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Background: Reliable on site classification of resected tumor specimens remains a
challenge. Implementation of high-resolution confocal laser endoscopic techniques
(CLEs) during fluorescence-guided brain tumor surgery is a new tool for intraoperative
tumor tissue visualization. To overcome observer dependent errors, we aimed to predict
tumor type by applying a deep learning model to image data obtained by CLE.

Methods: Human brain tumor specimens from 25 patients with brain metastasis,
glioblastoma, and meningioma were evaluated within this study. In addition to routine
histopathological analysis, tissue samples were stained with fluorescein ex vivo and
analyzed with CLE. We trained two convolutional neural networks and built a predictive
level for the outputs.

Results: Multiple CLE images were obtained from each specimen with a total number of
13,972 fluorescein based images. Test accuracy of 90.9% was achieved after applying a
two-class prediction for glioblastomas and brain metastases with an area under the curve
(AUC) value of 0.92. For three class predictions, our model achieved a ratio of correct
predicted label of 85.8% in the test set, which was confirmed with five-fold cross
validation, without definition of confidence. Applying a confidence rate of 0.999
increased the prediction accuracy to 98.6% when images with substantial artifacts
were excluded before the analysis. 36.3% of total images met the output criteria.

Conclusions: We trained a residual network model that allows automated, on site
analysis of resected tumor specimens based on CLE image datasets. Further in vivo
studies are required to assess the clinical benefit CLE can have.

Keywords: confocal laser endomicroscopy, deep neural network, machine learning, brain tumor, fluorescein
sodium, image analysis
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INTRODUCTION

Intraoperative diagnosis continues to be an essential tool during
neurosurgical procedures; nevertheless it remains challenging.
Sites frequently lack the possibility of immediate pathologist’s
interaction and therefore require time for delivery and processing,
and the frozen sections are subject to sampling errors (1–3).

Confocal laser endomicroscopy (CLE) can be used for
intraoperative visualization in fluorescence guided surgery and
offers cellular resolution. CLE has already been successfully
applied to facilitate surgery for head and neck neoplasms and
urological surgical procedures (4–6). Furthermore, it is used in
gastroenterology for diagnosis of Barrett’s esophagus and
colorectal lesions among others (7, 8). Moreover, the
application of CLE showed promising results in thyroid
surgery and bronchoscopy including biopsy collection for
interstitial lung disease (9, 10).

Since its start, efforts were made matching the features of CLE
images to the histopathological sections; however, the transfer of
classical neuropathological characteristics of common brain
pathologies to CLE images is limited (11, 12). Until recently,
application of CLE to central nervous tumors was mostly limited
to preclinical studies. The first clinical trials show promising
results for CLE to become part of routine intraoperative tumor
diagnosis and might help detect tumor remnants in neurosurgery
(12, 13). By extending the resection borders at a cellular level, this
technique has the promising potential to protect normal brain
tissue. However, there is only one optical fluorescence filter
available and fluorescein, the most thoroughly investigated
fluorescence dye, is not routinely used for brain tumor surgery.
Further, for optimal utilization a high amount of intraoperatively
collected image data needs to be directly analyzed.

Deep learning models reduce expenditure of time and
interobserver-biased evaluation of intricate structures (14). The
neural network models are successful where labeled data is
available. Multiple recent applications of computer vision and
medical imaging have shown cutting-edge performance (15, 16).

We hypothesized that a model integrating features from
conventional CLE using a machine learning approach could
diagnose tumor origin and identify specific features relevant to
the entity.
MATERIAL AND METHODS

