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Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancer types
worldwide, with the lowest 5-year survival rate among all kinds of cancers.
Histopathology image analysis is considered a gold standard for PDAC detection and
diagnosis. However, the manual diagnosis used in current clinical practice is a tedious and
time-consuming task and diagnosis concordance can be low. With the development of
digital imaging and machine learning, several scholars have proposed PDAC analysis
approaches based on feature extraction methods that rely on field knowledge. However,
feature-based classification methods are applicable only to a specific problem and lack
versatility, so that the deep-learning method is becoming a vital alternative to feature
extraction. This paper proposes the first deep convolutional neural network architecture
for classifying and segmenting pancreatic histopathological images on a relatively large
WSI dataset. Our automatic patch-level approach achieved 95.3% classification accuracy
and the WSI-level approach achieved 100%. Additionally, we visualized the classification
and segmentation outcomes of histopathological images to determine which areas of an
image are more important for PDAC identification. Experimental results demonstrate that
our proposed model can effectively diagnose PDAC using histopathological images,
which illustrates the potential of this practical application.

Keywords: pancreatic ductal adenocarcinoma (PDAC), histology, deep learning, convolutional neural network,
whole-slide image analysis
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant
tumor of the digestive system with few symptoms until the
cancer is advanced (1). It ranks as the seventh leading cause of
cancer death in both sexes combined (2), and most patients die
within 2 years of the initial diagnosis (3, 4). Due to the lack of
early diagnosis and effective treatment, the prognosis of patients
with PDAC is extremely poor (5–7). The latest cancer survival
data show that the overall 5-year survival rate of PDAC is 9% (2),
which is the lowest among all kinds of cancers. In recent years,
because of the changes in people’s dietary habits and lifestyles
associated with rapid economic growth, the incidence of PDAC
has dramatically increased year by year (8). However, the
diagnosis of PDAC is still a challenge for pathologists,
especially for the well-differentiated adenocarcinoma, whose
clinical histological patterns are similar to those of chronic
pancreatitis (9). Many studies have focused on the
development of diagnostic biomarkers for distinguishing
between pancreatitis and PDAC (10, 11). Unfortunately, the
effectiveness of available diagnostic biomarkers is limited. Thus,
we need a novel method that could provide an adjuvant diagnosis
of PDAC efficiently and accurately to allow timely treatment.

With recent developments, digital medical imaging has played
an indispensable role in PDAC diagnosis and treatment planning.
Multi-detector computed tomography (CT), magnetic resonance
imaging (MRI), and endoscopic ultrasound are the recommended
initial imaging techniques for making a timely diagnosis of PDAC
(12). Although, the gold standard for clinical medical diagnosis is
histopathological image evaluation by pathologists (13), this is a
manual and time-consuming procedure with several drawbacks.
The principal limitation is the severe shortage of senior
pathologists all over the world (14), since the accuracy
of diagnosis depends on the professional knowledge and clinical
diagnostic experience of the pathologist, which can lead to low
diagnosis concordance (15). Moreover, pathologists now
spend considerable time on benign biopsies that represent
approximately 80% of all cases (16). Thus, there is an urgent
need to develop automatic adjuvant diagnostic methods that could
distinguish between benign and cancerous tissues in PDAC.

