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Background: Several oncogenic drivers in non-small cell lung cancer (NSCLC) are
considered actionable with available or promising targeted therapies. Although
targetable drivers rarely overlap with each other, there were a minority of patients
harboring co-occurring actionable oncogenic targets, whose clinical characteristics and
prognosis are not yet clear.

Methods: A total of 3,077 patients with NSCLC who underwent molecular analysis by
NGS were included, and their demographic and clinical data were retrospectively
collected.

Results: Our study found that the frequency of NSCLC patients harboring co-occurring
potentially actionable alterations was approximately 1.5% (46/3077); after excluding
patients with EGFR-undetermined mutations, the incidence was 1.3% (40/3077); 80%
(37/46) harbored both EGFR mutations and other potentially actionable drivers such as
MET amplification (21.6%; 8/37) and alterations in ERBB2 including mutations (27%; 10/
37) and amplification (21.6%; 8/37); other combinations of potentially actionable drivers
including alterations in ERBB2, KRAS, MET, ALK, and RET were also identified.
Additionally, de novo MET/ERBB2 amplification in patients harboring EGFR-mutant
NSCLC treated with first-generation EGFR tyrosine kinase inhibitors (TKIs) was
associated with shorter PFS (p < 0.05). The efficacy of TKIs in NSCLC patients
harboring other co-occurring potentially actionable drivers varied across different
molecular subtypes.

Conclusions: Approximately 1.5% of NSCLCs harbored co-occurring potentially
actionable oncogenic drivers, commonly involving EGFR mutations. Co-occurring
actionable targets may impact the efficacy of TKIs; therefore, future clinical trials in these
patients should be anticipated to tailor the combination or sequential treatment strategies.

Keywords: non-small cell lung cancer, actionable oncogenic drivers, EGFR, tyrosine kinase inhibitors, next-
generation sequencing
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INTRODUCTION

The heterogeneity of non-small cell lung cancer (NSCLC) is mainly
determined by different oncogenic drivers (1). Although dozens of
oncogenic drivers are considered to be involved in the development
of lung cancer, there are only several actionable targets with widely
available targeted therapies, such as EGFR mutations, ALK
rearrangements, ROS1 rearrangements, BRAF V600E mutation,
NTRK rearrangements, and RET rearrangements (2–4). The
targeted therapies for MET alterations (exon 14 splicing site
mutations also known as skipping mutations or amplification),
ERBB2 alterations (mutations or amplification), and KRAS G12C
mutation also demonstrated promising efficacies in clinical trials,
paving a way for precision medicine of NSCLC (4–8).

More andmore targeted drugs were put into the first-line setting,
greatly influencing the treatment strategies; however, even with the
same type of actionable drivers, the efficacy of targeted therapies
varies from patient to patient (9). Several studies have proved that
both progression-free survival (PFS) and overall survival (OS) of
EGFR mutant or ALK rearranged NSCLCs with TP53 mutations
receiving EGFR or ALK TKIs, respectively, were significantly lower
than those of patients without TP53 mutations (10–12). Later,
increasing evidence has demonstrated that other concomitant
alterations such as RB1 mutations or PIK3CA amplification also
accelerated the resistance to EGFR TKIs (13, 14). In addition to
these common co-existing mutations without available targeted
drugs, co-occurring targetable oncogenic drivers can also be
found in a small number of NSCLCs (15–18); however, there is
still little evidence to make precision treatment plans for these
patients, whose demographic and clinical characteristics remained
largely unknown.

Based on a large population who underwent next-generation
sequencing (NGS) in Shanghai Chest Hospital, our study
revealed the characteristics and prognosis of NSCLC patients
with co-occurring potentially actionable oncogenic drivers,
trying to optimize the treatment strategies.
PATIENTS AND METHODS

Patients
Between March 2018 and June 2019, patients with NSCLC
analyzed for possible actionable targets by NGS in Shanghai
Chest Hospital were enrolled. All patients were diagnosed as
adenocarcinoma, squamous cell carcinoma, and other NSCLCs
according to World Health Organization criteria assessed by
experienced pathologists. The baseline clinical and demographic
characteristics including age, gender, pathology, and stage were
retrospectively collected. Our study has been approved by the
institutional review board of Shanghai Chest Hospital. Written
consent forms were obtained from patients before all invasive
procedures and initiation of tyrosine kinase inhibitors (TKIs).

