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Background: Computed tomography (CT) and magnetic resonance imaging (MRI) are
the mainstay imaging modalities in radiotherapy planning. In MR-Linac treatment, manual
annotation of organs-at-risk (OARs) and clinical volumes requires a significant clinician
interaction and is a major challenge. Currently, there is a lack of available pre-annotated
MRI data for training supervised segmentation algorithms. This study aimed to develop a
deep learning (DL)-based framework to synthesize pelvic T1-weighted MRI from a pre-
existing repository of clinical planning CTs.

Methods: MRI synthesis was performed using UNet++ and cycle-consistent generative
adversarial network (Cycle-GAN), and the predictions were compared qualitatively and
quantitatively against a baseline UNet model using pixel-wise and perceptual loss
functions. Additionally, the Cycle-GAN predictions were evaluated through qualitative
expert testing (4 radiologists), and a pelvic bone segmentation routine based on a UNet
architecture was trained on synthetic MRI using CT-propagated contours and
subsequently tested on real pelvic T1 weighted MRI scans.

Results: In our experiments, Cycle-GAN generated sharp images for all pelvic slices whilst
UNet and UNet++ predictions suffered from poorer spatial resolution within deformable soft-
tissues (e.g. bladder, bowel). Qualitative radiologist assessment showed inter-expert
variabilities in the test scores; each of the four radiologists correctly identified images as
acquired/synthetic with 67%, 100%, 86% and 94% accuracy. Unsupervised segmentation of
pelvic bone on T1-weighted images was successful in a number of test cases

Conclusion: Pelvic MRI synthesis is a challenging task due to the absence of soft-tissue
contrast on CT. Our study showed the potential of deep learning models for synthesizing
realistic MR images from CT, and transferring cross-domain knowledge which may help to
expand training datasets for 21 development of MR-only segmentation models.

Keywords: convolutional neural network (CNN), generative adversarial network (GAN), medical image synthesis,
radiotherapy planning, magnetic resonance imaging (MRI), computed tomography (CT)
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INTRODUCTION

Computed tomography (CT) is conventionally used for the
delineation of the gross tumor volume (GTV) and subsequent
clinical/planning target volumes (CTV/PTV), along with organs-
at-risk (OARs) in radiotherapy (RT) treatment planning.
Resultant contours allow optimization of treatment plans by
delivering the required dose to PTVs whilst minimizing radiation
exposure of the OARs by ensuring that spatial dose constraints
are not exceeded. Magnetic resonance imaging (MRI) offers
excellent soft-tissue contrast and is generally used in
conjunction with CT to improve visualization of the GTV and
surrounding OARs during treatment planning. However,
manual definition of these regions is repetitive, cumbersome
and may be subject to inter- and/or intra-operator variabilities
(1). The recent development of the combined MR-Linac system
(2) provides the potential for accurate treatment adaption
through online MR-imaging acquired prior to each RT
fraction. However, re-definition of contours for each MR-Linac
treatment fraction requires approximately 10 minutes of
downtime whilst the patient remains on the scanner bed,
placing additional capacity pressures on clinicians wishing to
adopt this technology.

Deep learning (DL) is a sub-category of artificial intelligence
(AI), inspired by the human cognition system. In contrast to
traditional machine learning approaches that use hand-
engineered image-processing routines, DL is able to learn
complex information from large datasets. In recent years, DL-
based approaches have shown great promise in medical imaging
applications, including image synthesis (3, 4) and automatic
segmentation (5–7). There is great promise for DL to
drastically accelerate delineation of the GTV and OARs in
MR-Linac studies, yet a major hurdle remains the lack of large
existing pre-contoured MRI datasets for training supervised
segmentation networks. One potential solution is transferring
knowledge from pre-existing RT planning repositories on CT to
MRI in order to facilitate domain adaptive segmentation (8).
Previous studies have reported successful implementation of
GANs in generating realistic CT images from MRI (3, 9–11) as
well as MRI synthesis from CT in the brain (12). To date, few
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studies have investigated MRI synthesis in the pelvis. Dong et al.
(13) proposed a synthetic MRI-assisted framework for improved
multi-organ segmentation on CT. However, although the
authors suggested that synthetic MR images improved
segmentation results, the quality of synthesis was not
investigated in depth. MR image synthesis from CT is a
challenging task due to large soft-tissue signal intensity
variations. In particular, MRI synthesis in the pelvis offers the
considerable difficulty posed by geometrical differences in patient
anatomy as well as unpredictable discrepancies in bladder and
bowel contents.

