H3Cit) and various neutrophil granule
proteins such as myeloperoxidase (MPO) and neutrophil
elastase (NE) (12–14). They are usually generated in response
to infectious stimuli and were initially described as a mechanism
in the bactericidal effect and autoimmune diseases (15). Recent
evidence has also linked NETs to a variety of cancers; they
participate in tumor progression and are closely related to
tumor proliferation, metastasis, and thrombosis (16, 17).

However, the correlation between NETs and cervical cancer
remains almost unknown. A previous study reported that
Peripheral blood neutrophils generate NETs in a subset of
cervical cancer patients, while no NET formation is observed
in peripheral blood neutrophils from healthy donors (18). NETs
may also exist in the cervical cancer microenvironment.

Tissue microarrays (TMAs) are widely used in clinical and
basic-science research, it is a powerful tool for undertaking large-
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scale tissue-based biomarker studies (19).The measurement of in
situ NETs in most studies using hematoxylin and eosin (H&E)-
based pathologist evaluation or single-color immunohistochemical
technology is semi-quantitative and subjective, making it difficult
to compare across laboratories (20). Flow cytometry, which fails to
gain architectural information is similarly limited. Considering
these disadvantages, we use multiplexed quantitative
immunofluorescence for compartment-specific and in situ
measurement of NETs in the tumor microenvironment, which
can provide more sensitive, objective and superior prognostic
information (21).

Hence, this clinical study sought to demonstrate whether
NETs may serve as biomarkers in cervical cancer patients by
using multiplexed quantitative immunofluorescence technology.
Specifically, our aims were as follows: (i) to examine the
formation of NETs in the tumor nests and stromal of cervical
cancer tissues; (ii) to assess the correlations between the density
of NETs in tumor nests and stromal of the tumor tissues and
clinicopathologic features in cervical patients; (iii) to evaluate the
correlations between the density of NETs in tumor nests and
stromal of the tumor tissues and recurrence-free survival (RFS)
as patient outcomes; (iv) to established a predictive model for
cervical cancer by combining the TNM staging system and
stromal NET density.
MATERIALS AND METHODS

Patient Samples and Data
The human cervical cancer tissues microarray was purchased
from Shanghai Outdo Biotech Company (HUteS169Su01,
Shanghai, China) and included 126 paired cervical cancer
tissues. Patients underwent surgery from January 2010 to
October 2011, and follow-up information was available from
February 2010 to March 2017. The study protocols were
conducted in accordance with the principles expressed in the
Declaration of Helsinki. Written informed consent was obtained
from all patients before recruitment, and the study was
conducted under the approval of the Insti tut ional
Ethics Committee.

Prior to entry, patients received a standard evaluation,
including physical examination, cytological examination,
colposcopy, biopsy, laboratory examinations and image
examinations. The tumor samples were obtained by biopsy
prior to any treatment. Two senior oncological gynecologists
participated to evaluate patients’ clinical stage according to the
Union for International Cancer Control (UICC) criteria 7th
Edition and World Health Organization classification (22). The
lymph node metastasis was defined by MRI of significantly
enlarged lymph node (23). Inclusion criteria: (1) patients were
pathologically diagnosed and had primary and previously
untreated cervical cancer; (2) age younger than 75; (3) patients
completed whole treatment and have complete follow-up data;
(4) Eastern Cooperative Oncology Group (ECOG) performance
status 0-2; (5) normal liver and renal function; and (6) no
existing complicating disease or prior malignant disease.
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Treatment information was available as receipt of surgery,
chemotherapy, or radiotherapy according to their clinical
staging, but the intent of each treatment type could not
be identified.

All tissue samples were collected from patients with cervical
cancer who had not received any treatment. Standard biosecurity
and institutional safety procedures have been adhered to. The
clinicopathological characteristics of 126 subjects, including age,
clinical stage, histology, lymph node metastasis, and TNM
clinical stages are summarized in Table 1. Recurrence-free
survival (RFS) was defined as the interval from the initial
diagnosis to the date of disease progression or the date of the
most recent follow-up.