Next-Generation Sequencing
NGS is routinely carried out for patients with advanced NSCLCs,
especially adenocarcinomas, in our center unless they refuse to do
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so. Patients with early stage NSCLCs can also choose to receive NGS
in case of recurrence. A total of 3,077 formalin-fixed, paraffin-
embedded (FFPE) tumor samples acquired from resected lung or
small biopsies from NSCLCs were prepared according to standard
procedure. Samples with more than 5% tumor content were sent for
NGS. Tissue DNAwas extracted by QIAampDNA FFPE Tissue Kit
(Qiagen, Hilden, Germany) and then evaluated with the Qubit 3.0
dsDNA assay (Life Technologies, CA, USA). DNA was fragmented
by the Covaris M220 Focused-Ultrasonicator (Covaris, Woburn,
MA), followed by end repair, phosphorylation, and adaptor ligation.
Fragments of 200–400 bp in length were selected using Agencourt
AMPure beads (Beckman Coulter, Fullerton, CA, USA), followed
by hybridization with capture probes baits, hybrid selection with
magnetic beads, and PCR amplification. After evaluating the quality
and size of the fragments by a high-sensitivity DNA assay, the
samples were sequenced on a Nextseq500 sequencer (Illumina, Inc.,
San Diego, CA, USA) with paired-end reads. A panel of 68 cancer-
related genes described previously (19, 20) were used to detect the
genetic alterations of our patients, and the details of our panel are
also listed in Supplemental Table 1. The mean depth of was
>1,000×. The sequencing data in the FASTQ format were
mapped to the human genome (hg19) using BWA aligner 0.7.10.
Local alignment optimization, variant calling, and annotation were
assessed using GATK 3.2, MuTect, and VarScan, respectively. DNA
translocation analysis was performed using both Tophat2 and
Factera 1.4.3. Gene-level copy number variation was assessed
using a t test statistic after normalizing read depths at each region
by total read number and region size, and correcting GC bias using a
locally estimated scatterplot smoothing (LOESS) model.

Defining MET/ERBB2 Amplification
According to NGS
Although no consensus exists on the cut-off gene copy number
(GCN) forMET amplification detected by NGS; however, GCN ≥4
as a cut-off for MET amplification by FISH was frequently used in
several clinical trials (21, 22). Moreover, a recent study from our
hospital using the same sequencing technique showed that MET-
amplified patients with GCN >4 after crizotinib treatment tended to
have longer PFS compared with GCN ≤4 (23). Therefore, the GCN
for MET amplification in our study was greater than 4.

Similarly, there is still no recommended cut-off for ERBB2
amplification in NSCLC. However, ERBB2 amplification using in
situ hybridization (ISH) in breast cancer according to 2018
ASCO/CAP clinical practice guideline was defined as ERBB2
GCN ≥6 (24). As a result, an ERBB2 GCN ≥6 was considered
amplified in this study.

Treatment and Follow-Up
EGFR-sensitizing mutations included L858R, L861Q, G719X,
and S768I mutations as well as exon 19 deletions; EGFR-
undetermined mutations refer to other mutations without well-
documented clinical significance. Some of NSCLC patients
harboring EGFR-sensitizing mutations in our study were
treated with first-generation EGFR TKIs including gefitinib
(Iressa, AstraZeneca Pharmaceuticals) (25), erlotinib (Tarceva,
Roche) (26), and icotinib (Conmana, Betta) (27) at doses of 250
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mg once daily, 150 mg once daily, and 125 mg three times daily,
respectively, afatinib (28) (Gilotrif, Boehringer-Ingelheim), and
osimertinib (29) (Tagrisso, AstraZeneca Pharmaceuticals) at
doses of 40 mg once daily and 80 mg once daily, respectively.
ALK-rearranged patients were treated with crizotinib (Xalkori,
Pfizer) (30) at 250 mg twice daily or alectinib (Alecensa, Roche)
(31) at 600 mg twice daily. For some patients with high-level
MET amplification, crizotinib at 250 mg twice daily was tried.
Savolitinib (Hutchison Whampoa) at 600 or 400 mg once daily
was given in a clinical trial (NCT02897479) to patients withMET
exon 14 skipping mutations. Clinical evaluation was performed
every 4–6 weeks according to the Response Evaluation Criteria in
Solid Tumors (RECIST1.1). Progression-free survival (PFS) was
defined from the initiation of TKIs to radiographic or clinical
progression or the last follow-up time (January 31, 2020).