In the past three decades, much progress has been made in
data storage and computation capacity. Graphics processing
units have undergone rapid development. They offer a
powerful parallel computing capability, especially for studies
with many samples (17). Moreover, it is possible to digitize
glass slides, such as whole-slide imaging (WSI) (18). These
advances have led to the development of automatic diagnosis
methods using medical image analysis (19). Currently, automatic
diagnosis approaches have received widespread attention and
made significant progress in detecting breast cancer (20–23), for
colonography (24), and in assessing lung nodules (25). Some
researchers have even proposed automatic diagnostic methods
for COVID-19 (26). Automatic systems can assist in diagnosis,
thus reducing the workload, increasing diagnostic efficiency, and
preventing missing inspections. This would allow pathologists to
pay more attention to providing oversight and quality functions
rather than making primary diagnoses (27).
Frontiers in Oncology | www.frontiersin.org 2
However, relatively little research has been done on the
automatic analysis of pancreatic histopathological images. A
significant reason may be the lack of publicly available datasets
with pancreatic histopathological images, especially datasets
large enough for training convolutional neural networks
(CNNs). Nevertheless, some scholars have studied the
automatic diagnosis of pancreatic cancer from CT and MRI
images. Chen et al. (28) proposed a three-stage modified form of
Faster R-CNN for recognizing and classifying cystic pancreatic
neoplasms using MRI images of the abdomen, which yielded an
accuracy of 92.3% in patient-level classification. Recently, Xuan
et al. (29) presented a hierarchical CNN for pancreatic tumor
detection from MRI images. However, unlike an analysis of
WSIs, detecting PDAC with CT or MRI images requires an
initial segmentation of the pancreas, which increases the
computing resources needed and decreases efficiency.
Moreover, some studies have attempted to automatically detect
pancreatic cancers with WSIs based on feature extraction
methods. Change et al. (30) used paired pancreatic
histopathological and immunofluorescence images to classify
nuclei. Song et al. (31) proposed a model for automatically
grading pancreatic adenocarcinoma using morphological
features. They segmented a PDAC tissue image into the lumen,
epithelial nuclei, and non-epithelial nuclei, and then extracted
several morphological features from the epithelial cells and
segmented lumen parts, achieving an accuracy of 94.38% in
binary classification. Langer et al. (32) developed a method for
detecting early pancreatic lesions in mice, realizing a 93% success
rate with the test dataset. They incorporated a feature analysis of
ducts, nuclei, and tumor stroma when training the model. Le
et al. (33) used a noisy label classification method to predict
regions of pancreatic adenocarcinoma in WSIs. However,
feature-based classification methods are applicable only to a
specific problem and lack versatility. Moreover, there are many
difficulties in designing and extracting relevant pathological
characteristics. Thus, deep learning is becoming a vital
alternative to feature extraction.

In this paper, we propose a novel automatic method for
detecting PDAC in WSIs based on CNNs. To the best of our
knowledge, this is the first CNN architecture for PDAC detection
trained on a relatively large WSI dataset, whose purpose was to
determine the potential of machine learning methods on
automatic PDAC diagnosis in WSIs. The remainder of this
paper is organized as follows. Materials and Methodology
introduces the dataset and our deep-learning-based PDAC
diagnostic framework. Then, the methodology applied in this
study is described in detail. After that, our experiments and
results are provided in Experiments and Results. Finally, the
discussion is presented in the section Discussion.
MATERIALS AND METHODOLOGY

Dataset and Annotation
In this study, 60 normal and 171 cancerous pancreas tissue
samples were selected as our dataset. All the pancreatic image
samples were collected and their use authorized by Peking Union
June 2021 | Volume 11 | Article 665929
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Medical College Hospital (PUMCH). Each specimen was stained
by hematoxylin and eosin and saved as an uncompressed high-
resolution WSI (Figure 1A). These were labeled and confirmed
by a senior pathologist from PUMCH. The study protocol was
approved by the ethics review board of PUMCH.

All the slides in our dataset were digitized with a scanner (KF-
pro-400, Ningbo, China) under the same acquisition conditions
with a magnification of 40× (0.2 µm/pixel). WSIs are multi-
gigabyte images with typical resolutions of 100,000 × 100,000
pixels, though eachWSI has a different size. Increasing the size of
the input images would have increased the number of parameters
to be estimated, as well as the required computational power and
memory (34). In this study, small patches were sampled from
WSIs at high magnification. These patches were used to train the
patch-level classification and segmentation models:

1. The patch-level classification dataset has two sampling sets: a
positive set and a negative set. The positive set has patches within
cancerous cells and lesions, whereas the negative set has patches
with normal cells and tissue. These two sets were sampled from
60 normal and 30 cancerous WSIs. They were cropped to 1,024
× 1,024 pixels. Pathologists then categorized these patches into
the positive or negative set, shown in Figure 1D.

