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With the completion of the International Human Genome Project, we have entered what is
known as the post-genome era, and efforts to apply genomic information to medicine
have become more active. In particular, with the announcement of the Precision Medicine
Initiative by U.S. President Barack Obama in his State of the Union address at the
beginning of 2015, “precision medicine,” which aims to divide patients and potential
patients into subgroups with respect to disease susceptibility, has become the focus of
worldwide attention. The field of oncology is also actively adopting the precision oncology
approach, which is based on molecular profiling, such as genomic information, to select
the appropriate treatment. However, the current precision oncology is dominated by a
method called targeted-gene panel (TGP), which uses next-generation sequencing (NGS)
to analyze a limited number of specific cancer-related genes and suggest optimal
treatments, but this method causes the problem that the number of patients who
benefit from it is limited. In order to steadily develop precision oncology, it is necessary
to integrate and analyze more detailed omics data, such as whole genome data and
epigenome data. On the other hand, with the advancement of analysis technologies such
as NGS, the amount of data obtained by omics analysis has become enormous, and
artificial intelligence (AI) technologies, mainly machine learning (ML) technologies, are
being actively used to make more efficient and accurate predictions. In this review, we will
focus on whole genome sequencing (WGS) analysis and epigenome analysis, introduce
the latest results of omics analysis using ML technologies for the development of precision
oncology, and discuss the future prospects.

Keywords: artificial intelligence, whole genome analysis, epigenome analysis, machine learning, biomarker
discovery, cancer diagnosis and treatment, precision oncology
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INTRODUCTION

The structure of DNA was first reported by Watson and Crick in
1953 (1). Following this, the first sequencing technique known as
the Sanger sequencing method was developed in 1977 (2). In 1987,
the first automatic sequencing machine (AB370) was introduced by
Applied Biosystems, which uses capillary electrophoresis without
the need for a gel, which enabled the sequencing process to be more
convenient in terms of accuracy and time (3). This technology truly
accelerated the completion of the International Human Genome
Project, which was aimed at decoding three billion human
nucleotide base pairs (4). With the completion of the
International Human Genome Project, the era known as the post-
genome era began, and attempts to apply genomic information to
medicine began to be actively pursued. Consequently, the concept of
personalized medicine has also come to attract attention (5–7).
Under such circumstances, the advent of a new analysis method
called next-generation sequencing (NGS) technology has rapidly
accelerated the speed of nucleotide sequence analysis and
dramatically lowered the cost of performing whole genome
analysis (8, 9). As a result, genome-wide analysis can now be
performed routinely. In addition to DNA sequence analysis,
various analysis methods using NGS technology have emerged,
such as RNA sequencing (RNA-seq) for gene expression analysis,
chromatin immunoprecipitation sequencing (ChIP-seq) for histone
modification analysis and identification of transcription factor
binding sites, Assay for Transposase-Accessible Chromatin using
sequencing (ATAC-seq) and Hi-C for chromatin structure analysis
(10, 11) (Figure 1). Along with technological innovation, there have
also been attempts to apply genomic information to actual clinical
practice. Targeted-gene panels (TGPs), which use NGS to examine
the mutation status of a limited number of cancer-related genes, are
actively being used to select the optimal treatment (12–14). On the
other hand, one of the major problems in promoting precision
oncology using the TGPmethod is that the number of patients who
will benefit from the information obtained by the TGP method
Frontiers in Oncology | www.frontiersin.org 2
alone is limited (15–17). In order to increase the number of
patients who will benefit from the promotion of precision
oncology in the future, it is necessary to add more detailed
omics data, such as whole genome analysis data and epigenome
data, for integrated analysis. In recent years, it has been reported
that epigenomic abnormalities play an important role in the
development and progression of cancer (10, 18–25), and it is
important to take into account information on epigenomic
abnormalities when genomic mutations alone cannot elucidate
the molecular mechanisms. In fact, the concept of epigenetic
driver (epi-driver) is currently being used to describe the
phenomenon of cancer development and progression based on
epigenomic abnormalities (26, 27).