Statistical Analysis
The baseline characteristics between EGFR-mutant patients and
patients with co-occurring actionable drivers receiving EGFR
TKIs were compared with Chi-square test or two-sample t test as
appropriate. Survival curves were generated for comparing PFS
and OS by Kaplan–Meier methods and further compared by the
log-rank test. A P value of <0.05 was considered statistically
significant. All the analyses were performed using the Statistical
Package for Social Science (SPSS, Chicago, IL, USA) version 22.0
for Windows.
RESULTS

Baseline Characteristics of All Patients
A total of 3,077 NSCLC patients were analyzed for oncogenic
alterations by NGS, among whom, 81% (2481/3077), 11% (333/
3077), and 8% (263/3077) were diagnosed as adenocarcinoma,
squamous cell carcinoma, and other subtypes, respectively.
The detailed characteristics were shown in Table 1. Of the
patients, 69% (2120/3077) harbored at least one potentially
actionable oncogenic drivers, namely EGFR mutations, ALK
rearrangements, ROS1 rearrangements, BRAF V600E mutation,
MET amplification, MET exon 14 skipping mutations, RET
rearrangements, NTRK rearrangements, ERBB2 alterations
(mutations and amplification), and KRAS G12C mutation.
Among patients with at least one potentially actionable target,
75% (1587/2120) harbored EGFR mutations including exon 21
L858R mutation (47%; 750/1587), exon 19 deletions (40%; 634/
1587), and other uncommon mutations (13%; 203/1587). The
details of all potentially actionable oncogenic targets were listed
in Figure 1A.

Baseline Characteristics of Patients
Harboring Co-Occurring Potentially
Actionable Targets
Of the patients, 1.5% (46/3077) had co-occurring potentially
targetable oncogenic drivers. The characteristics of these patients
were shown in Table 2. These patients are commonly seen in
females (70 vs 30%), non-smokers (76 vs 24%), and
Frontiers in Oncology | www.frontiersin.org 3
adenocarcinomas (89 vs 11%). 80% (37/46) had EGFR
mutations and other concomitant potentially actionable
drivers, while 20% (9/46) did not harbor EGFR mutations.
After excluding patients with EGFR-undetermined mutations,
the remaining patients harboring co-occurring potentially
actionable oncogenic drivers accounted for 1.3% (40/3077) of
all NSCLCs (Figure 1B).

A total of 37 (80%; 37/46) patients harbored both EGFR-
sensitizing (84%; 31/37) or -undetermined (16%; 6/37)
mutations and other oncogenic drivers. The concomitant
potentially targetable drivers included de novo MET
amplification (21.6%; 8/37), de novo ERBB2 amplification
(21.6%; 8/37), ERBB2 mutations (27.0%; 10/37), KRAS G12C
mutation (8.1%; 3/37), ALK rearrangements (5.4%; 2/37), MET
exon 14 skipping mutations (8.1%; 3/37), NTRK rearrangements
(5.4%; 2/37), and RET rearrangements (2.7%; 1/37). All the
molecular subtypes of these patients were shown in Figure 1B.

Among the patients harboring co-occurring potentially
actionable targets without EGFR mutations, 44.4% (4/9) had
both ERBB2 amplification and ERBB2 mutations; 11.1% (1/9)
had KRAS G12C mutation and concurrent MET amplification;
11.1% (1/9) had MET amplification and a concurrent MET
exon 14 splicing mutation; 22.2% (2/9) harbored both
ALK rearrangements and ERBB2 mutations, and one patient
(11.1%; 1/9) had RET rearrangement and an ERBB2
mutation (Figure 1C).

The Impact of Co-Occurring Potentially
Actionable Oncogenic Drivers on
Targeted Therapies
A total of 23 patients with co-occurring patterns were treated with
different kinds of TKIs, whose treatment types, response, and
progression events were shown in a swimmer plot (Supplemental
Figure 1). A total of 17EGFR-mutant patients with other potentially
actionable oncogenic drivers were treated with first-generation
EGFR TKIs. The demographic and clinical characteristics of these
TABLE 1 | Demographic and clinico-pathological characteristics of all patients
who underwent NGS.

