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Radiotherapy (RT) shows advantages as one of the most important precise therapy
strategies for cancer treatment, especially high-dose hypofractionated RT which is widely
used in clinical applications due to the protection of local anatomical structure and
relatively mild impairment. With the increase of single dose, ranging from 2~20 Gy, and the
decrease of fractionation, the question that if there is any uniform standard of dose limits
for different therapeutic regimens attracts more and more attention, and the potential
adverse effects of higher dose radiation have not been elucidated. In this study, the
immunological adverse responses induced by radiation, especially the cytokine storm and
the underlying mechanisms such as DAMPs release, pro-inflammatory cytokine secretion
and cGAS-STING pathway activation, will be elucidated, which contributes to achieving
optimal hypofractionated RT regimen, improving the killing of cancer cells and avoiding the
severe side effects.

Keywords: radiotherapy, cytokine storm, radiotherapy—adverse effects, immune activation, immune suppression,
dose limitation
CYTOKINE STORM AND INDUCERS

Cytokine Storm
Cytokine storm, also named as cytokine release syndrome (1), hypercytokinemia (2), refers to an
overactive immune response to external stimuli. Cytokine storm is first presented by Ferrara JL who
hypothesized that inflammatory cytokines might act as mediators of acute graft versus host disease
(GVHD) (3). The term is widely used in the research of severe acute infection and immunotherapy.
Recently, studies have shown that not only viral infectious diseases, such as COVID-19 (4) and
avian influenza (5), can induce cytokine storms, but many therapeutic interventions can also induce
cytokine storms, such as Chimeric antigen receptor (CAR) T immunotherapy (1). It has been
known that radiotherapy (RT) could elicit both immune activation and suppression responses (6, 7),
however, if RT could induce cytokine storm or not, is still unclear.

Different Inducers of Cytokine Storm
Graft Versus Host Disease
The understanding of the concept “cytokine storm” is relatively naïve in 1980s when it was first
proposed (3, 8). Hill GR et al. hypothesized that most of the clinical manifestations of GVHD is due
to the dysregulated production of cytokines by T cells and other inflammatory cells. Further study
showed that the gastrointestinal (GI) tract is critical to the propagation of the cytokine storm
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because the GI tract increases the translocation of inflammatory
stimuli such as endotoxin, which promotes further inflammation
and additional GI tract damage, and the GVHD can be prevented
by fortification of the GI mucosal barrier through novel
“cytokine shields” such as IL-11 or keratinocyte growth factor
successfully (9). Sato A et al. found that plasmin is activated
during the early phase of acute graft-versus-host disease
(aGVHD) and correlates with aGVHD severity. Plasmin
inhibition could control the deadly cytokine storm in patients
with aGVHD through impairing the infiltration of inflammatory
cells or the release of membrane-associated proinflammatory
cytokines including tumor necrosis factor-a and Fas-ligand
directly. It could also relieve the cytokine storm via matrix
metalloproteinases (MMPs) and alteration of monocyte
chemoattractant protein-1 (MCP-1) signaling indirectly (10).