Multiplexed Immunofluorescence (MIF)
and Quantification
TMA slides were stained using Opal 7-Color Manual IHC Kit
(PerkinElmer, NEL811001KT, Waltham, MA, USA). Human
appendicitis samples were used as a positive control, and
human appendicitis slides were incubated with isotype control
antibodies as a negative control. Briefly, the TMA slide was
heated for 4 h in a dry oven at 60°C, deparaffinized (xylene 15
min two times, 100% ethanol, 95% ethanol, 85% ethanol, and
75% ethanol for 10 min), and rinsed in water for 10 min at room
temperature (RT). After that, slide was pre-treated in Tris-EDTA
buffer (pH 9.0) by microwaving treatment (MWT) (2 min on
100% power, followed by 15 min on 20% power). Then the slide
was incubated with primary antibodies against CD66b, MPO,
Frontiers in Oncology | www.frontiersin.org 3
histone 3 (H3Cit), cytokeratin (CK), and 4’,6-diamidino-2-
phenylindole (DAPI).

Primary antibody staining comprised three steps. First, tissue
sections were covered with blocking buffer and incubated in a
humidified chamber for 30 min at RT. Next, they were incubated
with CK primary antibody (Kit-0009, MXBiotechnology,
Fuzhou, China, dilution 1:50) in a humidified chamber at 4°C
overnight followed by detection using Opal Polymer horseradish
peroxidase mouse+rabbit for 20 min at RT. Visualization of CK
was accomplished using Opal Fluorophore (dilution 1:100), after
which the slide was placed in AR6 buffer and subjected to MWT
(45 s at 100% power and additional 2 min at 50% power). In a
serial fashion, the slide was then incubated with primary
antibodies for CD66b (ARG65820, Arigobio, Taiwan, ROC,
dilution 1:500), MPO (66177-1-Ig, Proteintech, Rosemont, IL,
USA, dilution 1:1000), H3Cit (Ab5103, Abcam Inc, Cambridge,
UK, dilution 1:3000) repeating the above steps using different
Opal fluorophores (CK, Opal 520; CD66b, Opal 570; H3Cit, Opal
620; MPO, Opal 650). Finally, nuclei were visualized with DAPI
working Solution for 5 min at RT in a humidity chamber, and the
section was cover slipped with mounting medium (0100-01,
SouthernBiotech, Birmingham, AL, USA).

The detailed information for primary antibodies and the
correspondent Opal fluorophores is summarized in
Supplementary Table S1.
Automated Image Acquisition
and Quantification
Briefly, whole tumor section images were captured with a Vectra
Imaging System (version 2.0.8, PerkinElmer) with a 20×
objective lens under the same bit depth, laser power, and
exposure time to ensure comparability. InForm 2.1.1 image
analysis software (PerkinElmer) was used to perform batch
analysis of these Vectra-created image files as previously
described (24). Each cell was identified by detecting the
nuclear spectral element (DAPI). The CK-positive region was
defined as the tumor nest region. The stromal region excluded
the tumor nest region from the DAPI area. Neutrophils were
identified as CD66b-positive cells in the tissue. NETs were
identified as MPO/H3Cit-positive cells in the tissue (25).
PMNs and NETs in different regions were quantified by
dividing the densities of PMNs and NETs in the compartment
by the area of the corresponding region, and the data are
expressed as positive cells per million pixels (26).

PMN and NETs were recorded as positive when their optical
density was above the signal detection threshold (6.078205 for
MPO, 22.24 for H3Cit and 7.84 for CD66b), which was
determined by the negative controls and visual inspection. The
total number for each sample was used for final analysis. Images
with <3% tumor tissue or staining artifacts were excluded from
the analysis.

Statistics
All sample data are expressed as numerical values or percentages.
Chi-square tests were used to compare the baseline
TABLE 1 | Clinicopathological characteristics of 126 patients at initial
presentation.