2. For the patch-level segmentation, the dataset comprised six
WSIs. Each whole PDAC area was annotated in blue by a
pathologist (Figure 1B and Supplementary Figure 2). We
then found the minimum bounding box of each annotated
Frontiers in Oncology | www.frontiersin.org 3
region. These rectangles were cut into small patches of 1,024 ×
1,024 pixels. To ensure each patch included an area sampled
from the annotated regions, we removed some patches that
were only sampled outside the annotated regions. Some
patches are shown in Figure 1C.

Artificial intelligence for classifying pathology images is
heavily dependent on the scale of the training dataset. To
avoid overfitting and generalizing, a large amount of data is
required for training a complex network. However, there are
several barriers to obtaining digital pathology images from a
clinical laboratory (35). Since we had insufficient raw data, we
augmented the data by rotating patches through various angles
as well as flipping and reflecting them. The label for each patch
generated was inherited from its parent. To acquire balanced
data for training, validation, and testing, the scale of
augmentation in the two classes depended on the number of
patches. The distribution of patches we used for training the
patch-level classification model is shown in Table 1.
FIGURE 1 | Framework of the deep-learning approach. (A) Training data with raw WSIs. (B) Annotated WSIs. (C) Patches for training the patch-level segmentation.
Each patch has a region with carcinoma. (D) Two classes of patches for training the patch-level classifier. (E) Testing data with raw WSIs. (F) Heatmap, as the
output of the patch-level segmentation. (G) Malignant probability heatmap.
TABLE 1 | Distribution of patches extracted from the raw WSIs for training the
patch-level classifier.

Class Testing Training Validation Total

Normal 4,988 39,900 4,988 49,876
Carcinoma 4,960 39,688 4,964 49,612
Total 9,948 79,588 9,952 99,488
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Model Architecture
In our study, a novel deep-learning framework was designed to
classify pancreatic histopathological images. Overview of the
proposed study consisted of two parts: classification and
segmentation of PDAC detection in WSIs. Meanwhile,
classification and segmentation are two separate tasks. The
segmentation method can be seen as an ancillary or
control study.

The classification method has a two-step framework based on
diverse recognition objects, and the training process can be
divided into two stages, patch level and WSI level. For the
patch-level classification, we employed a CNN model to extract
the hidden features from the training set and then applied the
model to the test data. For each WSI, we predicted the relevant
patches with the trained patch-level classifier. And these
predicted patches were combined into a malignant probability
heatmap. Next, we mapped the cancer probability of each patch
into colors between dark blue and crimson (Figure 1G). For the
WSI-level classification, 36 statistical features of these malignant
probability heatmaps were harnessed to train a Light Gradient
Boosting Machine (LightGBM) (36) model for the identification
and diagnosis of PDAC.

For the patch-level segmentation, a fully convolutional
network, U-Net (37), was selected to predict and locate the
cancer regions. A detailed framework of the segmentation
method is shown in Supplementary Figure 3. Additionally, we
visualized the outcomes from the patch-level classification and
patch-level segmentation models. Visualizing the output of a
CNN layer can show what the model has learned, which is a vital
function of the deep-learning model. Finally, we validated the
performance of our model with an independent dataset. A
summary of the architecture applied in our study is shown
in Figure 1.

Patch-Level Classification
CNNs are feed-forward neural networks that are widely applied
for visual pattern recognition. In this study, we chose a well-
known CNN framework, Google’s Inception V3 (38), as the
patch-level classifier. Inception V3 has been extensively adopted
for different kinds of digital histopathological image analysis,
such as for bladder (39), breast (40), and liver (41). In contrast,
state-of-the-art CNNs have not been widely used for the
classification of pancreatic histopathological images.