Patient Cohort
The training and validation cohort consisted of patients with
histologically confirmed glioblastoma, brain metastasis, or
meningioma WHO grade I, treated at the neurosurgical
department of the University Hospital of Mannheim. The
current 2016 WHO classification of brain tumors was used. All
patients whose histopathological analyses did not confirm
glioblastoma WHO grade IV, brain metastasis, or meningioma
WHO grade I were excluded (n = 10). Our final patient cohort
included 25 patients (median age 56.3 years; 19–82.2 years, male/
female: 9/16).
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Tumor Tissue Processing
Brain tumor tissue was collected from 25 adult patients who
underwent resection of a brain tumor at the University Hospital
Mannheim. Fresh tumor samples were immediately processed
and split into sister specimens. Tissue pieces (2–5 mm in
diameter) were incubated in fluorescein solution for 30 min
(Fluorescein 10%, ALCON Pharma GmbH, Freiburg, Germany,
final concentration 0.1 mg/ml, diluted with Ringer’s solution)
and subsequently washed with Ringer’s solution three times for
2 min. As a positive control adjacent tumor specimens were
stained with Nuclear Green for 1 min (Abcam, Cambridge,
United Kingdom, 50 µM final concentration, diluted with
Ringer’s solution), incubated for 5 min, and washed once for
5 min with Ringer’s solution. All working steps were performed
at room temperature. After immediate CLE imaging, tissue
samples were analyzed by the Department of Neuropathology
of the University Hospital Heidelberg corresponding to routine
diagnostics including H&E, immunostaining and in certain cases
methylation analysis. Pathology confirmed newly diagnosed
glioblastoma in eight patients, brain metastasis in eight
patients (six patients presented with non-small cell lung cancer
and two with breast cancer) and meningioma WHO grade I in
nine patients.

Confocal Laser Endomicroscopy
For CLE imaging the OptiScan System, model CIS-CZM-B-CP
(SN R&D 4011-05; Zeiss, Oberkochen, Germany) including a
sterile sheath was used. Briefly summarized, light is transmitted
by a laser source (488 nm wavelength) through an optical fiber to
the hand held scanner probe. The focal signal is detected by
exciting the fluorescent dye by laser light. Latter is converted into
a digital pattern depending on the amount of emitted
fluorescence. This pattern can be transformed into a grayscale
image parallel to the lens’ plane with adjustable focus depth.
Images were acquired immediately after staining. The probe was
fixed, and specimens were applied on the lens to minimize
motion induced artifacts.

Images were created with 1920 × 1080 pixels and were
obtained with 0.75 frames per second and a focus depth of 0 to
120 µm. In a second step, we removed data sets with low imaging
quality affecting the whole image due to technical issues, such as
blood and motion artifacts or out of focus scanning, from
further evaluation.

Image Preprocessing and Convolutional
Neural Networks
A convolutional neural network (CNN) is a widely adopted
network of machine-learning algorithms to process multiple
arrays such as images which detect local conjunctions using
convolutional and pooling layers before fully connected layers
are following. The given hierarchy in images leads to lower-level
features composing higher-level features in a deep neural
network. Residual convolutional (ResNet) and Inception
networks (InceptionNet) have been applied in clinical
classification problems. A ResNet18 and Inception network was
constructed with the Pytorch framework (https://pytorch.org/)
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written in python as a tensor and dynamic network. ResNet18 has
17 convolutional layers and contains batch normalization and
identity mappings, additionally. InceptionNet-v3 was used
consisting of seven inception blocks, pooling layers and
normalization layers. We used four fully connected layers for
both networks. The last fully connected layer gives a classification
according to the global features connected from all local features.
We used negative log likelihood as loss function and log softmax
after the fully connected layers. Stochastic gradient decent was
selected for optimization with a learning rate of 0.01 and a
momentum of 0.5. We applied data augmentation techniques
to enlarge the database with analogical but not identical data.
Techniques, such as vertical and horizontal flipping methods,
were applied to inflate the size of the training dataset and to
reduce overfitting. Images were scaled down to 960 × 540 pixels,
and sections of 400 × 400 pixels were chosen randomly. The
probability of horizontal and vertical flipping was set to 0.5.
Images were fed in batches with a batch size of 32 for ResNet and
16 for InceptionNet, respectively. Eventually, the enhanced training
data was fed into the deep learning models for iteration to minimize
the loss function. This algorithm was used to classify images
obtained by CLE verified as glioblastoma, brain metastases
or meningioma.