Characteristics No. %

Age
Median (range) 48 (29-70)

Clinical stage
I 69 54.8
II 30 23.8
III 24 19.0
Iv 3 2.4

Histology
SCC 116 92.1
A 3 2.4
AS 6 4.8
Others 1 0.8

Grade
1 1 0.8
2 13 10.3
3 91 72.2
unknown 21 16.7

Lymph node
Negative 101 80.2
Positive 25 19.8

Status
Survival 90 71.4
Death 36 28.6

Recurrence
No 84 66.7
\Yes 42 33.3
A, adenocarcinoma; AS, adenosquamous carcinoma; SCC, squamous cell carcinoma.
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characteristics of the basic clinical information of patients (27).
Survival curves were generated and evaluated using the Kaplan–
Meier method for prognostic factors. Survival differences were
compared using log-rank tests (28, 29). Cox regression models
were built to analyze risk factors for survival outcomes in cervical
cancer patients. Multivariate analyses with a Cox proportional
hazards model were used to test independence, significance, and
hazard discrimination (30). Time-dependent receiver operating
characteristic (ROC) curve analysis was performed to determine
the efficacy of TNM staging combined with density of PMNs and
NETs for survival prognosis (31). Statistical analyses were
performed using SPSS Statistics, Version 21.0 (IBM, Corp) and
R software, version 4.0.2. Packages for “survival” and “timeROC”
were used (http://www.r-project.org/). P value < 0.05 was
considered statistically significant.
RESULTS

Patient Characteristics
Patient characteristics are listed in Table 1. A total of 126
patients with clinically and histologically confirmed cervical
cancer were included. The mean age at diagnosis was 48 years
(range, 29–70 years); 69 (54.8%) were stage I, 30 (23.8%) were
stage II, 24 (19%) were stage III, and the remaining 3 (2.4%) were
stage IV. Pathologic analysis revealed that 116 (92.1%) of the
patients had squamous cell carcinoma, and 25 (19.8%) of
patients were lymph node positive. By the last follow-up, 36
(28.6%) of the patients had died. The estimated 5-year RFS rate
was 71% (95% CI, 67% to 76%), and the median time to death
was 64 months (range, 8 to 86 months).

Tumor-Infiltrating Neutrophils Correlated
With RFS
Neutrophils were detected by IF staining of CD66b in paraffin-
embedded tissues from 126 untreated patients with cervical
cancer. Infiltration (distinguished by CK staining) was
classified as located in tumor nests or stromal tissue as shown
in Figure 1. The median densities of neutrophils in the stromal
tissue, tumor nests, and whole samples were 55 cells/mm2 (range:
0–311), 13 cells/mm2 (range: 0–115) and 67 cells/mm2 (range: 0–
354), respectively.

The highest mortality rate was in patients with the highest
density (quartile 4) of neutrophils in the total tissue and stroma
compartments, but not in tumor nests (Table 2). The 5-year RFS
was 64% for patients with stromal neutrophils in quartile 4
compared with 86% for patients with stromal neutrophils in
quartile 1.

The cohort was divided into six groups according to the
median neutrophil densities in the whole tumor tissues, stromal
tissues, and tumor nests. As shown in Figure 2, high CD66b+

neutrophil density in stromal tissue was significantly associated
with short RFS (P = 0.041), whereas the densities of neutrophils
in the whole sample and within the tumor nests were not (P =
0.197, P = 0.580, respectively). The correlations between stromal
CD66b+ cell density and clinicopathological parameters are
Frontiers in Oncology | www.frontiersin.org 4
detailed in Table 3. The high density of stromal CD66b+ cells
was significantly associated with clinical stage (P = 0.006). There
was no association between stromal CD66b+ cells and histology,
pathologic grade, or lymph node involvement. This suggests that
high neutrophil density in stromal tumor tissue is positively
correlated with cervical cancer progression. There was no
statistical difference between patients with high and low
densities of stromal CD66b+ cells in different stages (data
not shown).