In our research, besides the basic Inception V3 model, we
exploited a global average pooling layer, a full connection layer of
1,024 neurons, and a softmax layer to obtain the final
classification results. The Inception V3 model, which has about
25 million parameters, was trained on the training data. Then the
tra ined mode l was appl ied to c lass i fy pancrea t i c
histopathological images in the test data. The network weights
were initialized randomly, and the learning rate of the gradient-
descent back-propagation was 0.001. During training, Adam was
selected as the optimizer, as it has been widely applied in training
Inception V3 models due to its fast convergence. Additionally,
we chose the categorical cross-entropy as the loss function. The
classifier was trained for 100 epochs, and the batch size of each
Frontiers in Oncology | www.frontiersin.org 4
epoch was eight. To optimize the performance of our model, we
took the set of parameters with the highest accuracy in the
validation data as the final parameters.

WSI-Level Classification
For each WSI, a cancer probability heatmap was generated based
on the results of the patch-level classification. The probability
that there is pancreatic cancer in a patch was between 0
(predicted to be normal tissue or the background) and 1
(predicted to be a cancerous region). Next, we mapped the
cancer probability into colors in a continuous range between
dark blue and crimson. To clearly show the cancerous tissue
predicted by our model, we overlaid the original WSI with the
cancer probability heatmap, as shown in Figure 2C.

After obtaining the cancer probability heatmaps, we post-
processed the data before training the WSI-level classifier. We
extracted 36 statistical features from each cancer probability
heatmap, such as the mean, variance, and sum, as listed in
Table 2. More detailed descriptions of these features are given in
Supplementary Table 1, and the importance of these features is
given in Supplementary Figure 1. Then, we used the LightGBM
model for the WSI-level classification (42). LightGBM is a
gradient-boosting framework based on decision trees. It is an
efficient model with low memory usage, which is required for
automatic histopathological image analysis in clinical practice.
Limited by memory and computation time, our model is not an
end-to-end approach for WSI-level classification. All the training
WSIs were the same as those chosen as the training data for the
patch-level classification.

Patch-Level Segmentation
Besides pancreatic histopathological image classification, another
vital task in our study is comparing the performance of
segmentation and classification in PDAC prediction. This
would allow us to choose the most appropriate method for
diagnosing a sample in a practical clinical application. In this
study, we chose U-Net for the patch-level segmentation. U-Net is
an end-to-end architecture comprising a contracting path and a
symmetric expanding path. It can capture the context and
precisely locate each pixel (43). In this work, to expand the
volume of the training dataset and avoid overfitting, patches were
subsampled into 256 × 256 pixels with a half overlap ratio before
training. Moreover, using smaller patches allows our model to
get a better grasp of subtle features. Training the model with half
overlap patches made the size of the output data consistent with
the input patches, preventing the imperfection of the valid
padding method within the U-Net model. The network
weights were initialized randomly. We chose the dice
coefficient (44) as the loss function.
EXPERIMENTS AND RESULTS

Patch-Level and WSI-Level Classification
In this section, we evaluated the performance of our proposed
model on the test dataset using the accuracy, precision, recall,
June 2021 | Volume 11 | Article 665929
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and f1 score. Detailed information on these metrics can be found
in (45).

The results of the patch-level classification for the test dataset
are listed in Table 3. Figure 2A shows the confusion matrix for
the binary patch classification. The receiver operating
characteristic curve (ROC) is shown in Figure 2B. Accuracy of
0.9533 was achieved in the patch-level classification, and the
recall of cancerous patches was 0.9738, which was higher than
the recall of the negative set (0.9330). This result indicates that
our model has a high recall for cancerous cases. Although many
Frontiers in Oncology | www.frontiersin.org 5
patches labeled as carcinoma were correctly categorized, many
normal patches were also classified as carcinoma, resulting in the
lower precision for positive samples. However, this performance
is consistent with the requirement for clinical diagnosis, since
pathologists must be rigorous and not overlook any patch that
could be carcinoma. Consequently, our classification model
could be developed into a pre-screening tool for pathologists,
indicating suspect areas in pancreatic tissue.