Another important issue is that the amount of data that
researchers have to deal with has become enormous due to the
emergence of various new methods with NGS analysis at their
core as a result of technological innovation. For example, the
amount of data generated by a single NGS run can be up to a
million times larger than the data generated by a single Sanger
sequencing run (28). In addition, there is a growing need for
multimodal analysis, such as integrated analysis of genomic and
epigenomic data, not just data from one modality. This kind of
advanced analysis using a large amount of data is difficult to
perform using conventional statistical methods, but nowadays,
by proactively introducing artificial intelligence (AI) with
machine learning (ML) and deep learning (DL) technologies at
its core, good results can be obtained (29–31). In our view, there
are four properties of ML and DL that are of particular
importance. First, multimodal learning, which allows us to
integrate multiple omics data as input (32–35). Second,
multitask learning, which allows us to learn multiple different
tasks simultaneously by sharing parts of the model (36, 37).
Third, representation learning and semi-supervised learning,
which allows us to acquire representations of data from large
amounts of unlabeled data and thereby obtain small amounts of
labels (38–41). The fourth is the ability to automatically acquire
FIGURE 1 | The summarized figure of chromatin structure and epigenomic analysis methods. ChIP-seq, ATAC-seq, and Hi-C methods can be used to predict the
state of transcriptional activation or inactivation, and chromatin structure. Image credit: Shutterstock.com/ellepigrafica.
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hierarchical features to capture higher-order correlations in the
input (10, 42). More importantly, AI has already become one of
the key technologies in the medical field, with a number of AI-
powered medical devices approved by the US FDA (43). Under
these circumstances, the active introduction of AI in the field of
precision oncology seems to be an inevitable trend in the future.

Therefore, this review introduces the current status of efforts
to establish precision oncology, focusing on whole genome
sequencing (WGS) analysis and epigenome analysis, with
particular emphasis on the results obtained through the use of
ML and DL technologies.
WHOLE GENOME ANALYSIS

In this section, we introduce the recently published up to date
WGS analyses using ML and DL. The cost of WGS dropped from
100 million US dollars in 2001 to 1,000 dollars in 2020 (NIH
National Human Genome Research Institute; https://www.
genome.gov/about-genomics/fact-sheets/Sequencing-Human-
Genome-cost; Cost per genome data - 2020). In 2020, an
international collaboration to identify common mutation
patterns in more than 2,600 cancer whole genomes was
performed by the Cancer Genome Atlas Research Network as
The Cancer Genome Atlas Pan-Cancer Analysis of Whole
Genomes (PCAWG) project (44). The results described in the
flagship paper were accompanied with related papers that
focused on specific analysis, such as peak calls, structural
variations (SV), and non-coding variants.

As summarized in Table 1, we categorized WGS analyses into
five groups based on the purpose of their use. The first type of
analysis considered is peak calling. Finding an accurate peak
calling is one of the most important and difficult parts of WGS
analysis. Aligning several hundred bps to the whole genome
(three billion bps in length) while considering sequencing errors
is technically challenging (65, 66). Thus, reports comparing the
benchmarks and new pipelines, particularly deep neural
networks (DNNs), have been published for both peak calling
and the identification of variants (45–51) in Table 1. In general,
DNN models were first trained with publicly available datasets
followed by the evaluation of their performance with the test
dataset. Validation is performed with the validation dataset
either using publicly available data or their in-house dataset.
For example, the WGS dataset obtained from the PCAWG was
used for training and testing the model. To independently
validate the DNN model, the authors assembled several
datasets outside the PCAWG (67).

The second analysis type is a genome graph or graph-based
genome alignment. This approach has been recently reported and
summarized (68). The advantage of using genome graphs is that
they can accurately map (genotype) the polymorphisms of
genomes with a good visualization, as well as perform fast and
memory-efficient alignments (52–55) in Table 1. There is
increasing recognition that a single, linear, monoploid reference
genome is not always the best reference structure for human
genetics, because they represent only a small fraction of existing
human variations, particularly when they span SV breakpoints.
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Third, heterogeneity in samples can be analyzed. Cancers are
often observed to have various morphologies. These types of
results are inconsistent with peak calls because they reflect where
tissue samples are dissected. However, it is also true that tumors
are composed of subpopulations of cells, and some cancer cells
can migrate to other tissues. This heterogeneity results in a
variety of features that can affect cancer phenotypes. To handle
this, some published papers specifically focused on and
investigated these phenotypes (56–58) in Table 1.

The fourth category is mutational signatures. The patterns
of mutation or substitution signatures in cancer genome
are discernible. Therefore, to categorize them, mutational
signatures have been reported. Mutational signature analysis
algorithms produce a decomposition matrix by using ML, a
non-negative matrix factorization (NMF) approach, to extract
mutational signatures (69–72). Additionally, other pipelines have
been reported to perform mutational signature analyses to
classify the samples (59–61) in Table 1.

The last is ML in a genome-wide association study (GWAS).
GWAS has been used to discover genetic variants that are
associated with diseases (73). To improve the analysis of
GWAS, a combination of ML and DL analyses was reported
(62) in Table1. However, how to improve mapping of regulatory
variants (non-coding regions) identified by GWAS is still on
going. Therefore, Arloth et al. developed DL-based approach and
showed SNPs identified by DL were nominally significant in
classical univariate GWAS analysis (63) in Table 1. They also
identified disease/trait-relevant transcriptionally active genomic
loci by integrating gene expression and DNA methylation
quantitative trait loci (eQTL and meQTL) information of
multiple resources and tissues. Although this is not a cancer
research, another ML- and DL-based approach using GWAS
data showed a good classification of amyotrophic lateral sclerosis
(ALS) patient, and this approach can identify potentially ALS-
associated promoter regions (64) in Table 1.