NET Accumulation Correlated
With Shorter Survival
NETs were detected in the tissue samples mentioned above with
double IF for MPO and H3Cit. They were classified according to
tumor compartment (distinguished by CK staining) in tumor
nests and stromal tissue as shown in Figure 3. The median
densities of NETs in the whole tissue, stromal tissue, and tumor
nests were 9 cells/mm2 (range 0-79), 5 cells/mm2 (range 0-32)
and 4 cells/mm2 (range 0-51), respectively.

The highest rate of death was noted for patients with the
highest density (quartile 4) of NETs in stromal compartments,
but not in total tissue or tumor nests (Table 4). The 5-year RFS
was 67% for patients with stromal NET density in quartile 4
compared with 86% for patients with stromal NET density in
quartile 1.

Again, the patients were divided into six groups according to
the median NETs density in the whole tumor tissues, stromal
tissues, and tumor nests. As shown in Figure 4, high stromal
tissue NET density was significantly associated with short RFS
(P = 0.006), whereas the densities of NETs in the whole tissue
sample and within tumor nests were not (P = 0.532, P = 0.423,
respectively). The correlations between stromal NET density and
clinicopathological parameters are given in Table 5. There was
no association between stromal NET density and stage, histology,
pathologic grade, or lymph node involvement. This result
suggests that high NET density in tumor tissue stromal is
inversely correlated with cervical cancer prognosis.

Multivariate Analysis
A multivariate Cox proportional-hazard regression model was
used to analyze the relative strength and potential independence
of CD66b+ neutrophil and NET density. For comparability,
estimates from the stromal compartment were chosen for the
model. Univariate analysis was carried out to identify clinical
characteristics that were significantly associated with RFS
(Table 6), such as clinical stage, histology, grade, lymph node
metastasis, and stromal PMN and NET densities. Clinical stage,
lymph node metastasis, and stromal PMN and NET densities
were found to have significant effects on RFS and were included
in the subsequent multivariate analysis. The results revealed that
clinical stage, stromal NET density, and lymph node metastasis
were significant independent predictors of poor RFS (Table 3),
but a high density of stromal CD66b+ neutrophils was
not significant.

To further evaluate the prognostic role of stromal NET
density in different subgroups, patients were stratified
August 2021 | Volume 11 | Article 659445
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according to TNM stage. High stromal NET density was
associated with worse survival status in stages I, II, and III, but
the results were only significant for stage I (Figure 5, P = 0.042).
There were no significant differences for stages II, III, and IV
(Figure 5, P = 0.304, P = 0.181 and P = 0.808, respectively).

To improve the prognostic accuracy of the current TNM
staging system, we established a predictive model for cervical
cancer by combining the TNM staging system and stromal NET
density using tROC. The combination of both factors achieved
higher AUC value than the TNM staging system (0.862 vs. 0.846
at 3 years, P = 0.172; 0.851 vs. 0.817 at 5 years, P = 0.010; 0.855 vs.
0.816 at 6 years, P = 0.023), with significant differences at five
years and six years (Figure 6). The AUC value combining the
TNM staging system and stromal CD66b+ neutrophil density
had no statistical difference (data not shown). The results
Frontiers in Oncology | www.frontiersin.org 5
suggested that combining stromal NET density and the TNM
staging system had better prognostic accuracy for cervical cancer
than TNM staging alone.
DISCUSSION

This is the first study to show that PMNs in cervical cancer are
activated to produce NETs and thus suggests a possible role for
NETs in cervical cancer pathogenesis. We employed quantitative
MIF to enable objective and compartment-specific measurement
of PMNs and NETs in the cervical cancer microenvironment for
outcome prediction. We found that higher densities of stromal
PMNs and NETs were correlated with poor outcome in a
retrospective cohort of patients with cervical cancer, and high
FIGURE 1 | Distribution of CD66b+ cells in stromal (A, B), tumor nest (C, D), and whole tissues of cervical cancer samples. Left (A, C, E), low CD66b density; right
(B, D, F), high CD66b density. Magnification 4×, scale bar = 100 mm. CD66b, yellow; CK, magenta; DAPI, blue.
August 2021 | Volume 11 | Article 659445
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stromal NET density was an independent prognostic factor for
RFS. Combining NET status and the TNM staging system
yielded better prognostic accuracy for cervical cancer than
TNM staging system alone. Thus, patients with high stromal
PMNs and NETs densities should be carefully followed. Stromal
NET density may also serve as a new stratification factor for
randomized trials. These results suggest that targeting NETs may
be an approach to prevent tumor progression, but they require
validation in an independent and larger population.