In this study, we compare and contrast paired and unpaired
generative techniques for synthesizing T1-weighted (T1W) MR
images from pelvic CT scans as a basis for training algorithms for
OARs and tumor delineation on acquired MRI datasets. We
include in our analysis the use of state-of-the-art UNet (14) and
UNet++ (15) architectures for paired training, testing two
different loss functions [L1 and VGG-19 perceptual loss (16)],
and compare our results with a Cycle-Consistent Generative
Adversarial Network (Cycle-GAN) (17) for unpaired MR image
synthesis. Subsequently, we evaluate our results through blinded
assessment of synthetic and acquired images by expert
radiologists, and demonstrate our approach for pelvic bone
segmentation on acquired T1W MRI from a framework trained
solely on synthetic 1WMR images with CT-propagated contours.
MATERIALS AND METHODS

Patient Population and Imaging Protocols
Our cohort consisted of 26 patients with lymphoma who
underwent routine PET/CT scanning (Gemini, Philips,
Cambridge, United States) and whole-body T1W MRI (1.5T,
Avanto, Siemens Healthcare, Erlangen, Germany) before and
after treatment (see Table 1 for imaging protocols). From this
cohort, image series with large axial slice angle mismatch
between CT and MR images, and those from patients with
metal implants were excluded, leaving 28 paired CT/MRI
datasets from 17 patients. The studies involving human
participants were reviewed and approved by the Committee for
TABLE 1 | Imaging parameters for acquired CT and T1W MR images.

CT parameters T1W MR parameters

Peak Voltage Output (kVp) 120 Acquisition Sequence 2D Spoiled Gradient Echo
Acquisition Type Helical Echo Time (ms) 4.8
Slice Thickness (mm) 3-6.5 Repetition Time (ms) 386
Matrix Size 512 × 512 Phase Encoding Direction Anterior-Posterior
Pixel Spacing (mm2) 0.74 × 0.74-1.17 × 1.17 Acquired Matrix Size (read) 256
Exposure (mAs) 26-80 Reconstructed Matrix Size (read) 512

Reconstructed Pixel Size (mm2) 0.74 × 0.74-0.82 × 0.82
Flip Angle 70°
Slice Orientation Axial
Slice Thickness (mm) 5
Acceleration GRAPPA (R=2)
Bandwidth Pixel
(Hz/pixel) 331
July 2021 | V
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Clinical Research at the Royal Marsden Hospital. The patients/
participants provided written informed consent to participate in
this study.

Model Architectures
We investigated three DL architectures for MR image synthesis: (i)
UNet, (ii) UNet++, and (iii) Cycle-GAN. UNet is one of the most
popular DL architectures for image-to-image translations, with
initial applications in image segmentation (14). In essence, UNet
is an auto-encoder with addition of skip connections between
encoding and decoding sections to maintain spatial resolution. In
this study, a baseline UNet model was designed consisting of 10
consecutive convolutional blocks (5 encoding and 5 decoding
blocks), each using batch normalization and ReLU activation for
CT-to-MR image generation (Figure 1A). Additionally, a UNet++
model with interconnected skip connection pathways, as described
in (15), was developed with the same number of encoder-decoder
sections and kernel filters as the baseline UNet (Figure 1B). UNet+
+ was reported to enhance performance (15), therefore we deployed
this architecture to assess its capabilities for paired image synthesis.