By integrating other omics data and analyzing single
nucleotide variants (SNVs), indels, SV, and copy number
alterations in non-coding regions, researchers can address the
question of how pan-negative cancers developed, which we
introduce in the following sections.
DNA METHYLATION

DNA methylation is an epigenetic modification that can
discriminate specific patterns between in normal tissue cells
and in cancer cells (74, 75). These epigenetic alterations affect
gene expression, and thus, cell-specific DNA methylation
patterns are used in the diagnosis and treatment selection of
cancer by identifying cancer-specific DNA methylation patterns
in biopsy specimens and blood samples (76, 77). A few diagnostic
measures utilizing cancer-specific DNA methylation patterns
have already received FDA approval (78, 79). Moreover, ML
and DL analyses have been increasingly used to identify novel
disease-specific DNA methylation patterns; they have also been
used in research that aims to utilize the DNA methylation data
May 2021 | Volume 11 | Article 666937

https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Asada et al. Integrated Analysis of WGS and Epigenome Data
from cancer patients for diagnosis, staging, and prognosis
predictions (80–83).

Cell-free DNA (cfDNA) is circulating DNA found in plasma,
and is known to be elevated in cancer patients (84). The clinical
significance of analyzing cfDNA is that (1) it is noninvasive (2), it
can be applied for monitoring, and (3) it can detect a more global
Frontiers in Oncology | www.frontiersin.org 4
signature compared to the data obtained from a biopsy on a single
metastatic site. Therefore, ML can be applied for DNA
methylation analyses using cfDNA. The DNA methylation levels
of plasma cfDNA in renal cell carcinoma (RCC) patients have
been assessed by cell-free methylated DNA immunoprecipitation
and high-throughput sequencing (cfMeDIP-seq), and RCC
TABLE 1 | Overview of whole genome analysis using machine learning.

Features Pipeline name Brief summary Reference

Peak calling,
mutational
signature, or
de novo
assembly

HipSTR (Haplotype
inference and
phasing for short
tandem repeat)

This method identifies de novo STRs; genotyping 1.6 million STRs in the human genome using HipSTR can be
done in an average of 10 CPU hours per sample.

Nat. Methods
(2017) (45)

BayesTyper This method performs genotyping of all types of variation (including SNPs, indels and complex structural
variants) based on an input set of variants and read k-mer counts.

Nature (2017)
(46)

Genomiser This method identifies pathogenic regulatory variants in non-coding regions. Am. J. Hum.
Genet (2016)
(47).

DeepVariant This is a universal SNP and small-indel variant caller using deep neural networks, highlighting the benefits of
using automated and generalizable techniques for variant calling.

Nat.
Biotechnol
(2018) (48).

ARC (Artifact
Removal by
Classifier)

This is a supervised random forest model designed to distinguish true rare de novo variants (RDNVs) from
genetic aberrations specific to lymphoblastoid cell lines (LCLs) or other types of artifacts, such as sequencing
and mapping errors.

Cell (2019)
(49)

N/A This method addresses the challenge of detecting the contribution of non-coding variants to disease using a
deep learning-based framework that predicts the specific regulatory and detrimental effects of genetic variants.

Nat. Genet
(2019) (50).

NeuroSomatic This is a convolutional neural network for somatic mutation detection. Nat.Commun
(2019) (51).

Genome
graph

Graphtyper This is an algorithm and software for discovering and genotyping sequence variation, which rearranges short
read sequence data into a pan-genome and creates a graph structure that takes into account the mutations
that encode sequence variation in a population by representing possible haplotypes as graph paths.

Nat. Genet
(2017) (52).

N/A The results of the missing mutations are added to a structure that can be described as a mathematical graph,
the genome graph. Compared to the existing reference genome map

bioRxiv (2017)
(53)

(GRCh38), the genome graph can significantly improve the percentage of reads that map uniquely and
completely.

GenGraph This provides a set of tools for generating graph-based representations of sets of sequences. BMC
Bioinformatics
(2019) (54)

N/A This is a SV caller that uses genome graphs, which is used to analyze cancer somatic DNA rearrangements and
revealed three novel complex rearrangement phenomena.

Cell (2020)
(55)

Heterogeneity PyClone This is a Bayesian clustering method for grouping sets of deeply sequenced somatic mutations into putative
clonal clusters while estimating their cellular prevalences and accounting for allelic imbalances introduced by
segmental copy-number changes and normal-cell contamination.