Previous studies demonstrate that the tumormicroenvironment
plays a crucial role in cancer formation, progression andmetastasis
(5, 32, 33).Cancer-related inflammationhas emerged as the seventh
hallmark of the disease (34). Within the tumormicroenvironment,
inflammatory cells—including neutrophils—influence almost
every aspect of cancer including initiation, angiogenesis, invasion,
and dissemination (35). Neutrophils make up a significant portion
of the inflammatory cell infiltrate findings in a wide variety of
human cancers and murine models (36). There is increasing
evidence indicating that neutrophils play vital functions in the
tumor microenvironment (37). Some pro-inflammatory factors in
the tumor microenvironment have been reported to extend
neutrophil survival time, such as the interferon-g, granulocyte
colony-stimulating factor (G-CSF) or transforming growth
factor-b (10, 37, 38). These cytokines activate tumor-associated
neutrophils in different conditions, which results in anti- and pro-
tumor functions of neutrophils (39).
Frontiers in Oncology | www.frontiersin.org 6
Although neutrophils have the potential to suppress tumor
growth and damage the vascular endothelium through oxidants
and proteolytic enzymes (40), tumor-associated neutrophils are
generally considered a pro-tumor factor in multiple cancers (10,
41, 42). Using over 5000 cases of 25 different cancer types,
Gentles et al. indicated that higher infiltration of PMNs
(including neutrophils) was associated with the lowest overall
survival rate compared to other leukocytes (43). Another study of
neutrophils reported that they could establish a pre-metastatic
niche for the malignant tumor cells (44). We previously
demonstrated that cytokines like G-CSF and interleukin (IL)-6
in the tumor environment could modulate neutrophil function
and enab l e them to promote tumor growth and
angiogenesis (45).

The CD66b+ phenotype is unique to neutrophils and may
reflect a specific activated subtype of (46). Carus et al. reported
that elevated CD66b+ tumor associated PMN count was an
independent prognostic factor for recurrence in localized
(stages Ib and IIa) cervical cancer (47). In this study, we
extended this observation to stage I-IV cervical cancer, further
clarifying the impact of neutrophils on patient outcome. We
observed that neutrophils were present predominantly in the
stromal tissue. Specifically, a high stromal CD66b+ neutrophil
density instead of tumor nest CD66b+ neutrophil density was
TABLE 2 | Percentage of patients with recurrence within 5 years from diagnosis
stratified by CD66b+ neutrophil cell density quartiles.

Quartiles Cells per mm2 % patients with recurrence

Total neutrophils
I 0-15 22
II 15.1-47 20
III 47.1-90 22
IV 90.1-354 36

Stromal neutrophils
I 0-13 14
II 13.1-40 22
III 40.1-65 28
IV 65.1-311 36

Tumor nest neutrophils
I 0-1 25
II 1.1-4 33
III 4.1-16.25 20
IV 16.26-115 22
A B C

FIGURE 2 | Kaplan–Meier RFS curves according to density of total tissue CD66b+ neutrophils (A), stromal CD66b+ neutrophils (B), and tumor nest CD66b+

neutrophils (C), all stratified by medians. P-values obtained from log-rank tests. RFS, recurrence-free survival.
TABLE 3 | Baseline characteristics of patients with low- and high-density
stromal PMNs.

Low density (n = 90) High density (n = 36) P

No. % No. %

Median age (range) 48 (29-70) 47 (30-68) 0.741
Clinical stage 0.007
I/II 74 82.2 25 69.4
III/IV 16 17.8 11 30.6

Histology 0.447
SCC 84 93.4 32 88.9
No SCC 6 6.6 4 11.1

Grade 0.238
1-2 10 11.1 4 11.1
3 60 66.7 31 86.1
Unknown 20 22.2 1 2.8

Lymph node 0.056
Negative 76 84.4 25 69.4
Positive 14 15.6 11 30.6
August 20
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significantly associated with short RFS. Low stromal CD66b+

neutrophil density correlated with favorable RFS in univariate
analysis but was not an independent prognostic factor in
multivariate analysis.