As shown in the confusion matrix in Figure 2D, the accuracy
of the WSI-level classification on the test data was 100%. Our
WSI-level test dataset comprised 12 normal and 35 cancerous
WSIs, accounting for 20% of the whole WSI dataset. A sample
diagram of the test data is shown in Figure 1E. Due to the limited
memory available, all the WSIs were trained or tested without
data augmentation, which means that the dataset was
unbalanced. Nonetheless, our proposed method categorized 47
WSIs correctly. This result demonstrates the tremendous
potential of our model in a clinical application for analyzing
pancreatic histopathological images.

Patch-Level Segmentation
The distribution of the dataset for patch-level segmentation and
the values of the dice coefficient are listed in Table 4. We
A B

DC

FIGURE 2 | Results of the patch-level classification for the test data. (A) Confusion matrix for binary patch classification. (B) ROC. (C) Heatmap of cancer probability
generated by our trained classifier. (D) Confusion matrix for binary WSI classification.
TABLE 2 | The 36 features extracted from a heatmap of malignant probabilities
at the WSI-level.

Feature Description of feature The number
of features

1–9 Mean, variance, standard deviation, median, mode,
minimum, maximum, range, sum of normal probabilities

9

10–18 Mean, variance, standard deviation, median, mode,
minimum, maximum, range, sum of tumor probabilities

9

19–20 Np for two classes with P > 0.999 2
21–22 Np for two classes with 0.99 < P ≤ 0.999 2
23–24 Np for two classes with 0.95 < P ≤ 0.99 2
25–26 Np for two classes with 0.9 < P ≤ 0.95 2
27–28 Np for two classes with 0.8 < P ≤ 0.9 2
29–30 Np for two classes with 0.7 < P ≤ 0.8 2
31–32 Np for two classes with 0.6 < P ≤ 0.7 2
33–34 Np for two classes with 0.5 < P ≤ 0.6 2
35 Numeric label of the category to which the largest value

for the mean of P belongs
1

36 Numeric label of the category with the most patches 1
TABLE 3 | Performance of patch-level classification.

Class Accuracy Precision Recall F1-score

Normal 0.9533 0.9728 0.9330 0.9525
Cancerous 0.9353 0.9738 0.9542
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extracted 1,732 patches of 1,024 × 1,024 pixels within the
annotated PDAC areas from six WSIs. Next, these patches
were subsampled into 256 × 256 pixels with a half overlap
ratio before training. This increased the size of our dataset by a
factor of 64. During training, random horizontal flips and jitter
were harnessed to augment the data further. Finally, the dice
coefficient for the validation data and test data was 0.7602 and
0.8465, respectively.

Figures 3A–D are the input and output of the patch-level
segmentation, where Figure 3A shows an original sample patch
extracted from aWSI, and Figure 3B shows PDAC areas annotated
with blue circles by a pathologist. Then we transformed the
annotated information into a mask, as illustrated in Figure 3C.
The region with carcinoma is crimson, whereas the background and
normal tissue are dark blue. In this study, the patch-level
segmentation was trained with original patches and masks. The
result is a cancer probability matrix of size 256 × 256, from which
we created a heatmap, as shown in Figure 3D. The cancer
probability is represented with a continuous range of colors
between dark blue and crimson. Figure 3D indicates that our
segmentation model has a high sensitivity for PDAC since most
PDAC regions are predicted correctly. However, some PDAC
regions are predicted to be normal tissue, indicating that the
segmentation for these was inaccurate.