Variables

Total number of patients 3077
Age median (range) 62 (22–88)
Gender N (%)
Male 1561 (51)
Female 1516 (49)

Smoking N (%)
Yes 1490 (48)
No 1587 (52)

Pathology N (%)
ADC 2481 (81)
SQCC 333 (11)
Others 263 (8)

Stage
IA-IIIA 1915 (62)
IIIB-IV 1162 (38)

Potentially targetable drivers
Yes 2120 (69)
No 957 (31)
June 2021 | Volume 11 | Arti
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patients were listed in Table 3 and Supplemental Table 2. Of
patients, 29% (5/17) and 29% (5/17) harbored concurrent de novo
MET amplifications and ERBB2 amplifications, respectively. From
March 2018 to June 2019, a total of 205 patients with EGFR
mutations alone who underwent NGS analysis were treated with
first-generation EGFRTKIs and had full medical records to evaluate
the efficacy, whose baseline characteristics including TP53mutation
status were not significantly different from those of EGFR-mutant
Frontiers in Oncology | www.frontiersin.org 4
patients harboring other concurrent oncogenic drivers except that
there were more females in the double-positive cohort
(Supplemental Table 3).

As shown in Figure 2A, EGFR-mutant patients with other
concurrent potentially actionable drivers demonstrated
significantly lower PFS compared to patients with EGFR
mutations alone (5.4 vs 10.5 months; HR = 1.94, 95% CI: 1.16–
3.25, p = 0.0042). Further analysis of molecular subtypes found
that both de novo MET amplification (2.8 vs 10.5 months; HR =
6.03, 95% CI: 2.43–15.00; p < 0.0001) and de novo ERBB2
amplification (4.2 vs 10.5 months; HR = 2.5, 95% CI, 1.03–
6.09; p = 0.0005) significantly reduced PFS of EGFR TKIs.
However, EGFR-mutant patients harboring other potentially
targetable drivers except MET/ERBB2 amplification showed no
significant difference in PFS compared with patients harboring
EGFR mutations alone (11.0 vs 10.5 months; HR = 1.13, 95% CI:
0.48–2.69; p = 0.76) (Figure 2B), although the PFS of these
patients still fluctuated greatly across different molecular
subtypes (Supplemental Table 2).

A total of six patients with co-occurring potentially targetable
oncogenic drivers were treated with other TKIs. One EGFR-
mutant patient carrying concurrent de novo ERBB2 amplification
was treated with afatinib, reaching a PFS of 4.6 months, while
PFS of one EGFR-mutant patient with concurrent de novo MET
amplification receiving osimertinib was 14.2 months. One EGFR-
mutant patient with concomitant high-level MET amplification
A

B C

FIGURE 1 | (A) The frequency of different oncogenic drivers in all patients. (B) Composition of EGFR-mutant NSCLC patients harboring other potentially actionable
oncogenic drivers. (C) Composition of NSCLC patients harboring co-occurring potentially actionable drivers without EGFR mutations. Composition of patients with
lung adenocarcinoma from MKSCC harboring co-occurring potentially actionable oncogenic drivers. double-positive, with two potentially actionable oncogenic
drivers; triple-positive, with three potentially actionable oncogenic drivers; del, deletions; EGFR sensitizing, sensitizing EGFR mutations, EGFR undetermined,
undetermined EGFR mutations; amp, amplification; ERBB2m, ERBB2 mutation; MET 14 skipping, MET exon 14 skipping mutation; ALKr, ALK rearrangement;
NTRKr, NTRK rearrangement; RETr, RET rearrangement.
TABLE 2 | The demographic and clinico-pathological characteristics of patients
harboring co-occurring potentially actionable targets.

Characteristics

Total number of patients 46
Median age (range) 62 (35–81)
Gender N, (%)
Male 14 (30)
Female 32 (70)

Smoking N, (%)
Non-smoker 35 (76)
Smoker 11 (24)

Pathology N, (%)
ADC 41 (89)
Non-ADC 5 (11)

Stage
I–IIIA 19 (41)
IIIB–IV 27 (59)
ADC, adenocarcinoma.
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(copy number = 8.8) received crizotinib, yet with a PFS of only
2.5 months. One ALK-rearranged patient with a concurrent
ERBB2 mutation was treated with alectinib, achieving partial
response. One MET-amplified patient with a concomitant MET
exon 14 skipping mutation was treated with crizotinib, having
satisfying response with PFS of 14.4 (Table 4).
DISCUSSION