Severe Infection
Infectious disease is the second area of application of the concept
“cytokine storm”. In the majority cases of Epstein-Barr virus (EBV)-
associated hemophagocytic lymphohistiocytosis (EBV-HLH),
clonally proliferating T-cells or NK-cells are involved. These cells
produce massive cytokine followed by severe immune reactions for
the host. To control the cytokine storm is important for the relieving
of disease (11). Clinical data showed that cytokines such as
interferon-gamma (IFNg), interleukin-18 (IL-18), transforming
growth factor b (TGF-b), interleukin-6 (IL-6) were highly
elevated in the acute phase sera of severe acute respiratory
syndrome (SARS) patients and their expression levels are related
to the mortality (12). IFNg could induce proliferation inhibition and
enhancement of Fas-mediated apoptosis in alveolar epithelial cells
and fibroblasts. These cells were able to secrete large quantities of T
cell targeting chemokines and induced a Th1-type mediated
cytokine storm in SARS patients (13). Clinical studies have
detected cytokine storm in critical patients with COVID-19 and
the cytokine storm is considered to be one of the major causes of
ARDS and multiple-organ failure (4, 14). There are several
mechanisms through which SARS-Cov-2 induces cytokine storm.
Firstly, SARS-Cov-2 uses angiotensin converting enzyme II (ACE2)
and transmembrane serine protease 2 (TMPRSS2) as cell entry
receptors, ACE2 molecules on the cell surface are occupied by
SARS-Cov-2. Then, angiotensin 2 (Ang II) increases in the serum
due to a reduction of ACE2-mediated degradation. SARS-Cov2
activates NF-kB via pattern recognition receptors (PPRs), and the
accumulated AngII induces inflammatory cytokines including
TNFa and (s)IL-6R via disintegrin and metalloprotease 17
(ADAM17), followed by activation of the IL-6 amplifier (IL-6
AMP), which describes enhanced NF-kB activation machinery via
the coactivation of NF-kB and transcription factor STAT3 (15).
Secondly, Neutrophil extracellular traps (NETs), the extracellular
NETs released by neutrophils can induce macrophages to secrete
IL-1bwhich enhances NET formation in various diseases, the NET-
IL-1b loopmay contribute to cytokine release (16–19). Thirdly, IL-6
can work through classic cis signaling or trans signaling, in cis
signaling IL-6 binds to membrane-bound IL-6 receptor (mIL-6R) in
complex with gp130 and then activates acquired immune system (B
and T cells) as well as the innate immune system (neutrophils,
macrophage and NK cells); in trans signaling, high circulating
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concentration of IL-6 bind to the soluble (sIL-6R) also in complex
with gp130 dimer on potentially all cell surfaces such as endothelial,
this results in a systemic cytokine storm (20). Furthermore, cytokine
storm may also occur in sepsis (14), dengue (21), influenza (22) etc.

Immunotherapy
CAR-T therapy is emerging as a promising new treatment for
hematological and non-hematological malignancies (23), most
remarkably in anti-CD19 CAR-T cells for B cell acute
lymphoblastic leukemia (B-ALL) with up to a 90% complete
remission rate (24). However, it may also induce rapid and
durable clinical responses, such as cytokine storm. Features of
CAR-T therapy-induced cytokine storm manifested as fever,
hypotension and respiratory insufficiency associated with
elevated serum cytokines such as IL-6. Cytokine storm usually
occurs within days of T cell infusion at the peak of CAR T cell
expansion and it is most frequent and more severe in patients
with high tumor burden (25). In addition to CAR-T therapy,
immunotherapy such as chimeric monoclonal anti-CD20
antibody rituximab (26), blinatumomab (27), nivolumab (28),
brentuximab (29) etc. can also induce cytokine storm.
Mechanically, cytokine storm is usually due to on-target effects
induced by binding of the bispecific antibody or CAR T cell
receptor to its antigen and subsequent activation of bystander
immune cells and non-immune cells, such as endothelial cells.
Activation of the bystander cells results in the massive release of a
range of cytokines (1).
RT AND IMMUNOLOGICAL EFFECTS

RT Regimens
RT has been widely used for cancer treatment for more than a
century (30). With the advance of clinical practice and the pursuit
of a better prognosis, more and more types of RT have been
developed. According to the fractionation way, the RT regimens
can be divided into three types, conventional fractionated radiation,
hypofractionated RT and hyperfractionated RT. Moreover, the
RT regimens also contain 3-dimensional conformal radiation
therapy (3D-CRT), intensity modulated radiotherapy (IMRT)
and stereotactic body radiation therapy (SBRT), etc. Due to the
higher local control rates, protection of local anatomical structure
and relatively mild impairment, SBRT is widely used in the
treatment of early-stage non-small cell lung cancer and localized
pancreatic and prostate cancer in recent years (31). According to
the most recent National Comprehensive cancer network (NCCN)
guideline, RT is an option for patients with unresectable or
inoperable HCC include external beam radiotherapy (EBRT) and
SBRT. In patients with a limited number of liver or lung metastases,
ablative RT to the metastatic site can be considered in highly
selected cases or in the setting or clinical trial.

The Killing Mechanisms Mediated by RT
The killing mechanism of ionizing radiation (IR) contains direct
and indirect damage. IR can direct damage biomolecules, such as
proteins and lipoids, particularly DNA, resulting in DNA
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double-strand breaks (DSBs) and other types of DNA damage
(32). Indirect damage destroys biomolecules through free
radicals, mainly by reactive oxygen species (ROS) (33, 34). The
DNA damage response and repair (DRR) processes may
determine tumor responses primarily (35). IR generates ROS
through water radiolysis react with oxygen, high level of
hydroxyl radicals induced by IR increases oxidative stress to
destabilize cancer cells integrity and induces DNA damage, and
subsequently results in cell death (33).