Following activation by stimuli such as PMA or
lipopolysaccharide (LPS) or an infectious environment, neutrophils
produce the fiber-like net by ejecting nuclear chromatin attached to
proteases (e.g., NE, matrix metalloproteinase-9, MPO) to entangle
and eliminate the substance or pathogen (48). Neutrophils are also
activated and formNETs in the tumormicroenvironment. NETs play
a pro-tumor role during tumor progression and metastasis by
enhancing angiogenesis, extracellular matrix remodeling, and tumor
cell proliferation through proteases such as MPO or NE (49) or by
trapping the circulating cancer cells and promoting metastasis and
disease recurrence (50). Compared to healthy controls, NET levels
were higher in cancer patient plasma and tissues such as lung cancer,
Frontiers in Oncology | www.frontiersin.org 7
pancreatic adenocarcinoma, bladder cancer, gastric cancer and
cervical cancer (18, 51, 52). NETs were also detected in tumor
tissues and metastatic lymph nodes from 10 patients with colon
cancer (53). Furthermore, among eight patients with Ewing sarcoma,
Tumor-associated NETs were discovered in patients who had a poor
prognosis (54). Adverse patient outcomes are associated with
increased preoperative NET production in patients with Colorectal
Cancer (55). High NET levels in serum and tumor tissue are
associated with poor prognosis in patients with diffuse large B cell
lymphoma (DLBCL). DLBCL-derived IL-8 interacted with its
receptor on neutrophils to form NETs, resulting in upregulation of
the Toll-like receptor 9 and its downstream signaling pathway to
promote tumor progression (25). In breast cancer, LPS-activated
neutrophils induced NET formation and converted dormant cancer
cells to aggressive lung metastases (56).

A previous study demonstrated that peripheral blood
neutrophils generate NETs in 53.57% of cervical cancer
patients before treatment, but there are no NETs in healthy
people (18). However, it remains unclear whether NETs play a
role in cervical cancer progression. Here, we provide evidence
that enhanced NET formation was associated with poor survival
in cervical cancer patients, indicating that NETs can be a
potential prognostic marker and therapeutic target for this
disease. Additional mechanisms of NET function in the tumor
environment need to be investigated in the future.

We found that NET number but not PMN number was an
independent prognostic factor for RFS in cervical cancer
patients. Two possible reasons are: (i) there are different
tumor environment factors in early and late stage of cervical
cancer that could modulate neutrophil function and allow them
to have pro- or anti-tumor functions and (ii) NETs are
reflective of PMN activity in the tumor environment and may
better reflect the pro-tumor functional status of PMNs,
supporting the hypothesis that the neutrophils exert pro-
tumor effects through multiple mechanisms.
FIGURE 3 | Representative images of immunofluorescence staining of low (upper panel) and high (lower panel) NET density in cervical cancer samples.
Magnification 4×, scale bar = 100 mm; magnification 20×, scale bar = 100 mm. MPO, Red; H3Cit, Green; DAPI, Blue.
TABLE 4 | Mortality within 5 years of cervical cancer diagnosis stratified by NET
density quartile.