Our study found that the incidence of NSCLC patients harboring
co-occurring potentially actionable alterations was approximately
1.5% (46/3077), likely to be found in females, non-smokers, and
adenocarcinomas. Among these patients, 80% (37/46) harbored
EGFR-sensitizing (84%; 31/37) or -undetermined (16%; 6/37)
mutations and other concurrent potentially targetable oncogenic
drivers such as de novo MET amplification (21.6%; 8/37) and
alterations in ERBB2 including mutations (27.0%; 10/37) and
amplification (21.6%; 8/37). Other concurrent potentially
actionable targets in EGFR-mutant patients treated with first-
generation EGFR TKIs were associated with shorter PFS (5.4 vs
10.5 months; HR = 1.94, 95% CI: 1.16–3.25, p = 0.0042), suggesting
that co-occurring potentially targetable oncogenic drivers may
impact the efficacy of EGFR TKIs. Further analysis showed that it
A B

FIGURE 2 | (A) Comparison of PFS of first-generation EGFR TKIs for patients with EGFR mutations alone and patients harboring both EGFR mutations and other
potentially actionable oncogenic drivers. (B) PFS of first-generation EGFR TKIs for EGFR-mutant patients with concurrent MET amplification, ERBB2 amplification,
and other oncogenic drivers.
TABLE 3 | The characteristics of EGFR mutant patients harboring other
potentially actionable drivers treated with first-generation EGFR TKIs.

Characteristics

Total number of patients 17
Median age (range) 60 (35–72)
Gender N, (%)
Male 3 (18)
Female 14 (82)

Smoking N, (%)
Non-smoker 14 (82)
Smoker 3 (18)

Pathology N, (%)
ADC 15 (88)
Non-ADC 2 (12)

EGFR mutation type N, (%)
21L858R 12 (71)
19del 4 (23)
18G719A 1 (6)

Concomitant alterations N, (%)
MET amplification 5 (29)
ERBB2 amplification 5 (29)
ERBB2 mutations 3 (18)
MET exon 14 splicing mutation 1 (6)
RET rearrangement 1 (6)
NTRK rearrangement 1 (6)
KRAS G12C mutation 1 (6)
ADC, adenocarcinoma.
TABLE 4 | Characteristics of patients harboring other co-occurring actionable drivers receiving targeted therapies.

No. Sex Age, y Pathology Smoking Therapies Alterations Stage Response PFS

1 female 42 PSC never Afatinib EGFR exon 18 G719A + ERBB2 amp IV SD 4.6
2 male 68 SQCC current Crizotinib EGFR exon 19 del + MET amp (CN=8.8) IV SD 2.5
3 male 66 ADC former gefitinib+

chemo
EGFR exon 11 P411S + KRAS exon 2 G12C IV PR 13

4 female 41 ADC never Alectinib EML4-ALK(E13:A20) +ERBB2 27A1216V IV PR 11.2*
5 male 70 ADC former Crizotinib MET exon 14 skipping mutation + MET amp IV PR 14.4
6 female 61 ADC never Osimertinib EGFR exon 21 L858R + MET amp IV PR 14.2*
June 2
021 | Volum
e 11 | Article 66
*The diseases have not progressed in these patients at the time of last follow-up.
PSC, pulmonary sarcomatoid carcinoma; SQCC, squamous cell carcinoma; ADC adenocarcinoma; amp, amplification.
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was de novo MET/ERBB2 amplification that played major roles in
the primary resistance to first-generation EGFR TKIs, while the
third-generation EGFR TKI, osimertinib, may bring better benefits
to these patients. In addition, the efficacy of TKIs in NSCLC patients
harboring other co-occurring potentially actionable targets
varied across different molecular subtypes with overall
encouraging responses.