Nat. Methods
(2014) (56)

MOBSTER This is an approach for model-based tumor subclonal reconstructions. Cancer genomic data are generated from
bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction
methods based on machine learning aim to separate those subpopulations in a sample and infer their
evolutionary history.

Nat. Genet
(2020) (57).

DigiPico/MutLX This method is a powerful framework for the identification of clone-specific variants with high accuracy. ELife (2020)
(58)

Mutational
signature

SigMA (signature
multivariant analysis)

This provides an accurate identification of mutational signatures with a likelihood approach, even when the
mutation count is very small.

Nat. Genet
(2019) (59).

DeepMS (deep
learning of mutational
signature)

This is a regression-based model to estimate the correlation between signatures and clinical and demographical
phenotypes in order to identify mutational signatures.

Oncogenes
(2020) (60)

SigLASSO This method performs efficient cancer mutation signature analysis by accounting for sampling uncertainty, and
also improves performance by allowing knowledge transfer through cooperative fitting of linear mixtures and
maximizing sampling likelihood.

Nat. Commun
(2020) (61).

GWAS COMBI This is a two-step algorithm that trains a support vector machine to determine candidate SNPs and then
performs hypothesis testing on these SNPs.

Sci Rep
(2016) (62).

DeepWAS This integrates regulatory effects predictions of single variants into a multivariate GWAS setting and provide
evidence that DeepWAS results directly identify disease/trait-associated SNPs with a common effect on a
specific chromatin feature.

PLoS
Comput. Biol
(2019) (63).

Promoter-CNN +
ALS-Net

This is a DL-based approach for genotype-phenotype association studies to predict the occurrence of ALS from
individual genotype data. A two step-approach employs (1); promoter regions that are likely associated to ALS
are identified and (2) individuals are classified based on their genotype in the selected genomic regions.

Bioinformatics
(2019) (64)
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detection was performed using the elastic net regularized
generalized linear model method (80). In this aforementioned
study, DNA methylation data obtained from blood and urine
samples were used for validation, and the area under the receiver
operating characteristic (AUROC) curve was found to be of 0.99
for blood samples and 0.86 for urine samples, respectively. In
another study, cfDNA methylation data from blood samples of
patients with intracranial tumors were obtained with cfMeDIP-seq
and successfully used to generate a cancer detection model using
the Random Forest algorithm (81). This model was also shown to
have high discriminative capacity among the five tumor types
(isocitrate dehydrogenase (IDH) wild-type glioma, IDH mutant
glioma, low-grade glial-neuronal, hemangiopericytoma,
and meningioma).

Next, we review DNA methylation analyses that use solid
tumor samples. First, to distinguish metastatic head and neck
squamous cell carcinoma (HNSC) from primary squamous cell
carcinoma of the lung (LUSC), DNA methylation data were
extracted from surgical specimens of lung cancer patients and
artificial neural networks (NN), and a support vector machine
(SVM) and a random forest (RF) classifier was constructed
because current diagnostics show no possibility to distinguish
metastatic HNSC from primary LUSC. Authors developed
models that classified 96.4% of the cases by NN, 95.7% by
SVM, and 87.8% by RF (82). The DL-based approach is also
used to detect DNAmethylation patterns related to breast cancer
metastases and predict recurrence by conducting feature
selection using an autoencoder with a single hidden layer
followed by ML techniques for classification, or enrichment
analysis for finding a biological relevance, genomic context,
and functional annotation of best genes (83).
CANCER EPIGENETICS WITH A FOCUS
ON ENHANCER FUNCTION

As mentioned earlier, since the advent of NGS technology and
analyses based on ML, remarkable progress has been made in
understanding the genetic basis of cancer. These studies have
mainly defined genetic alterations as either causal (driver
mutations), which confer a selective advantage to cancer cells, or
consequential (passenger mutations, not directly causal), which do
not have a selective advantage (26). Furthermore, genomic
sequencing of tumor samples has revealed that different patients
share a unique combination of one or two strong driver mutations
such as gain-of-function EGFR and loss-of-function TP53
mutations typically detected in lung cancer and less frequent
driver mutations (85, 86). On the other hand, the genetic
component of the general disease risk is distributed mainly in
the non-coding regions, which seem to be particularly rich in
enhancers specific to the cell types associated with the disease (87,
88). Therefore, this has led to a growing interest in the annotation
and understanding of human enhancers.