Figures 3E, F are examples of WSI-level segmentation. As
well as the cancer probability heatmap from the WSI-level
classification, the WSI-level segmentation heatmap includes the
Frontiers in Oncology | www.frontiersin.org 6
patch-level segmentation results, as shown in Figure 1F.
Compared with the sample annotated WSI in Figure 3E, the
predicted WSI segmentation heatmap in Figure 3F indicates
several PDAC areas correctly, especially at the upper right and
lower left. However, it is not precise because the prediction
regions always cover a larger area than the true PDAC
annotation. This performance is almost consistent with the
patch-level classification results. These two deep-learning
models give a high sensitivity for cancerous regions., which
may cause some normal regions are classified as PDAC,
resulting in a high false-positive rate.

Visualization of Outcomes by Grad-CAM
and Heatmap
After we obtained the trained patch-level classification and
patch-level segmentation models, we visualized the prediction
results of these two methods with the same input data, as shown
in Figure 4. We used Grad-CAM (46), which takes information
about the class-specific gradient flowing into the penultimate
layer of the CNN model and then generates an attention map
demonstrating how intensely the input data activates diverse
channels in the layer for the class. This attention map can be
regarded as a coarse localization map highlighting the vital areas
for CNNmodel prediction. We compared the Grad-CAM output
with the true annotation to investigate whether our model can
correctly locate abnormal cells and cancerous tissues.

Figure 4 has six groups of input images, masks, and visualization
results from the two approaches, where groups A to D are positive
sets with cancerous tissues, and groups E and F are negative sets
with background or normal tissue. Each group comprises four
figures: a raw patch sampled from aWSI, amask generated from the
annotation, Grad-CAM output based on the CNN prediction, and a
heatmap produced by the segmentation model.
A DB

E F

C

FIGURE 3 | Results of patch-level segmentation. (A) A sample raw patch. (B) Annotated patch. (C) Mask generated by the annotation. (D) Heatmap of the sample
patch predicted by our method. (E) A sample WSI with annotation. (F) Heatmap of the sample WSI comprising the heatmaps predicted for each patch.
TABLE 4 | Performance of patch-level segmentation.

Training Validation Test Total

1,385 184 163 1732
Average dice – 0.7602 0.8465 –
June 2021 | Volume 11 | Article 665929
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As the figures illustrate, both methods can recognize
carcinoma regions effectively. Even if the input patch contains
only small portions of carcinoma tissue, our model can detect
those positive areas correctly. Figure 4B is an example in which
the two methods successfully identified a single cancerous
nucleus. However, the patch-level segmentation method was
more accurate in recognizing tumor tissue. For example, in
Figure 4A, Grad-CAM finds only the head region of the
abnormal nucleus, whereas the segmentation method retrieves
the whole nucleus accurately. These results indicate that our
algorithm probably recognized adenocarcinoma mainly with
nuclear features. Large, irregular, crowded, and dark areas were
considered to be tumor cell nuclei by our algorithm. These
features are critical for tumor recognition. However, there are
also false-positive and false-negative regions, such as regions
crowded with nuclei.

Additionally, we discovered that the segmentation model
might be making decisions based on the color contrast,
whereas the classification model tended to pick out irregular
and crowded groups of abnormal cell nuclei. Figure 4C
demonstrates that the segmentation model identifies most
PDAC regions successfully. However, the Grad-CAM has false-
positive regions where the cell nuclei distribution is irregular. In
Figure 4D, the classification model distinguishes the PDAC cell
nuclei correctly. In contrast, the heatmap has a false-positive area
Frontiers in Oncology | www.frontiersin.org 7
to the right of the patch with high color contrast. This was
verified in the predictions for normal patches.