With the advent and rapid development of NGS, the genomic
alterations of lung cancer have been fully investigated, helping to
move forward to the era of precision medicine. There are three
generations of TKIs for EGFRmutations, one of the most common
oncogenic drivers in NSCLC. The first-generation EGFR TKIs
including gefitinib, erlotinib, and icotinib were usually used as the
first-line treatments in China due to their wide availability and
affordable prices. Our study found that the PFS of the first-
generation TKIs in EGFR-mutant patients was 10.5 months,
similar to the results from previous clinical trials (25–27). Owing
to the greatly heterogeneous responses to EGFR TKIs across
individuals harboring EGFR mutations, many research studies
were carried out to study the factors that may affect the efficacy,
among which, concurrent genomic alterations were mostly
investigated. For example, a retrospective study from Korea
included patients who underwent molecular analysis by NGS
before treatment with first-/second-generation EGFR TKIs (cohort
1) or third-generation EGFR TKIs after failure in the previous TKIs
(cohort 2). Their results showed that TP53 mutations were
independently associated with worse outcomes in cohort 1, while
in cohort 2, TP53, RB1, and PTEN mutations as well as MDM2
amplifications all resulted in shorter PFS (11), suggesting that
concurrent genomic alterations accelerated the resistance to EGFR
TKIs. Additionally, co-occurring TP53 mutations were reported to
be associated with worse outcomes of EGFR TKIs in several studies
(10, 11, 13, 32). However, these concomitant genetic alterations in
previous studies were mostly considered untargetable without
available drugs. There are only a few oncogenic drivers in NSCLC
having commercially available or promising targeted therapies,
including alterations in EGFR, ALK,ROS1, BRAF, MET, RET,
ERBB2, NTRK, and KRAS. Although these drivers were
considered mutually exclusive previously (33), increasing evidence
demonstrated that a minority of NSCLCs harbored co-occurring
potentially actionable alterations (17, 34–36), whose overall
characteristics remained largely unknown due to the small sample
size of previous reports. Our findings showed that the incidence of
NSCLC patients harboring co-occurring potentially actionable
alterations was approximately 1.5% (46/3077), and they were
commonly found in females, non-smokers, and adenocarcinomas.

Similar results were also shown in western populations, although
the frequency of oncogenic drivers, especially EGFR mutations, in
western patients with NSCLC was reported to be lower than that of
eastern population (1, 37, 38). The patients with co-occurring
potentially actionable targets accounted for 3.6% (31/860) of all
lung adenocarcinoma according to the data presented by MSKCC
(38). Among these patients, 84% (26/31) harbored EGFR-sensitizing
(81%; 21/26) or -undetermined (19%; 5/26) mutations with other
concurrent potentially actionable drivers including ERBB2
amplification (50%; 13/26), MET amplification (27%; 7/26), KRAS
Frontiers in Oncology | www.frontiersin.org 6
G12C mutation (11.5%; 3/26), and ERBB2mutations (11.5%; 3/26),
similar to the eastern population. There are five (16%; 5/31) patients
harboring other types of co-occurring potentially actionable targets.
However, the GCNs forMET/ERBB2 amplification were not known
in this database.

Among NSCLC patients with co-occurring potentially
oncogenic drivers, 80% (37/46) harbored EGFR mutations and
other concurrent potentially targetable drivers, commonly
involving de novo MET amplifications (21.6%; 8/37) and
alterations in ERBB2 including mutations (27.0%; 10/37) and
amplification (21.6%; 8/37). It was found that concurrent
actionable drivers, especially MET/ERBB2 amplification,
contributed to the primary resistance to EGFR TKIs. MET
amplification often occurred in EGFR-mutant NSCLC after failure
of previous TKIs as an acquired resistance mechanism by activating
ERBB3 signaling (39, 40). From a cytological prospective, a small
proportion of EGFR-mutant cells already harbored MET
amplifications before initiation of TKIs, finally resulting in drug
resistance (41). A previous study showed that approximately 3.2%
(5/154) of EGFR-mutant patients harbored concurrent MET
amplifications before treatment with EGFR TKIs, and the PFS for
these patients was significantly shorter than that of the patients with
EGFR mutations alone (17), but the sample size was too small to
reach a concrete conclusion. In our study, five EGFR-mutant
patients with concurrent de novo MET amplifications treated with
first-generation EGFR TKIs demonstrated worse PFS compared to
the patients with EGFR mutations alone, further supporting the
conclusion that de novo MET amplification contributed to the
primary resistance of first-generation EGFR TKIs. Additionally,
one EGFR-mutant patient with high-level MET amplification
received crizotinib with stable disease lasting for only 2.5 months,
suggesting that these patients may respond poorly to only one
targeted drug. A phase Ib/II clinical trial demonstrated promising
efficacy of capmatinib plus gefitinib after failure of EGFR TKIs in
patients having EGFR-mutant and MET-amplified NSCLC with
acceptable toxicities (21). Therefore, the combination regimen can
also be tried in EGFR-mutant patients with de novo MET
amplifications in clinical practice to overcome primary resistance.
Additionally, one EGFR-mutant patient with both de novo MET
amplification was treated with osimertinib, achieving prolonged
partial response, suggesting the third-generation EGFR TKI,
osimertinib, might overcome the primary resistance from de novo
MET amplification.