Measurable genome-wide biochemical annotations for
enhancer regions include ChIP-seq or cleavage under targeted
and release using nucleases (CUT&RUN) assays (89) for histone
Frontiers in Oncology | www.frontiersin.org 5
modifications or transcription factor (TF) binding, DNase I
hypersensitivity sequencing (DNase-seq) for open chromatin
(90), and ATAC-seq (91). On the other hand, it has long been
hypothesized that enhancers loop in 3D space to access their target
promoters. In recent years, the more powerful chromosome
conformation capture (3C) method has yielded a series of high-
resolution 3D conformationmaps of the human genome in several
cell types. In the 3C method, genomic DNA fragments are ligated
to other genomic DNA fragments in physical proximity in the
nucleus (92). These results have led to the identification of large
compartments related to genomic organization, including
enhancer-promoter loops (93), topologically associating domains
(TADs) (94), and A/B compartments (92). In addition, 3C
methods have been integrated with biochemical assays to
annotate potentially functional interactions. For example,
paired-end tag sequencing (ChIA-PET) (95), HiChIP (96), and
proximity ligation-assisted ChIP-seq (PLAC-seq) (97) provide an
overview of genome structures with a focus on proteins. Despite
the development of various epigenomic methods as described
above, and the obvious importance of human enhancers in both
basic and disease biology, we still do not understand the repertoire
of enhancers, including where they reside, how they act, and
through which genes they mediate their effects.

In addition, it has recently been reported that super-enhancers
are involved in abnormal gene expression in cancer cells (98). A
super-enhancer is a region of the mammalian genome consisting
of multiple enhancers, which are joined by a sequence of
transcription factor proteins to drive the transcription of genes
involved in cell identity (Figure 2) (99). An interesting finding is
that disease-associated genetic mutations are particularly prevalent
in super-enhancers of disease-associated cell types (100).
Furthermore, cancer cells have been found to produce super-
enhancers for oncogenes and other genes important in cancer
development, suggesting that super-enhancers play an important
role in human cell health and disease identity (100, 101).
Importantly, super-enhancers are enriched in active chromatin
marks such as H3K27ac and H3K4me3, while they are depleted in
posed marks such as H3K27me3 (102). Therefore, epigenetic
dysregulation may be involved in the production of super-
enhancers in cancer cells. Since many disease-specific genetic
variants are observed in super-enhancers, it seems to be pretty
important to combine the information on genetic variants in non-
coding regions obtained by WGS with the information on super
enhancers based on epigenome data and analyze them in an
integrated manner. As an example of super-enhancer analysis
using ML, Gong et al. used two-dimensional lasso to improve the
reproducibility of the Hi-C contact matrix and then classified the
TAD boundaries based on the insulation score (103). The results
showed that a higher TAD boundary insulation score was
associated with higher CTCF levels, which may vary by cell
type. They also showed that strong TAD boundaries and super-
enhancer elements frequently overlap in cancer patients,
suggesting that super-enhancer insulated by strong TAD
boundaries may be used by cancer cells as a functional unit to
promote tumorigenesis (103). Furthermore, Bu et al. proposed a
new computational method, DEEPSEN, for super-enhancer
May 2021 | Volume 11 | Article 666937
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prediction using a convolutional neural network, which is a DL
algorithm (104). The proposed method integrates 36 different
features and shows that it is capable of genome-wide prediction of
super enhancers compared to existing methods.

In transcriptome and epigenome profiling, one of the
conservative ML approaches of cluster analysis often yields
reproducible regulatory subtypes. In this way, somatic mutations
in cancer, although chaotic, often converge in a regulatory
manner. These events suggest that cancer cells follow the same
rules of transcriptional regulation as normal cells, despite the
presence of aberrant combinations of transcription factors and
genomic enhancers (105). Furthermore, a major unresolved
question is how primary cancer cells metastasize and what the
molecular events underlying this process are. However, extensive
sequencing studies have shown that mutations may not be the
causative factors in the transition from primary to metastasis
(106). On the other hand, epigenetic changes are dynamic in
nature and may play an important role in determining the
metastatic phenotype, and research in this area is only
beginning to be evaluated (107, 108). Unlike genetic studies, the
current limitations in studying epigenetic events in cancer
metastasis are the lack of conceptual understanding and the lack
of an analytical framework to identify the putative driver and
passenger epigenetic changes. We would therefore like to
introduce an ML analysis that has the potential to address
these issues.
CHALLENGES THAT MACHINE LEARNING
CAN OVERCOME