Cancer cells die in different ways after exposure to IR.
Apoptosis, autophagic cell death, necrosis, and necroptosis are
most common modalities that have been extensively studied and
characterized. According to doses and cell types, IR might induce
intrinsic apoptotic or extrinsic apoptotic pathway (36).
Autophagy induced by IR is a double-edged sword, on one
hand, it has a cytoprotective function allowing the cell to
eliminate toxic species (37); on the other hand, it can serve as
additional cell death pathway (38). Mitotic catastrophe is another
modality of cell death induced by IR, resulting from premature
induction of mitosis before completion of the S and G2
phase (39).

RT can be prescribed for curative or adjuvant therapy,
depending on multiple factors especially the radiosensitivity of
tumors. When certain tumors are treated at the early stage, for
example, most lymphomas, carcinoma of the larynx, prostate or
cervix, and some types of the central nervous system neoplasms,
RT could be eutheraputic (34). With the gradual increase in
high-dose hypofractionated RT applications, the indications of
RT is expanding SBRT is an ablative radiation approach that has
become an established standard of the treatment of a variety of
Frontiers in Oncology | www.frontiersin.org 3
malignancies, including intraabdominal malignancies such as
primary and metastatic liver tumors and pancreatic tumors with
excellent local control (40).

However, research regarding the impact of RT on the tumor
immune microenvironment or systemic immune system is
relatively fewer.

Immune Activation Effects
As shown in Figure 1A, RT could induce damage- associated
molecular patterns (DAMPs) (41). DAMPs can be divided into
three classes, exposed on the cell surface including calreticulin
(CRT), released by cancer cells passively (such as HMGB1 and
mitochondrial DAMPs) (42), secreted by cancer cells actively
(such as ATP). By interacting with their pattern recognition
receptors (PRRs) respectively, immunogenic cell death (ICD) of
cancer cells was induced (43). The most common PRRs include
transmembrane proteins such as Toll-like receptors (TLRs) and
C-type lectin receptors (CLRs), cytoplasmic proteins such as
Retinoic acid-inducible gene (RIG)-I-like receptors and NOD-
like receptors (NLRs) (41).

CRT is a soluble protein in the lumen of the endoplasmic
reticulum (ER). In the ER, CRT has several functions, including
chaperone activity and the regulation of Ca2+ homeostasis and
signaling. CRT also assists in the proper assembly of major
histocompatibility complex (MHC) class I molecules and the
loading of antigen. Outside the ER, CRT regulates nuclear
transport, cell proliferation and migration. A proportion of CRT
on the plasma membrane of viable cells (ecto-CRT) serves various
non-immunological functions. Ecto-CRT is an important signal
that enables phagocytes to efficiently engulf dead cells. And the
A

B C

FIGURE 1 | The potential of radiotherapy to induce cytokine storm. Radiotherapy (RT) has three or more ways of immune activation. (A) The first is damage-
associated molecular patterns (DAMPs). RT could induce three types of DAMPs, namely exposed on the cell surface (CRT), released by cancer cells passively
(HMGB1 and MTDs), secreted by cancer cells actively (ATP). DAMPs could interact with their pattern recognition receptors (PRRs) and activate downstream immune
effects. (B) Meanwhile, radiotherapy could also stimulate the secretion of chemokines such as CXCL16 and CCL5, then recruit various pro-inflammatory immune
cells into the tumor microenvironment. (C) Furthermore, radiotherapy could also arise the neoantigens presentation of neoantigens and active cGAS-STING signal
pathway to increase the expression of interferon. All of the above immune activation effects could induce cytokine storm potentially.
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exposure of CRT on the surface of cancer cells also facilities the
engulfment by dendritic cells, which leads to tumor antigen
presentation and tumor-specific cytotoxic T lymphocyte (CTL)
responses (43, 44). HMGB1, a member of the high mobility
group (HMG) protein family, is a DNA-binding nuclear protein
(45). It could bind multiple receptors including receptor for
advanced glycation end-products (RAGE), TLRs (such as
TLR2,4,7 and 9) etc. HMGB1 could stimulate different immune
cells to produce a variety of inflammatory-related proteins, such as
cytokines, adhesion molecules and tissue factors through the
activation of several pathways (46, 47). Mitochondrial DAMPs
(MTDs) include formyl peptides and mitochondrial DNA, they
activate human polymorphonuclear neutrophils (PMNs) through
formyl peptide receptor-1 and TLR9, respectively. Mechanically,
MTDs promote PMN Ca2+ flux and phosphorylation of mitogen-
activated protein (MAP) kinases, leading to PMN migration and
degranulation in vitro and in vivo. Furthermore, circulating MTDs
can elicit neutrophil-mediated organ injury (42). ATP, one of the
most ancient and conserved DAMPs, exerts its phlogistic activity
mainly through activation of the P2X7 receptor which is an ATP
gated ion channel expressed by most immune cells (48). When
released into tumor microenvironment, ATP acts on P2X7
purinergic receptors and triggers the NOD-like receptor family,
pyrin domain containing-3 protein (NLRP3), allowing for the
secretion of interleukin-1beta (IL-1b) then primes IFNg-
producing tumor antigen-specific CD8+ T cell in mice (49).