Image Interpretation by Neurosurgeons
For manual and manual/deep learning combined assessment of
CLE images we created a training set, a manual test set, and a
ResNet test set, each containing a total of 90 images of balanced
proportions of glioblastomas, meningiomas, and metastases.
Images containing obvious artifacts (e.g. motion artifacts) were
excluded previously. The ResNet test set contained only images
rated by the ResNet with an output level of 0.99 or higher. In the
training set, information about the corresponding histopathologic
diagnosis was available for each image, and three experienced
neurosurgeons underwent training for CLE image interpretation.
Subsequently, images of the two test sets were reviewed by the
neurosurgeons in a blinded fashion.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8.3.0
(GraphPad Software, San Diego, CA). The overall predictive
value was analyzed by area under the receiver operating
characteristic curve (AUROC), precision-recall curve, and
macro-averaged F1 analysis. For test set accuracy, comparative
analysis of deep learning models and neuro-oncological
surgeons, the Mann–Whitney test was used. We calculated the
accuracies of the three neuro-oncological surgeons using the
ratio between the number of correct diagnosed and total
CLE images.
RESULTS

To test the hypothesis that CLE could provide an alternative
method for intraoperative frozen section histology and facilitate
targeted biopsy, we collected surgical specimens from 25 patients
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and acquired a total of 19,422 images (glioblastoma 5,668, brain
metastases 6,814, meningioma 6,960) for the evaluation (Table 1).
The specimens were either stained with fluorescein dye or nuclear
green dye with similar distributed data sets of the three classes.
We acquired CLE images of fresh tissue samples, which were
free of freezing and additional sectioning artifacts and
therefore provided well-preserved tissue architecture. More
importantly, fresh tissue imaging mimics intraoperative imaging
without complex and time-consuming sample processing
(Supplementary Figure 1). Representative ex vivo CLE images
of the three groups are shown in Supplementary Figure 2. All
glioblastoma ex vivo specimens CLE displayed stellate,
bright spots.

Differentiation of Malignant Tumors
Conventional magnetic resonance imaging ultimately fails to
distinguish between glioblastoma and brain metastases among
malignant brain tumors to date. We built a residual network
(ResNet18) model for binary classification to demonstrate its
diagnostic capability on these highly heterogeneous tumor
specimens stained with fluorescein. Specimens from eight
patients for each tumor type were used (4,361 images of
glioblastoma, 3,503 images of brain metastases). We evaluated
CNN-based methods using a leave-one-patient out cross-
validation, i.e. one patient always represented the test data and
all others the training data. This way, inherent correlation within
the image sequences did not play a role in the analysis. Receiver
operating characteristic curves, corresponding AUC values, and
confusion matrix results are shown in Figures 1A, B. An average
accuracy of 90.9% was achieved following five-fold cross
validation. Since fluorescein based CLE imaging is susceptible
to artifacts and includes a significant amount of non-diagnostic
images, automatic approaches are required to filter relevant data
for diagnosis. After we applied a threshold for the output level of
the test data of 0.999, the accuracy improved to 100% in this
subset (Table 2). 35.6% of the images in the test set had an output
level of 0.999 or higher, thus providing a potential filter for non-
diagnostic images. Next, binary classification for glioblastoma
and meningioma as well as brain metastases and meningioma
were performed (Figures 1C, D). In a test set containing image
data of 1,024 images showing glioblastoma and meningioma
CLE images, an overall accuracy of 95.5% was achieved.
ResNet18 showed 94.3% accuracy for differentiation of brain
metastases and meningioma in a test set containing 1,231
CLE images.
TABLE 1 | Patients’ characteristics and data composition.

Training Test

Total patients 22 3
Glioblastoma 7 1
Brain metastases 7 1
Meningioma 8 1
Images (fluorescein dye) 12,273 1,699
Images (nuclear green dye) 7,151 1,291
May 20
21 | Volume 11 | Article 6
Values represent patient numbers for glioblastoma, brain metastasis and meningioma
and total image numbers for fluorescein and nuclear green, respectively.
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Multiclass Classification With ResNet18
and InceptionNet
For practical reasons, further multiclass classification of common
brain neoplasms is needed. Subsequently, we employed a residual
network (ResNet18) model and an Inception network
(InceptionNet) model to assist the diagnosis of brain tumor
tissues including meningiomas based on CLE image data. To
train and test the ResNet18 and InceptionNet models, we
incorporated CLE images from 25 patients and labeled them as
“glioblastoma”(eight patients, 5,322 images), “metastasis” (eight
patients, 4,120 images) and “meningioma” (nine patients, 4,529
images), respectively.