GANs are the state-of-the-art approaches for generating
photo-realistic images based on the principles of game theory
(18). In image synthesis applications, GANs typically consist of
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two CNNs, a generator and a discriminator. During training, the
generator produces a target synthetic image from an input image
with different modality; the discriminator then attempts to
classify whether the synthetic image is genuine. Training is
successful once the generator is able to synthesize images that
the discriminator is unable to differentiate from real examples.
Progressive co-training of the generator and discriminator leads
to learning of the global conditional probability distribution
from input to target domain. In this study, a Cycle-GAN
model (17) was developed to facilitate unpaired CT-to-MR and
MR-to-CT learning. The baseline UNet model was used as the
network generator, and the discriminator composed of 5 blocks
containing 2D convolutional layers followed by instance
normalization and leaky ReLU activation. This technique offers
the advantage that it does not require spatial alignment between
training T1W MR and CT images. The high-level schematic of
the Cycle-GAN network is shown in Figure 2.

For segmentation, we propose a framework that first
generates synthetic T1W MR images from CT, propagates
ground-truth CT contours and outputs segmentation contours
on acquired T1W MR images. To examine the capability of our
fully-automated DL framework for knowledge transfer from CT
to MRI, we generate ground-truth contours of the bones using a
A

B

FIGURE 1 | Paired image-to-image networks, (A) UNet with symmetrical skip connections between the encoder and decoder, (B) UNet++ with interconnected skip
connection convolutional pathways.
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Gaussian mixture model proposed by Blackledge etal. (19) and
transfer them to synthetic MR images as a basis for our
segmentation training. A similar UNet model to the
architecture presented in Figure 1, with 5 convolutional blocks
(convolution-batchnorm-dropout(p=0.5)-ReLU) in the
encoding and decoding sections was developed to perform
binary bone segmentation from synthetic MR images. The
schematic of our proposed synthesis/segmentation framework
is illustrated in Figure 3.

Image Preprocessing
In preparation for paired training, the corresponding CT and T1W
MR slices from the anatomical pelvic station in each patient were
Frontiers in Oncology | www.frontiersin.org 4
resampled using a 2D affine transformation followed by non-rigid
registration using multi-resolution B-Spline free-form deformation
(loss = Mattes mutual information, histogram bins = 50, gradient
descent line search optimizer parameters: learning rate = 5.0,
number of iterations = 50, convergence window size = 10) (20).
The resulting co-registered images were visually qualified based on
the alignment of rigid pelvic landmarks. In CT images, signal
intensities outside of the range -1000 and 1000 HU were truncated
to limit the dynamic range. The T1W MR images were corrected
using N4 bias-field correction to reduce inter-patient intensity
variations and inhomogeneities (21) and signal intensities above
1500 (corresponding to infrequent high intensity fatty regions)
were truncated. Subsequently, the training images were normalized
FIGURE 2 | Schematic of the Cycle-GAN network. During training, images from CT domain are translated to MRI domain and reconstructed back to CT domain
under the governance of adversarial and cycle consistency loss terms respectively. Co-training of CT-to-MRI and MRI-to-CT models leads to generation of photo-
realistic predictions.
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to intensity ranges (0,1) and (-1,1) prior to paired (UNet, UNet++)
and unpaired (Cycle-GAN) training respectively.

Objective Functions
Common loss functions in image synthesis are mean absolute
error (MAE or L1) and mean squared error (MSE or L2) between
the target domain and the synthetic output. However, such loss
functions ignore complex image features such as texture and
shape. Therefore, for UNet/UNet++ models, we compared L1
loss in the image space with L1 loss calculated based on the
features extracted from a previously-trained object classification
network, deriving the “perceptual loss”. For this purpose, the
VGG-19 classification network was used (16), which is
composed of 5 convolutional layers and 19 layers overall, and
used features extracted from the “block conv2d” layer. For Cycle-
GAN training, the difference between L1 and the structural
similarity index (SSIM) (defined as L1 – SSIM) was used as the
loss to govern the cycle consistency, whilst L1 and L2 losses were
used for the generator and the discriminator respectively. For
segmentation training, the Dice loss (1, 2) was used to perform
binary division of bone on MR images.