RT can also induce the expression of pro-inflammatory
factors such as cytokines and chemokines which recruit
immune cells to local sites of cancer (Figure 1B). Matsumura
S et al. found that in mouse and human breast cancer cells IR
markedly enhanced the secretion of CXCL16, followed by the
recruitment of CXCR6+ Th1 and activation of CD8 effector T
cells in vitro and in vivo (50). Tumor-infiltrating leucocytes
(TILs) isolated from locally advanced hepatocellular carcinoma
after Yttrium-90 (Y90)-radioembolization (RE) exhibited signs
of local immune activation including higher expression of
granzyme B (GB) and infiltration of CD8+ T cells, CD56+ NK
cells and CD8+CD56+ NKT cells. Chemotactic pathways
involving CCL5 and CXCL16 correlated with the recruitment
of activated GB+CD8+ T cells to the Y90-RE-treated tumors (51).

RT is well suited for transforming poorly immunogenic tumors
based on the tumor neoantigens. Radiation can increase existing
tumor neoantigens through either radiation-induced transcription
or increase antigen presentation, or RT induces neoantigens
creation owing to DNA damage-induced mutations (52). 10 Gy
RT can significantly increase the production of IFNg through
CD8+T cells, IFNg inducible chemokines (CXCL9 and CXCL10)
are increased with RT in vitro and in vivo (53). RT-induced
micronuclei activate cytosolic nucleic acid sensor pathways, such
as cyclic GMP-AMP synthase (cGAS)-stimulator of interferon
genes (STING), and propagation of the resulting inflammatory
signals remodels the immune contexture of the tumor
microenvironment (Figure 1C) (52).