Similar to concurrent de novo MET amplification, de novo
ERBB2 amplification was also associated with shorter PFS.
Approximately 13% of patients with EGFR-mutant NSCLC will
acquire ERBB2 amplification after failure of first-generation
EGFR TKIs. However, the role of de novo ERBB2 amplification
in EGFR-mutant NSCLC has not been fully revealed. A previous
study showed that 4% (8/200) of all EGFR-mutant NSCLC
harbored concurrent ERBB2 amplifications before treatment
with TKIs, leading to a shorter PFS compared to patients with
EGFR mutations alone (14). In our study, it was found patients
having both EGFR-mutant and ERBB2 amplified NSCLC treated
with first-generation EGFR TKIs reached a median PFS of 4.2
months, which was significantly shorter than that of patients
June 2021 | Volume 11 | Article 665484
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with EGFR mutations alone (4.2 vs 10.5 months; HR = 2.5, 95%
CI, 1.03–6.09; p = 0.0005). A recent phase II basket trial
demonstrated a 51% response rate in 49 patients with ERBB2-
amplified or mutant NSCLC treated with ado-trastuzumab
emtansine (T-DM1), an anti-ERBB2/HER2 antibody-drug
conjugate (ADC), suggesting that ADCs are effective in
patients with ERBB2-aberrant NSCLC. Therefore, the future
clinical trials of EGFR TKIs plus ADCs can be launched in
EGFR-mutant patients with concurrent ERBB2 amplification.

Additionally, there were EGFR-mutant patients harboring other
concurrent potentially actionable drivers such as KRAS mutations.
Sotorasib, a KRAS inhibitor, in a recent clinical trial showed
encouraging efficacy in patients with heavily pretreated advanced
solid tumors harboring KRAS G12C mutation, paving a way for
targeted therapy in KRAS-mutant patients. There are several gene
fusions in NSCLC with corresponding targeted drugs including
ALK, ROS1, RET, and NTRK (42). Although these fusions rarely
overlap with other oncogenic drivers (43, 44), our study found that
they can co-exist with other actionable targets such as EGFR
mutations and ERBB2 mutations. Moreover, there were four
patients harboring both ERBB2 mutations and ERBB2
amplifications, although a previous study showed that ERBB2
mutations were not associated with ERBB2 amplification (45).

There were some drawbacks of our study. Firstly, this was a
retrospective study with a relatively small sample size, which
cannot avoid selection bias and reflect the entire population with
co-occurring potentially actionable oncogenic drivers. Secondly,
MET and ERBB2 amplifications were not further confirmed by
fluorescence in situ hybridization (FISH), although NGS was
frequently applied in both clinical trials and routine practice to
detect amplifications (6, 8, 21),. Furthermore, several studies
showed high concordance between NGS and FISH or
immunohistochemistry in detecting amplification (46–48).
Additionally, the efficacy of ADCs in ERBB2-amplified NSCLC
varied across different clinical trials (5, 6, 49); however, a recent
study has revealed that the overall response rate by RECIST of
T-DM1 in ERBB2-amplified NSCLC was 50% (5/10) (6),
suggesting ERBB2 amplification was also a promising target.
Moreover, the efficacy of EGFR TKIs in some of the EGFR-
undetermined mutations considered potentially actionable in
our study still needed to be explored. Finally, there is a
potential risk of confounders by patient clinical characteristics
in the survival analysis, especially in the subgroup analysis.
CONCLUSIONS

In conclusion, our study showed approximately 1.5% (46/3077)
of all NSCLCs harbored co-occurring potentially actionable
oncogenic drivers, commonly involving EGFR mutations; after
excluding patients with EGFR-undetermined mutations, the
incidence was 1.3% (40/3077). These patients are likely to be
found in females, non-smokers, and adenocarcinomas. In EGFR-
mutant patients, de novo MET/ERBB2 amplification was
associated with shorter PFS, and the combination of EGFR and
MET/ERBB2 inhibitions or third-generation EGFR TKIs can be
Frontiers in Oncology | www.frontiersin.org 7
tried in future to achieve better response. The efficacy of TKIs in
NSCLC patients harboring other co-occurring potentially
actionable drivers varied across different molecular subtypes.
Many molecular subtypes of co-occurring actionable oncogenic
drivers were found in our study, suggesting the complexity of
oncogene-addicted NSCLC. In order to tailor the combination or
sequential treatment strategies, future clinical trials for these
patients should be anticipated.
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