Quartiles Cells per mm2 % patients with recurrence

Total NETs
I 0 11
II 0.1-5 31
III 5.1-13 47
IV 13.1-79 11

Stromal NETs
I 0 14
II 0.1-2 22
III 2.1-5.25 31
IV 5.26-32 33

Tumor nest NETs
I 0 36
II 0.1-2 33
III 2.1-425 11
IV 4.26-51 20
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The TNM staging system is considered the gold standard for
clinical staging a variety of malignancies; however, this system is
based almost exclusively on the anatomical spread of cancer and
only narrowly examines the tumor cells without considering the
host reaction (3, 56). The intratumoral inflammatory reaction is
an important parameter influencing the natural course of the
disease. Diverse immune cell types including CD20+ B cells,
CD3+ T cells, CD56+ natural killer (NK) cells, and CD68+
macrophages and immune markers PD-L1 were detected in
Frontiers in Oncology | www.frontiersin.org 8
different proportions of cervical carcinoma (57), and these
cellular and molecular indicators are typically associated with
patient’ survival (58). In this retrospective study, the
combination of NET density and TNM staging as a prognostic
model is more predictive than using TNM staging alone. NETs,
which may reflect the status of the tumor microenvironment of
patients as a molecular indicator, may be used as a supplement to
TNM staging or may be a candidate indicator for molecular
classification of cervical cancer, and may become a potential
therapeutic target. In the future, we will expand the sample size,
design prospective studies and include more immune-indicators
to further verify the above results.

A major strength of our study is the systematic assessment of
PMNsandNETs in thedifferent compartments (i.e., tumornest and
stromal tissue) with an objective and quantitativeMIFmethod, and
their correlations with RFS. We confirmed the findings of the
highest densities of CD66b+ neutrophils in the stromal
compartment and demonstrated an independent prognostic
capacity for NETs. This may reflect the importance of NET
activity in tumor border migration and should be further studied.

The study has some shortcomings. It was retrospective and
performed at a single center. There was also a lack of some
clinical prognostic factors due to the use of TNM staging instead
of FIGO staging. The study was also limited by its small sample
size, which may explain the lack of statistical significance in
clinical stage subgroup analysis of high- and low-density NETs.
Although we found that higher levels of PMN and NET
infiltration were associated with tumor progression, further
studies are needed to clarify the underlying mechanism.
TABLE 6 | Univariate and multivariate analyses of the association of different variables with RFS.

Variable Univariate Multivariate

HR (95% CI) P HR (95% CI) P

Clinical stage 3.413 (2.307-5.050) <0.001 6.396 (3.514 -11.641) <0.001
Histology 1.207 (0.655-2.222) 0.547
Grade 1.335 (0.500-3.566) 0.564
Lymph node 4.487 (2.316-8.693) <0.001 4.689 (3.090-9.663) 0.006
PMN stromal density 1.964 (1.012-3.811) 0.046 0.793 (0.371-1.695) 0.550
NET stromal density 2.523 (1.307-4.873) 0.006 2.655 (1.212-5.818) 0.015
August 2021 | Volume 11 | Article
CI, confidence interval; HR, hazard ratio; NET, neutrophil extracellular trap; PMN, polymorphonuclear neutrophil; RFS, recurrence-free survival.
A B C

FIGURE 4 | Kaplan–Meier RFS curves according to density of whole tissue NETs (A), stromal NETs (B), and tumor nest NETs (C), all stratified by medians. P-values
obtained from log-rank tests. RFS, recurrence-free survival.
TABLE 5 | Baseline characteristics of patients with cervical cancer in low- and
high-density groups of stromal PMNs.

Low density (n = 81) High density (n = 45) P

No. % No. %

Median age (range) 47 (29-70) 48 (30-70) 0.397
Clinical stage
I/II 67 82.7 32 71.1 0.393
III/IV 14 17.3 13 28.9

Histology
SCC 74 91.4 42 93.3 0.369
No SCC 7 8.6 3 6.7

Grade
1-2 7 8.6 7 15.6 0.348
3 58 71.6 33 73.3
Unknown 16 19.8 5 11.1

Lymph node
Negative 69 85.2 32 71.1 0.058
Positive 12 14.8 13 28.9
PMN, polymorphonuclear neutrophil; SCC, squamous cell carcinoma.
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In conclusion, this study provides the first evidence that
PMNs release NETs in cervical cancer tumor tissue. Increased
NET density is an independent prognostic factor for short RFS in
patients with cervical cancer. Combining assessments of clinical
stage with NET assessment may further improve prognostic
stratification. These results could lead to the development of
new therapeutic strategies for cervical cancer.
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