The precision-recall curve analysis of concurrent three-class
tumor-type prediction showed macro-averaged F1 values of up
to 0.92 (Figure 2). Importantly, five-fold cross validation
confirmed the networks’ validity. InceptionNet showed no
superior performance with a macro-averaged F1 score of 0.91.
ResNet18’s overall accuracy of 85.8% for three-class prediction
was slightly improved by manually filtering CLE images before
employing the ResNet18 model. Considering the network’s
confidence for the assessment of CLE images provides a
possible feasibility for analysis, regarding the lack of
A

C

B

D

FIGURE 1 | (A) Receiver operating curve analysis and corresponding area under the curve values received of a trained two-class residual convolutional network with
five-fold cross validation. Images were obtained from seven patients with glioblastoma and brain metastases, respectively. (B) Confusion matrix shows outputs and
actual labeling for binary classification of an additional test set, including one patient with glioblastoma and another one with brain metastases. (C, D) Confusion
matrices indicating binary classification results of a test set for glioblastoma and meningioma as well as brain metastases and meningioma, respectively. In each cell,
the number above is the count and the number below the normalized count. Images were obtained with CLE following topical ex vivo staining with fluorescein dye.
TABLE 2 | Accuracy, macro-averaged F1 and area under the curve analysis of
trained networks for multiclass classification (glioblastoma, brain metastasis, and
meningioma) and binary classification (glioblastoma and brain metastasis).

Network Accuracy (%) F1/AUC Rate of diagnostic
images (%)

ResNet18
Test total 85.8 92.3% (F1) 32.3
Test confidence > 0.999 93.6
ResNet18 filtered
Test total 87.3 93.2% (F1) 36.3
Test confidence > 0.999 98.6
InceptionNet
Test total 82.9 90.6% (F1) 17
Test confidence > 0.999 91.1

ResNet18 binary
classification
Test total 90.9 0.92

(AUC)
35.6

Test confidence > 0.999 100
ResNet filtered contained manually selected data free of substantial artifacts. The ratio of
images rated with an output level of 0.999 or higher and the amount of total images are
indicated as diagnostic images. Images were obtained with CLE following topical ex vivo
staining with fluorescein dye. Macro-averaged F1 was calculated using the following
equation: 2*(precisionm*recallm)/(precisionm+recallm).
May 2021 | Volume 11 | Article 668273
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histopathological information in most images. Therefore, we
calculated the rate of diagnostic images with high confidence
as ratio of images with output levels of 0.999 or higher and the
overall amount of images. Results for both the deep learning
models and the ResNet18 model with preselected data only are
summarized in Table 2. Test accuracy was 93.6% when a
confidence level of >0.999 was applied. 548 of 1,576 (32.3%)
images were marked with a confidence of 0.999 or higher. A
ResNet18 model trained and tested with preselected data had an
accuracy in the test set of 87.3 and 98.6% for images with a
confidence level >0.999. Here 36.7% (355/966) of images had an
output level of 0.999 or higher. Test set accuracies for individual
classes of glioblastoma, brain metastases, meningioma and the
respective rate of diagnostic image data are presented in Table 3.

Complementing Manual With
Automated Analysis
Since CLE accompanies a high amount of artifacts and potential
non-diagnostic images, we had a close look at the output levels,
also described as network’s confidence for single image analysis.
When we analyzed images with output levels of 0.99 or higher,
A B

C

FIGURE 2 | (A) Test set results with Precision-Recall curves received for a trained three-class residual convolutional network, Inception network and a
trained residual network with manually selected images. In (A) 12,273 images were used for training and 1,699 for the test set. In the preselected data
set, 5,261 images were found suitable for training, and 647 were available for the test set. (B) Five-fold cross validation results. (C) Confusion matrix
showing ResNet18 outputs and labeling of a test set using preselected images after images including substantial artifacts were manually removed. Images
were obtained with CLE following topical ex vivo staining with fluorescein dye. In each cell, the number above is the count and the number below the
normalized count.
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TABLE 3 | Accuracy analysis of residual neural network with multiclass
classification for individual classes.