Immune Suppression Effects
Studies have also revealed that RT could recruit suppressive
immune cells to tumor microenvironment including myeloid
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derived suppressor cell (MDSC) (54), regulatory T cell (Treg)
(55), tumor associated macrophage (TAM) (6), N2 neutrophils
(56) etc. T cell activation could be repressed through these
recruitments. IR can induce the secretion of granulocyte-
macrophage colony-stimulating factor (GM-CSF) which
promotes the migration of MDSCs to the circulatory system
and to inflammatory tissue. MDSCs produce high levels of Arg1,
which suppresses the activation and function of T cells through
the degradation of arginine and expression reduction of the zeta
chain of the CD3 complex, MDSCs may also limit the availability
of cysteine and produce ROS that destroy T cell receptors, they
can also trigger the PD-L1 pathway or IL-10 secretion (6).
Similarly, the presence of Tregs may affect the efficiency of RT.
RT significantly increased tumor-infiltrating Tregs (TIL-Treg),
which had higher expression of CTLA-4, 4-1BB, and Helios
compared with Tregs in non-irradiated tumors. TIL-Treg from
irradiated tumors had equal or improved suppressive capacity
compared with non-irradiated tumors. Tregs proliferate more
robustly than other T-cell subsets in the TME and the increased
Treg frequency is likely due to preferential proliferation of
intratumoral Treg after radiation (57). RT can also upregulated
CCL2 chemokine in tumor cells, leading to a CCR2-dependent
accumulation of tumor necrosis factor alpha (TNFa)-producing
monocytes and CCR2+ regulatory T cells (Treg) in a murine
model of head and neck squamous cell carcinoma (55). Ovarian
cancer cells and microenvironmental macrophages produce the
chemokine CCL22 which mediates trafficking of Treg cells to the
tumor (58). Radiation-induced 12-LOX overexpression in
esophageal cancer cells (ESCC) upregulates CCL5 expression,
thereby attracting THP-1-derived macrophages and promoting
their polarization to the M2 subtype, consequently enhances
cellular metastasis (59). Furthermore, radiation promotes
secretion of TGF-b from tumor cells or increasing the
expression of immune suppressive checkpoint molecules
such as PD-L1 so that it has an immunosuppressive
microenvironment (7).
Immune Responses Based on Different
Doses of Radiation
Low-Dose RT
There is no uniform standard for the definition of low-dose
radiation (LDR). Radiation oncologists consider a single dose less
than 1.0 Gy as a low one (60), United Nations Scientific
Committee on the Effects of Atomic Radiation (UNSCEAR)
defines it to be less than 100 mSv (61). Most studies show that
LDR cannot trigger robust immune responses as high-dose
radiation (62–64). LDR modulates a variety of immune
response processes, and the regulatory effect of LDR on innate
and adaptive immunity depends on the status of immune
cells, the microenvironment and the interaction of immune
cells ect (65). LDR suppressed release of mediator from
mast cells activated by the antigen-antibody reaction via
FcϵRI suppression (66). Neoadjuvant local low-dose gamma
irradiation programs the differentiation of iNOS+ M1
macrophages that orchestrate CTL recruitment into and killing
within solid tumors, the mechanisms include activation of
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endothelial, the expression of Th1 chemokines and the
production suppression of angiogenic, immunosuppressive,
tumor growth factors. All these effects eventually lead to T-
cell-mediated tumor rejection and prolonged survival in human
pancreatic carcinomas, immune refractor spontaneous and
xenotransplant mouse tumor models (67). Yu N et al. found
that X-ray irradiation (0.2 Gy) significantly increased CCR7-
mediated DC migration and IL-12 production in dendritic cells
(DCs), and the author identified ATM/nuclear factor kappaB
(NF-kB) pathway as the central signaling pathway that mediated
LDR-enhanced expression of IL-12 and CCR-7 (68). Our
previous studies show that IL-12 level in macrophages
increased after whole body irradiation (WBI) with 0.075 Gy x-
rays in Kunming mice, which might contribute to a shift of the
immune response in favor of Th1 differentiation (69, 70).

High-Dose RT
High-dose RT can induce necrosis and senescence which are
considered more pro-inflammatory (71), for they are associated
with release of damage-associated molecules (DAMPs) (72). SBRT
can enhance the expression of intercellular and vascular adhesion
molecules which associated with CTLs stimulation and binding
effects by increasing IFNg expression. Moreover, through releasing
cytokines and adhesion molecules, SBRT can initiate the cellular
immune response, enhance immune-cell extravasations and
migration. It can also enhance antigen presentation by the
pathway of OX40 stimulation (73). Ablative RT (20 Gy×1)
dramatically increases T-cell priming in draining lymphoid
tissues, leading to eradication of the primary tumor or distant
metastasis in a CD8+ T cell-dependent pattern (63). Morisada M
et al. found that compared with low-dose daily fractionated IR (2
Gy×10), high-dose hypofractioned IR (8 Gy×2) preserves or
enhances anti-tumor immunity to control primary and distant
tumors through accumulating and activating peripheral and
tumor-infiltrating CD8+T-lymphocyte and reducing peripheral
and tumor gMDSC accumulation (64). Similarly, they found that
8 Gy was superior to 2 Gy for induction of antigen-specific immune
response and enhancing tumor cell susceptibility to T-lymphocyte
killing in mouse oral cancer cells (74). Radiation in the ‘ablative’
doses range can not only effectively destroy tumor cells directly but
also encourage these killed cells to function as an antitumor vaccine
in situ (75).