Genomic and epigenetic data-driven science operates by
comprehensively exploring genome-wide data to discover new
properties, rather than testing existing models and hypotheses
(109). These data-driven approaches include finding relationships
between genotypes and phenotypes, searching for biomarkers for
personalized medicine, discovering driver genes and predicting their
functions, and tracking genomic regions with biochemical activities
such as transcriptional enhancers, as mentioned in the previous
Frontiers in Oncology | www.frontiersin.org 6
section. Due to the large scale and complexity of genomic and
epigenetic data, it is often not sufficient to check pairwise
correlations to make predictions. Therefore, analytical tools are
needed to support the discovery of new relationships, the derivation
of new hypotheses and models, and to make predictions. ML is
designed to automatically detect patterns in data, unlike algorithms
that have predetermined assumptions and expertise. Therefore, ML
is well suited for data-driven science, especially genomics and
epigenomics (110). However, the performance of ML is highly
dependent on how the data are represented and how each variable
or a feature is extracted. Epigenetic information and various
modalities are known to be interrelated events, which are thought
to interact with each other to change gene activity patterns. Based
on these hypotheses, Wang et al. predicted the DNA methylation
state of a specific region using a deterministic ML model [stacked
denoising autoencoders (SdAs)] based on the 3D genome topology
and DNA sequence obtained fromHi-C experiments (111). Against
the backdrop of the high cost and difficulty of experimental
techniques, which is the bottleneck of Hi-C data acquisition,
inference from 1D information such as ChIP-seq, ATAC-seq, and
RNA-seq to 3D genome topology structure has been actively
attempted using various ML methods (Table 2). However, the
prediction accuracy may not be improved due to inaccurate
extraction of the essential structures within the epigenetic dataset,
such as the still unelucidated mechanism of gene transcription
regulation by high-dimensional interactions between enhancer and
promoter regions. To solve these issues, an integrated approach that
combines not only the acquisition of multi-layered omics data over
time but also the generation and selection of phenotypic features
and ML, is necessary.
INTEGRATED ANALYSIS OF
WHOLE GENOME SEQUENCING
AND EPIGENOME DATASETS

For decades, cancer genome research has made significant
progresses in the identification of driver gene mutations,
largely owing to the wide application of WES. However, we are
FIGURE 2 | Diagram of comparison between a typical enhancer and a super-enhancer. According to reference 87, super enhancers are observed in the
transcriptional regulatory regions of oncogenes such as MYC in cancer cells, but not in their counterparts in normal tissues. E, enhancer; TF, transcription factor;
Med, Mediator complex; RNA pol II, RNA polymerase II. Image credit: Shutterstock.com/ellepigrafica.
May 2021 | Volume 11 | Article 666937
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now realizing that druggable gene mutations are limited, and the
majority of cancer patients are left with unmet medical needs.
Therefore, academic interest has gradually shifted to the analysis
of mutations in non-coding genomes based onWGS analysis and
the search for “epi-drivers”, which are mechanisms of cancer
development and progression caused by epigenomic
abnormalities. For this purpose, WGS and epigenetic sequence
technologies such as ChIP-seq, ATAC-seq, and Hi-C are effective
tools because they offer comprehensive information about the
genome, epigenome, and crosstalk between these (Figure 1).

Integrated analysis of genome and epigenetic data can be
applied to predict the functional significance of single nucleotide
Frontiers in Oncology | www.frontiersin.org 7
polymorphisms (SNPs) and germline/somatic mutations. In
order to analyze the function of DNA mutations in non-
coding genomes, it is important to focus on eQTLs, which are
genomic sites involved in the variation of expression levels of
target genes. It is known that most functionally active SNPs and
mutations fall within the open chromatin region, especially at
inferred transcription factor binding sites. Indeed, approximately
55% of eQTLs SNPs are reported to coincide with those of open
chromatin-associated SNPs and mutations (123). An impressive
study on integrated analyses of WGS, ATAC-seq, and RNA-seq
datasets has been posted (124). In a case of bladder cancer, they
found that a single base mutation in enhancer region of the
TABLE 2 | Epigenetic analysis typically focusing on regulatory regions.

Features Pipeline name Brief summary Reference

Epigenomic
Atlas (chromatin
marks/
chromatin
states, DHSs,
active
enhancers)

N/A Mapping nine chromatin marks across nine cell types. Systematically characterizes regulatory elements, cell-type
specificities, and functional interactions. Defining multicell activity profiles for chromatin state, gene expression,
regulatory motif enrichment, and regulator expression. Assigning candidate regulatory functions to disease-
associated variants from GWAS.

Nature
(2011)
(112)

N/A Presenting extensive map of human DNase I hypersensitive site (DHSs) to identify through genome-wide profiling
in 125 diverse cells and tissue types. The map shows relationships between chromatin accessibility, transcription,
DNA methylation, and mutation rate in regulatory DNA.

Nature
(2012)
(113)

N/A The bidirectional capped RNAs measured by cap analysis of gene expression (CAGE) are robust predictors of
enhancer activity. Enhancers share properties with CpG-poor messenger RNA promoters but produce
bidirectional, exosome-sensitive, relatively short unspliced RNAs. The generation of RNA is strongly related to
enhancer activity.