Class/Network Accuracy
ResNet18
unfiltered

Accuracy ResNet18
unfiltered with

threshold >0.999

Rate of
diagnostic
images

Glioblastoma ResNet18
unfiltered

92.3 93.8 57.5

Metastases ResNet18
unfiltered

89.3 94 20

Meningioma ResNet18
unfiltered

89.9 99.5 25.9

Glioblastoma ResNet18
filtered images only

92.3 98.6 37.8

Metastases ResNet18
filtered images only

93.5 100 53.3

Meningioma ResNet18
filtered images only

88.2 98.6 5.5
Ma
y 2021 | Volume 11 | A
The ratio of images rated with an output level of 0.999 or higher and the overall images are
indicated as diagnostic images. ResNet18 filtered contained manually selected data free
of substantial artifacts. A threshold of >0.999 indicates only images with output values of
0.999 or higher as rated by the network were included in the analysis. Images were
obtained with CLE following topical ex vivo staining with fluorescein dye. Percentage
values are indicated.
rticle 668273
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average accuracies of 92.3% were achieved applying ResNet18 for
multiclass classification of CLE data. Independent analysis of two
neuro-oncological surgeons of these images showed abundant
histopathological data compared to the entire data set. Since CLE
images are almost immediately displayed during surgery, we
wondered if a combination of expert opinion and real-time
automated analysis would facilitate decision making. We
compared neurosurgical assessment of balanced data sets,
containing equal numbers of glioblastoma, brain metastases,
and meningioma images to CNN performance (Figure 3).
There was a tendency towards higher accuracy when images
were selected by CNN’s output level compared to manually
selected images, lacking artifacts or low contrast. However,
neuro-oncological surgeons could not achieve accuracies of
ResNet18 image analysis rated with an output level of 0.99
or higher.

Convolutional Neural Network for Cell
Density and Nuclear Analysis
Staining with nuclear green dye offers a readout for cellular
density. CLE images of resected tissue samples stained
with nuclear green resulted in image sets with consistently
high quality and strong nuclear staining (Figure 4A). Exact
cell count and morphology might therefore result in sufficient
CNN performance (Figure 4B). Analysis for binary classification
of nuclear green images is presented in Figures 4C–E and in
Figure 4F for multiclass classification. A macro-averaged F1
score of 62% was achieved for classification of the three tumor
types. When a threshold of confidence of 0.999 was applied, 124
of 2,990 images were suitable, and an accuracy of 94% resulted in
the test set.

Following validation of the neural network models, we
created a model for on-site tumor diagnosis of glioblastoma,
brain metastases and meningioma. We propose a final
evaluation of CLE imaging by the neurosurgeon with the aid
of the networks ’ output levels to estimate diagnostic
probability. The output levels do not display percentage of
Frontiers in Oncology | www.frontiersin.org 6
diagnostic probability. Schematic network construction and the
proposed streamlined workflow with tissue to diagnose pipeline
are shown in Figure 5.
DISCUSSION

The neurosurgical workflow and surgical performance could
benefit from CLE in at least two aspects. First, its use could
substitute for conventional frozen section pathology. Second, it
could be used to confirm completeness of the resection by
scanning the walls of the resection cavity.

CLE imaging combined with Computer Aided Diagnosis
(CAD) successfully predicted the three most common
encountered brain tumor entities. Manual preselection of the
data showed marginal effect on network accuracy and the rate of
diagnostic images. However, there was a limited and probably
too small amount of data left for training, affecting the overall
output. Further, the selection by a neurosurgeon, focusing on
known structures and contrast, might not correlate with the
network’s criteria used for the output level. Of note, output levels
were higher for brain metastases and glioblastoma for two and
three-class networks as compared to meningioma. We suspect
that the high predictive power of glioblastoma CLE images is due
to the characteristic bright spots occurring almost exceptional in
glioblastoma specimens. Primarily noted from ex vivo imaging,
some cells might uptake fluorescein following prolonged
exposure to the dye or via influx of dye into damaged cells
(17). Interestingly, outputs were rather less predictive when
nuclear green dye was used. This suggests that in case of
fluorescein application other features than nuclear density
were chosen.