DSC =
2 A ∩ Bj j
Aj j + Bj j (1)

Dice loss = 1 − DSC (2)

where A and B denote the generated and ground-truth contours.
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Model Training and Evaluation
The dataset was split to 981, 150 and 116 images from 11, 3 and 3
patients for training, validation and testing respectively. All
models were trained for 150 epochs using the Adam optimizer
(learning rate = 1e-4; UNet and UNet++ models: batch size = 5,
Cycle-GAN: batch size=1) on a NVIDIA RTX6000 GPU (Santa
Clara, California, United States) (Table 2). During paired UNet/
UNet++ training, the peak signal-to-noise ratio (PSNR), SSIM,
L1 and L2 quantitative metrics, as described in (22), were
recorded at each epoch for the validation images. The trained
weights with the lowest validation loss were used to generate
synthetic T1W MR images from the test CT images. Optimal
weights from the Cycle-GAN model were selected based on
visual examination of the network predictions of the validation
data following each epoch. Subsequently, synthetic images from
all models were evaluated against the ground-truth acquired MR
images quantitatively using the above-mentioned imaging
metrics. An additional qualitative test was designed to obtain
unbiased clinical examination of predictions from the Cycle-
GAN model. This test consisted of two sections: (i) to blindly
classify randomly-selected test images as synthetic or acquired,
and outline reasoning for answers (18 synthetic and 18 acquired
test MR slices), and (ii) to describe key differences between
synthetic and acquired test T1W MR images when the input CT
and ground truth acquired MR images were also provided (10
sets of images from 3 test patients). This test was completed by 4
radiologists (two with <5 years and two with >5 years of
FIGURE 3 | Schematic of the proposed fully-automatic combined synthesis and segmentation framework for knowledge transfer from CT scans to MR images. The
intermediate synthesis stage enables segmentation training using CT-based contours and MR signal distributions.
TABLE 2 | Learnable parameters (in millions) of UNet, UNet++ and Cycle-GAN models.

UNet (L1) UNet (VGG) UNet++ (L1) Cycle-GAN

Trainable Parameters (M) 31 31 36 31(G), 11(D)
July 2021 | Volume 11 | Ar
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experience). The segmentation network was trained on Cycle-
GAN generated synthetic MR images (training: 14, validation:
3 patients) for 600 epochs using the Adam optimizer (learning
rate = 1e-4) and batch size of 1. To avoid overfitting, random
linear shear and rotation (range:0, p/60) were applied to images
during training.
RESULTS

Quantitative assessment of synthetic T1W MR images from the
validation dataset during paired algorithm training suggested that
the UNet and UNet++ models with L1 loss displayed higher PSNR
and SSIM, and lower L1 and L2 values compared with the generated
images from the UNet model with the VGG-19 perceptual loss
(Figure 4). Quantitative analysis of synthetic images from the test
patients revealed a similar trend for UNet and UNet++ model
predictions and showed that the Cycle-GAN quantitative values
were the lowest in all metrics but the SSIMwhere it was only higher
than UNet (VGG) predictions (Table 3). Moreover, qualitative
evaluation of predictions from all models revealed a noticeable
difference in sharpness (spatial resolution) between the images
Frontiers in Oncology | www.frontiersin.org 6
generated from paired (UNet and UNet++) and unpaired (Cycle-
GAN) training. It was observed that despite UNet and UNet++
models generating relatively realistic predictions for pelvic slices
consisting of fixed and bony structures (e.g. femoral heads, hip
bone, muscles), they yielded blurry and unrealistic patches for
deformable and variable pelvic structures such as bowel, bladder
and rectum. In contrast, the Cycle-GAN model generated sharp
images for all pelvic slices, yet a disparity in contrast was observed
for soft-tissues with large variabilities in training patient MRI slices
(e.g. bowel content, gas in rectum and bowel, bladder
filling) (Figure 5).