Nature
(2014)
(114)

Regulatory
sequence/
Network identify
(enhancer/
promoter/EPI,
etc.)

ELMER (Enhancer
Linking by
Methylation/
Expression
Relationships)

This uses methylation and expression data to identify cancer-specific regulatory transcription factors, detect
enhancer-gene promoter pairs, and correlate enhancer status with expression of neighboring genes.

Genome
Biol (2015)
(115).

JEME (joint effect of
multiple enhancers)

This method is an inference of enhancer-target networks, and consists of two steps: identifying enhancers that
regulate transcription start sites (TSSs) across all samples, and detecting enhancers that regulate TSSs in a
particular sample, to determine the target genes of transcriptional enhancers in a particular cell or tissue.

Nat. Genet
(2017)
(116).

FOCS (FDR-
corrected OLS with
Cross-validation
and Shrinkage)

This method estimates the link between enhancers and promoters based on the correlation of activity patterns
between samples and implements a leave-cell-type-out cross-validation (LCTO CV) procedure to avoid overfitting
of the regression model to the training samples. The cross-validation scheme consists of learning training set of
samples and evaluation left-out samples from other cell types. This also provides extensive enhancer–promoter
maps from ENCODE, Roadmap Epigenomics, FANTOM5, and a new compendium of GRO-seq samples.
FOCS suggests repressor–promoter links.

Genome
Biol (2018)
(117).

SPEID (Sequence-
based Promoter-
Enhancer
Interaction with
Deep learning;
pronounced
“speed”)

This method predicts enhancer-promoter interactions using DL models from genomic sequences, using only the
location of enhancers and promoters in specific cell types. Using the melanoma dataset, this shows that there is
potential to identify somatic non-coding mutations that reduce or interrupt important enhancer-promoter
interactions (EPIs).

Quant. Biol
(2019)
(118).

EP2vec This method uses natural language processing to predict enhancer-promoter interactions, and also extracts
sequence-embedded features (fixed-length vector representations) using an unsupervised DL model, the
paragraph vector. The extracted features are used to train a classifier to predict the interaction using supervised
learning. This can also merge sequence embedded features with experimental features for more accurate
prediction.

BMC
Genomics
(2018)
(119)

Inference of the
3D structure of
chromatin

Transcriptional
decomposition

This separates RNA expression into positionally dependent (PD) component and positionally independent (PI)
effects by transcriptional decomposition method to show the predictability of fine-scale chromatin interactions,
chromosomal positioning, and three-dimensional chromatin architecture.

Nat.
Commun
(2018)
(120).

CHINN (Chromatin
Interaction Neural
Network)

This predicts chromatin interactions between open chromatin regions using DNA sequence and distance using
convolutional neural network. This also extracts sequence features and feed into classifiers.

bioRxiv
(2019)
(121)

HiC-Reg This method uses one-dimensional regulatory signals (chromatin marks, architecture, transcription factor proteins,
and chromatin accessibility) and the published Hi-C dataset as training count data to predict cell line-specific
contact counts. A random forest regression model is used as the main prediction algorithm.

Nat.
Commun
(2019)
(122).
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FGD4 gene generated a putative de novo binding site for an NKX
transcription factor, associated with an increase in chromatin
accessibility and FGD4 gene expression (124). Since high
expression of the FGD4 gene correlates with worse clinical
outcomes in bladder cancer patients, this non-coding mutation
might contribute to the malignant transformation of the cells by
altering chromatin structure, thereby upregulating FGD4
gene expression.

However, it should be noted that the majority of non-coding
mutations might not exert an active function. In general, the
regional mutation rates of human cancer cells tend to be higher in
repressive chromatin states than in active chromatin states, which
may reflect differing efficiencies of DNA repair signals or mutagen
exposure (125). Thus, from a probabilistic view, most of mutations
in the heterochromatin region occur only because of their closed
chromatin states; that is, they are less likely to have any selective
advantages or active functions. Intriguingly, this tendency toward
higher mutational occurrences in heterochromatin states offers
potentially useful information. By applying the ML model,
genome-wide mutation data can be utilized to infer the cell-of-
origin of cancer cells. For example, the mutational landscape of
melanoma is best correlated with the epigenetic profile of skin
melanocytes than skin fibroblasts or skin keratinocytes, suggesting
the true cell-of-origin of melanoma (126). This approach can be
clinically applicable to predict the cell-of-origin for cancer of
unknown primary origin and may yield a better phenotypic
understanding of them. WGS can resolve non-coding SVs and
CNVs. RNA-seq detects the expression levels of driver genes and
aberrantly expressed genes caused by alternative promoter usage
and exon skipping (127–130). The utility of an integrative,
comprehensive approach, with WGS, RNA-seq, and DNA
methylation, independently and in combination, has been
reported (130). Comprehensive molecular tumor profiling
comprising WGS, RNA-seq, and DNA methylation analyses
identified pathogenic variants and provided therapy
recommendations, which could accelerate the development of
precision medications.