Diagnostic sensitivity of CLE has been previously described
between 52.97 and 90% in case of low grade and high grade
gliomas and meningioma ex vivo specimens analyzed by
neuropathologists and neurosurgeons. Diagnostic sensitivity
was only 37% for brain metastases (18, 19). Confocal scanning
FIGURE 3 | Comparative analysis of manual, deep learning based and combined assessment of glioblastoma, brain metastasis and meningioma images obtained
by confocal laser endomicroscopy. Balanced test sets containing 90 images were anonymized and evaluated by trained neuro-oncological surgeons. Results are
displayed in the first column. A second test set was evaluated by the surgeons including images rated by the residual network with a confidence of 0.99 or higher
(2nd column). Overall accuracies of residual network test set analysis and results of the image subgroup rated with an output level of 0.99 or higher are displayed.
Average accuracy of at least three independent experiments and five-fold cross validation are shown, respectively.
May 2021 | Volume 11 | Article 668273

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ziebart et al. Deep Network for Confocal Endomicroscopy
microscopy allows rapid histopathological assessment for a
variety of brain neoplasms including, gliomas, metastases, and
pituitary tumors faster than conventional frozen section (20).
However, sifting manually through the images is tedious and
impractical for high throughput imaging. Therefore, an
upstream network is essential for filtering non-diagnostic
images in a fast and feasible manner (21).

The high predictive potential of our network for brain
metastases might present an integral part of fully automated
diagnosis in the near future, complementing the model with
preoperatively diagnosed metastases via computer-aided
detection in magnetic resonance imaging (22, 23).
Izadyyazdanabadi et al. showed promising results applying
neural network models to categorize CLE data of brain
neoplasms into diagnostic and non-diagnostic images, though
not specifying the actual tumor entity (24).

For other fields like Barrett’s esophagus, CLE combined with
automated image processing approaches has shown not only
Frontiers in Oncology | www.frontiersin.org 7
thorough diagnostic potential, but also decrease of biopsy
samples and the ability to classify the pathology (25). CAD of
CLE based data also showed promising results in diagnosing
inflammatory bowel disease and discriminating neoplastic versus
non-neoplastic epithelium in head and neck cancer (26, 27).
Similar deep networks were used to evaluate cancerous colon
tissue following CLE imaging (28).

Kamen et al. early described the use of an automated tissue
differentiation algorithm with machine learning in order to
classify CLE images of glioblastomas and meningiomas.
However, the clinical impact distinguishing solely these tumor
types is limited and state-of-the-art CNNs for classification were
not used, which resulted in an average accuracy of 84% (29).
When aiming for automated tumor diagnosis by CLE image
analysis in neurosurgery, multiclass networks need to be
designed and trained for multiple tumor types, reactive and
normal brain tissues. To our knowledge, such a multiclass
classifier has not been applied for CLE image analysis, and
A

A

C D

E F

B

FIGURE 4 | (A, B) Representative glioblastoma CLE image following topical staining with nuclear green and corresponding heat map. (C–E) Confusion matrix for
residual network based binary classification. Images were labeled as “glioblastoma”, “brain metastasis” or “meningioma” and were obtained with CLE following
topical ex vivo staining with nuclear green dye. In each cell, the number above is the count and the number below the normalized count. (F) Precision-Recall curve
analysis and corresponding macro-averaged F1 score received for a test set of a trained three-class residual network.
May 2021 | Volume 11 | Article 668273
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prior studies have not distinguished glioblastoma from cerebral
metastases CLE images with machine learning.