Our expert radiologist qualitative testing on Cycle-GAN
predicted images suggested that there were inter-expert
variabilities in scores from section one of the test, highlighting
the differences in subjective decisions amongst the experts in a
number of test images. Experts 1 and 2 (<5 years of experience)
scored 67% and 100% whilst experts 3 and 4 (>5 years of
experience) correctly identified 86% and 94% of total 36 test
images. Hence, no particular correlation was observed between
the percentage scores and the participants’ years of experience
(Figure 6A). Radiologist comments on the synthetic images
(following unblinding) are presented in Figure 6B.
FIGURE 4 | Quantitative metrics calculated from validation images during training of UNet and UNet++ models for 150 epochs. (A) PSNR, (B) SSIM, (C) L1 loss and
(D) L2 loss.
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The bone segmentation results using our fully-automated
approach showed that our proposed framework successfully
performed unsupervised segmentation of the bone from
acquired T1W MR images, without the requirement of any
manually annotated regions of interest (ROIs). The outcome
from various pelvic slices across 8 patients from our in-house
cohort are presented in Figure 7. The segmentation results from
cases 5 to 8 were from patients not used in the synthesis and
segmentation components of our framework. Test case 8
demonstrates the predicted bone contours from a patient with
metal hip implant.
DISCUSSION AND CONCLUSION

One major limitation in adaptive RT on the MR-Linac system
is the need for manual annotation of OARs and tumors on
patient scans for each RT fraction which requires significant
clinician interaction. DL-based approaches are promising
solutions to automate this task and reduce burden on
clinicians. However, the development of these algorithms is
hindered by the paucity of pre-annotated MRI datasets for
training and validation. In this study, we developed paired and
unpaired training for T1W MR image synthesis from pelvic CT
scans as a data generative tool for training of segmentation
algorithms for MR-Linac RT treatment planning. Our results
suggested that the Cycle-GAN network generated synthetic
images with the greatest visual fidelity across all pelvic slices
whilst the synthetic images from UNet and UNet++ appeared
less sharp, which is likely due to soft-tissue misalignments
during the registration process. The observed disparity in
contrast in Cycle-GAN images for bladder, bone marrow and
bowel loops may be due to large variabilities in our relatively
small training dataset. Although the direct impact of these
contrast discrepancies on MRI segmentation performance is
yet to be evaluated, the Cycle-GAN predictions appeared more
suitable for CT contour propagation to synthetic MRI than
UNet and UNet++ images due to distinctive soft-tissue
boundaries and high-resolution synthesis.

Quantitative analysis of all model predictions indicated that
the imaging metrics did not fully conform with the output image
visual fidelity and apparent sharpness. This finding was in fact in
line previous studies comparing paired and unpaired MRI
synthesis (12, 22). CT-to-MR synthesis in the pelvis offers the
considerable challenge of generating soft-tissue contrasts absent
on acquired CT scans. Although quantitative metrics such as the
Frontiers in Oncology | www.frontiersin.org 7
PSNR, SSIM, L1 and L2 differences are useful measures when
comparing images, they may not directly correspond to photo-
realistic network outcome. This was evident in quantitative
evaluation of the images generated from the UNet and UNet++
models trained with L1 loss in the image space against UNet with
VGG-19 perceptual loss and Cycle-GAN predictions. Therefore,
expert clinician qualitative assessments may provide a more
reliable insight into the performance of medical image
generative networks. In this study, our expert evaluation test
based on Cycle-GAN predictions suggested that despite a number
of suboptimal soft-tissue contrast predictions (e.g. urinary
bladder filling, bone marrow, nerves), there were differences in
radiologist accuracies for correctly identifying synthetic from
acquired MR images. The fact that 3/4 radiologists were unable
to accurately identify synthetic images in all cases highlights the
capability of our model to generate realistic medical images that
may be indistinguishable from acquired MRI.