Independent Verification
To verify the portability and robustness of our model, we tested
our WSI-level classification method on a public dataset. The
Cancer Genome Atlas (TCGA) (47) is a publicly funded project
with multi-dimensional information such as genomes,
proteomes, and histopathological images of more than 20,000
examples of primary cancer. We downloaded 52 WSIs labeled as
carcinoma from TCGA, as their sizes were almost consistent
with our WSIs. We applied our trained WSI-level classification
model to analyze these WSIs. Our prediction accuracy was
90.38%. Five WSIs were misclassified as negative, whereas all
the other WSIs were correctly categorized as carcinoma.
Moreover, we plotted cancer probability heatmaps. As shown
in Figure 5, our approach effectively detected the lesion.
DISCUSSION

In this study, an automatic method for detecting PDAC using
deep CNNs was designed and implemented. Our work has two
main highlights (1). This is the first CNN architecture for PDAC
detection trained on a relatively large WSI dataset (2). We
A

B

D

E

F

C

FIGURE 4 | Visualizations of different pancreatic lesions by Grad-CAM and the corresponding heatmaps. (A–D) Positive sets with cancerous tissues. (E, F) Negative
sets with background or normal tissue. The four columns from left to right are patch extracted from WSIs, mask generated from the annotation, Grad-CAM and
heatmap presentation for these patches, respectively.
June 2021 | Volume 11 | Article 665929
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attempted to understand the decision-making process of the
classification and segmentation methods to make the automatic
diagnosis more transparent and explainable.

Due to the lack of publicly available datasets with pancreatic
histopathological images, relatively little research has been done
on the automatic detection of pancreatic adenocarcinoma. Our
dataset has 231 WSIs with WSI-level labels. All the relevant
features were learned by the CNNs, reducing the time for feature
extraction and reducing the requirements for expertise in
pathology. Our patch-level approach achieved 95.3%
classification accuracy and the WSI-level approach achieved
100% classification accuracy. Moreover, this model has been
proven to be generalizable, as it reached 90.38% classification
accuracy with an independent verification dataset. Furthermore,
our approach shows high sensitivity for carcinoma regions,
which is important in assist ing cl inical diagnosis .
Consequently, the heatmap of cancer probability could help
pathologists to rapidly notice suspicious regions, which may
significantly reduce inspection times and costs and improve the
efficiency of the diagnostic process.

Deep learning is often dubbed to be a black box because its
decision-making process is not understandable to humans. Thus,
we visualized the outcomes of our classification and
segmentation methods. From the visualizations of the
convolutional layers, we noticed that our algorithm recognized
adenocarcinoma mainly from its nuclear features, such as the
shape and chromatin characteristics. This information is
important for pathologists in making a final diagnosis.

In the future, we will analyze the morphological features of
PDAC in light of the existing classification and segmentation
model. Our algorithm recognizes adenocarcinoma mainly from the
nuclear features. However, the nuclear features of a series of well-
differentiated adenocarcinomas are almost indistinguishable from
those of pancreatitis. Further, because of the fibrosis in
adenocarcinoma stroma, the nuclei of fibroblasts are large and
irregular, like tumor cells, so that the algorithm recognized
fibroblasts as tumor cells. Additionally, the nuclear features are
influenced by how the tissue was fixed and stained, which thus,
affected the accuracy. Instead of recognizing adenocarcinomas using
magnified nuclear features, it may be better to combine histological
patterns and nuclear features, which is common in PDAC
Frontiers in Oncology | www.frontiersin.org 8
diagnosis. This may improve the accuracy of the algorithm.
Furthermore, we would like to extract features from the same
histopathological images at different magnification levels. If the
model captured the structure of adenocarcinoma at high and low
magnification, the nucleus of each cell could be recognized more
clearly. Our next research direction is to combine multiscale
characteristics and statistical features. Several relevant studies are
currently ongoing.

Since this study used a two-stage architecture, we recommend
that further classification methods could be designed as an end-
to-end model if higher computer capacities are available.
Nevertheless, our proposed model is an efficient aid for doctors
in making quick and accurate identifications and diagnoses of
PDAC. Additionally, our findings are potentially applicable for
improving the identification and treatment of PDAC and saving
a significant amount of pathologists’ time. The intended goal
beyond research is to incorporate our proposed method into
clinical practice as pre-screening in PDAC diagnosis.
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