We believe CLE based automated data processing is
less expensive and more efficient than the current technique,
even if time needed for data transfer and consultation with
a neuropathologist are included into that consideration.
Conventional workflows without automated approaches
necessitate a functional network for data transfer and
communication, trained and available neuropathologists for
image interpretation, time to review single images, and constant
technical support. Each step represents a potential economic and
technical barrier, while computational costs are limited. Further,
the proposed pipeline for ex vivo diagnosis is an alternative for
neurosurgeons where diagnosis by neuropathologists is not
broadly available. The use of CLE-assisted fluorescent surgery
not only is an improvement of immediate histological diagnosis as
compared to time-consuming hematoxylin and eosin staining, but
could also improve representation of the borders of tumor and
normal tissues (30).
Frontiers in Oncology | www.frontiersin.org 8
However, caution is advised in using the networks’ confidence
for single image analysis. In our opinion, confidence levels
provide an aid for intraoperative expert analysis. Multiple
images and affiliated output levels should be evaluated in the
same region. Further, we acknowledge several limitations to our
study. Our model cannot readily be applied to clinical situations
yet, unless training for additional tumor types and normal as well
as non-tumor mimickers is completed. The current model might
be applicable for patients who have high likelihood of
glioblastoma, cerebral metastases, or grade I meningioma
based on standard radiographic evaluation. The feasibility of
CLE-assisted multifluorescent surgery also has to be increased by
extending the usability to other fluorescent agents like 5-
aminolevulinic acid (30). In order to provide high-quality data
in vivo, the kinetics of the fluorophore agents and administration
techniques have to be taken into account. Furthermore, in vivo
validation is mandatory, since the study did not utilize
intravenous fluorescein application which potentially allows a
more homogenous staining than topical application, however
A B

FIGURE 5 | Proposed pipeline for intraoperative diagnosis of brain tumors with confocal laser endomicroscopy after image acquisition, training and test phase of a
convolutional neural network (CNN). (A) Experimental design for construction and validation of a CNN for multiclass classification of brain tumors. Fresh specimens
are stained with fluorescein dye, and images are acquired with confocal laser endomicroscopy (CLE) by a single user. Afterwards the specimens undergo
histopathological diagnostics (as described in Materials and Methods) providing ground truth for training and validation of the CNN. CLE contained a portable hand
held probe and a touch screen. (B) Schematic workflow for ex vivo brain tumor diagnosis providing CLE images with an additional confidence level. By applying a
confidence threshold, non-diagnostic images are not considered for evaluation.
May 2021 | Volume 11 | Article 668273
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also underlies decreasing fluorescence signal over time after
injection (31). Quality of in vivo acquired images is limited by
the fluorophore kinetics as some dyes, in particular fluorescein,
washes out leading to low contrasted tissue if image acquisition is
delayed. In contrast, ex vivo imaging after topical staining is
significantly less affected by the timing of fluorescein
administration. Insufficient contrast can be avoided by
readministration of fluorescein and thus increase image quality
(32). Future analysis will include an assessment of tumor
microvasculature in addition to tumor cell morphology and
architecture. Interpretation of erythrocyte flow, thrombosis,
and velocity changes may help to classify glioma subtypes,
normal and injured brain tissues (33). Due to the lack of blood
flow in ex vivo samples, these features were not included during
the CNN training process in this study.

We continue to enlarge our sample size and anticipate to
extend the model’s labeling ability when a larger data set with
different tumor entities will be available. In addition, expert’s
diagnostic recognition may be improved using machine learning
algorithms. For example, Izadyyazdanabadi M. et al. used image
style transfer method based on permanent hematoxylin and
eosin staining and therefore enhanced diagnostic quality of
glioma CLE images (34). Among other factors, colorization of
the images provided advantages for the analysis. Therefore image
style transfer is a promising tool, which could be integrated into
the described workflow for on-the-fly interpretation of CLE
images and should also be tested in brain metastases.
Additionally, a crucial point for future real-time diagnosis is
the automated reduction of artifacts affecting the analysis.
Therefore, the use of transfer learning from intermediate
endpoints may overcome non-diagnostic image sections and
thus improve accuracy as described by Aubreville et al. (35).

CONCLUSIONS

The use of machine-learning algorithms following CLE imaging
achieved high accuracy in the prediction of three different brain
tumor types when output levels were assessed. The developed
algorithm enables CLE to be integrated into the clinical workflow
as a tool for almost real-time tissue diagnosis. Beyond simply
gaining an orientation about tumor entity, fast high-volume
image processing facilitates a high amount of artifact-free
digital biopsies. Thereby, intra-tumor heterogeneity and
information about resection margins can be taken into account
Frontiers in Oncology | www.frontiersin.org 9
when performing tumor resection or planning postoperative
radiation. Further investigations to improve overall
performance are needed before the method can become part of
neurosurgical routine.
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