Our segmentation results demonstrated the capability of our
fully-automated framework in segmenting bones on acquired
MRI images with no manual MR contouring. Domain
adaptation offers a significant clinical value in transferring
knowledge from previously-contoured OARs by experts on CT
to MR-only treatment planning procedures. Additionally, it
potentially enables expanding medical datasets which are
essential for training supervised DL models. Such a technique
is also highly valuable outside the context of radiotherapy, as
body MRI has increasing utility for monitoring patients with
secondary bone disease from primary prostate (23) and breast
(24) cancers, and multiple myeloma (25). Quantitative
assessment of response of these diseases to systemic treatment
using MRI is hindered by the lack of automated skeletal
delineation algorithms to monitor changes in large volume
disease regions (26).

GANs are notoriously difficult to train due to their large
degree of application-based hyper-parameter optimization and
non-standardized training techniques. However, this study
showed that even when trained on relatively small datasets,
GANs may have the potential to generate realistic images to
overcome the challenge of medical image data shortage.
Therefore, fut ure studies will investigate the performance of
the proposed framework on larger datasets and alternative pelvic
OARs, as well as exploring novel techniques to enforce targeted
organ contrast during GAN and segmentation training.
Additionally, future research will examine the performance
sensitivity on the level of manual MRI contours required for
training cross-domain DL algorithms.
TABLE 3 | Quantitative analysis of predictions from the trained models on test patients.

UNet (L1) UNet (VGG) UNet++ (L1) Cycle-GAN PSNR

PSNR 20.169 ± 0.196 19.668 ± 0.189 20.080 ± 0.193 18.279 ± 0.156
SSIM 0.809 ± 0.003 0.728 ± 0.003 0.804 ± 0.003 0.783 ± 0.003
MAE 0.043 ± 0.001 0.047 ± 0.001 0.044 ± 0.001 0.057 ± 0.001
MSE 0.011 ± 0.001 0.011 ± 0.001 0.013 ± 0.001 0.016 ± 0.001
July 2021 | Volume
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FIGURE 5 | T1T1W MRI predictions generated from 3 independent test patients using UNet, UNet++ and Cycle-GAN models (panel A: patient 1, panels B–E, G:
patient 2, panel F: patient 3). Red box: Predictions from pelvic slices with relatively fixed geometries including the bones demonstrate sharp boundaries between
anatomical structures, with visually superior results for the Cycle-GAN architecture (panels A, F). Green box: The superior resolution of the Cycle-GAN architecture is
further exemplified in slices with deformable structures such as the bowel loop (panels F, G). In highly deformable regions, minor contrast disparity in anatomical
structures can be observed in the synthetic MRI; examples include prediction of bladder (red arrows in panel C), lower gastrointestinal region (red arrows in panels
D, E) and rectum (blue arrows in panels C, D).
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FIGURE 6 | (A) Section One: Expert scores for identifying evenly-distributed test patient MRI slices as synthetic or acquired, (B) Section Two: Expert comments on
Cycle-GAN synthetic MRI when presented along with the ground truth CT and acquired T1W MRI (Experts 1 and 2 with <5 years of experience, and experts 3 and 4
with >5 years of experience).
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FIGURE 7 | Bone segmentation results from acquired T1W MRI scans of 8 test patients using the proposed fully-automated framework. The combined synthesis/
segmentation network allows transfer of organ- specific encoded spatial information from CT to MRI without the need to manually define ROIs. Cases 5 to 8 were
patients not included in the synthesis stage of network training. Case 8 shows bone segmentation results from a patient with metal hip.
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