Overall, the genomic and epigenetic data of non-coding
regions contain enormous, complex and interdependent
information, and we believe that integrated analysis, effectively
utilizing ML and DL technologies, is important to discover new
drivers of human cancer.
DISCUSSION

The genetic variants or SNPs were refined by the international
haplotype map (HapMap) project to create a haplotype map of
genes and genetic variants that affect health and disease (131–
133). This project was attempted to genotype one common SNP
in every 5,000 bps. At that time, it was believed that more than
99.9% of DNA sequences between any two people were identical,
suggesting that only less than 0.1% of the genetic variants affect
health and disease (https://www.genome.gov/11511175/about-
the-international-hapmap-project-fact-sheet). Nowadays,
analyzing WGS data has identified a considerable number of
Frontiers in Oncology | www.frontiersin.org 8
the genomic variants. The international consortium embarked
on the 1000 Genomes Project to find common human genetic
variations by applying WGS to a diverse set of individuals from
multiple populations. High-throughput sequencing technologies
do facilitate WGS in terms of accuracy, cost, and time. Almost
two decades after the completion of the Human Genome Project,
we have already entered a new era of sequencing, which led to
individual genomic information becoming analyzable data. In
practical terms, WGS analysis is becoming cost-effective. In
addition, there is a trend to apply WGS routinely in both basic
sciences and clinical cancer care to help us better understand and
identify potential therapeutic targets or predictive biomarkers.

Epigenetics analyses were also drastically and positively affected
by NGS. Chromatin conformations analyzed by ChIP-seq, ATAC-
seq, orHi-C are known to be related to cancer phenotypes (124, 134).
Epigenetic alterations of DNA methylation at promoter and
enhancer regions that induce chromatin dysregulation are found in
cancer (135, 136). NGS analysis can help resolve both genetic and
epigenetic alterations, andwe expect to reveal themechanismof pan-
negative cancers using these data. From this point of view, we further
introduced enhancers as an important concept inprecisiononcology.
The current understanding is that enhancers bind to cell type-specific
transcription factors, associate with regions of open chromatin, and
are flanked by histones with H3K27ac and/or H3K4me1
modifications. These enhancers interact with promoters in 3D
space and are either potentially primed or activated. Despite their
obvious importance in both basic biology and disease biology, much
remains to be learned about the relationship between enhancers and
chromatin higher-order structure, including the identification of
enhancer regions, how enhancers work, and through which genes
they mediate their effects. In the future, we hope that multimodal
analysis of multidimensional omics data by effective use of ML and
DL techniquesmay contribute to precision oncology by providing an
integrated understanding of more detailed molecular mechanisms.
CONCLUDING REMARKS

In this review, we first summarized the importance of genomic
and epigenetic data and introduced the importance of omics data
of interest in each section. Cancer is one of the leading causes of
death worldwide, and molecular mechanisms remain unknown in
certain cancers, which are categorized as pan-negative cancers.
Multi-omics analyses by simply integrating omics data may
encounter difficulties in identifying the mechanism causing
cancer because none of the methodologies can address the
comprehensive understanding underlying pan-negative cancers.
Therefore, as we reviewed here, integrating multi-omics analysis
with the assistance of ML is required for future cancer studies
because each omics data is tightly linked to each other, and all
omics data are associated with patient outcomes. Currently, there
are high expectations for the development of medical AI, and it is
expected that AI technology will be actively introduced in actual
clinical practice in the future. On the other hand, medical AI
research for clinical applications is currently focused on medical
image analysis (137–144), and research on the introduction of AI
May 2021 | Volume 11 | Article 666937
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to omics analysis such as whole genome analysis and epigenome
analysis, as well as its clinical application, has not progressed
sufficiently yet. In this regard, one of the problems associated with
the widespread adoption of AI-based methodologies in omics
analysis is that even though sequencing technology and other
advanced analytics are increasingly being used in research and
clinical practice, there is still a lot of confusion about the best
protocols to adopt for analysis. For example, the RNA-seq pipeline
is not sufficiently standardized, and the methodology relies heavily
on the expertise and experience of a single research group/
bioinformatics. As a result, in areas where uncertainty remains,
the spread of AI-specific technologies may be delayed. We hope
that this review will trigger the interest of more researchers in this
field, and that the standardization of omics analysis will actively
promote the adoption of AI and contribute to the establishment of
the field of precision oncology in the future.
Frontiers in Oncology | www.frontiersin.org 9
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