The Combinatorial Effect of RT and
Immunotherapy
Recently, research on RT combined with immunotherapy has
become more and more popular. The theoretical basis includes
‘in-situ vaccination’ and ‘abscopal effect’ of RT which are all
connected to mechanisms involving the immune system, the
combination of RT with immunotherapy potentially boost the
killing of tumor (76, 77). The term ‘abscopal’ is used to describe
an immune-medicated response to radiation by tumor cells located
distant from the irradiated site (78, 79). Multiple preclinical studies
have demonstrated that RT induces immunomodulatory effects in
the local tumor microenvironment, different doses of
hypofractionated radiotherapy have been shown to induce
Frontiers in Oncology | www.frontiersin.org 5
immunogenic cell death and in-situ vaccination in several tumor
models (80), RT increases expression of tumor-associated antigens
(TAAs), causes the release of cytokines, stimulates recruitment of
dendritic cells and, most importantly, stimulates the proliferation
and priming of cytotoxic CD8+ T cells in the tumor
microenvironment (77), all these mechanism supporting a
synergistic combination approach with immunotherapy to
improve systemic control (81). Studies also found that RT could
upregulate tumor PD-L1 expression, while the combination of RT
and immune checkpoint inhibitors (ICIs) enhanced the anti-tumor
effect of radiation consistent with the synergistic effect of both
modalities (82–84). Furthermore, intratumoral injection of DCs
(85), DC growth factor Flt3-ligand (86, 87), toll-like receptor 9
agonist C-G enriched synthetic oligodeoxynucleotide (CpG) (88)
etc. all showed synergistic antitumor effects in preclinical research.
Gratifyingly, clinical evidence such as case report and clinical trial
showed that combination ICIs (cytotoxic T-lymphocyte associated
protein 4 inhibitor, programmed cell death-1/programmed cell
death ligand-1 blockers) with RT could improve progression-free
survival of non-small cell lung cancer (NSCLC) patients (89, 90). No
additional effect with concomitant regimens was found,
furthermore, the combination of RT with ICIs seems better
tolerated than radiotherapy combined with targeted or
chemotherapy agents (77).

Clinical Evidence for Cytokine Storm
Induced by High-Dose RT
A case report from Memorial Sloan Kettering Cancer Center
exhibits the capability of RT to elicit immune-related adverse
events, i.e., cytokine storm/cytokine release syndrome. A 65-year-
old man with untreated chronic lymphocytic leukemia (CLL) and
recurrent, metastatic Merkel cell carcinoma undergoing anti-PD1
immunotherapy was referred for palliative RT (total dose of 24 Gy
in three fractions given once weekly) to sites of progressing
metastases. Within hours of each weekly dose of RT, he
experienced fever, tachycardia, hypotension, rash, dyspnea, and
rigors. Based on clinical suspicion for cytokine storm, blood
cytokine measurements were performed 1 h after the second and
third RT, TNF-a and IL-6 increased ten-fold higher. He
experienced rapid regression of irradiated tumors, with
development of new sites of metastases soon thereafter (91). The
author inferred that RT produced tumor or tissue injury, released
molecules that express DAMPs and caused activated macrophages
to release the proinflammatory cytokines, then cause endothelial
expression of adhesion molecules and leukocyte extravasation from
the periphery at the site of RT. However, the underlying immune
dysfunction caused by CLL, the ongoing immunotherapy with anti-
PD1 therapy, MDSC depletion by RT and the advanced age of the
patient may all have contributed to the observation of an atypical
immune response to cancer therapy. Above all, this was the first
report of cytokine storm after the receipt of RT and this case
demonstrates the capability of RT to elicit immune-related
adverse events.

As we mentioned earlier, RT could induce various immune
activation responses (in-situ vaccination) including DAMPs
release, pro-inflammatory cytokine secretion and cGAS-STING
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pathway activation etc. No evidence could rule out that RT
would induce immune suppressive response. Under certain
conditions such as immune system imbalance or combined
with immunotherapy (91), an inflammation cascade can be
involved and consequently lead to a cytokine storm.
PROSPECT

With the increasing of RT dose, the adverse effect is what we
concern. High-dose RT has an activating effect on the immune
system. Moderate immune activation is beneficial for antitumor
effect or therapy; however, overreaction might be harmful due to
the possibility of superfluous pro-inflammatory cytokines
secretion. Besides the efficacy, we must attach importance to
the adverse immune response induced by radiation. Further
research needs to confirm the existence of cytokine storm after
RT and clarify the threshold of its occurrence to facilitate the
dose limits setup in the clinic.

The mechanism of RT on the immune system is very
complicated. RT could induce dual effects on immune response,
which can be either activated or suppressive. However, the means to
regulate different immune responses are not yet clear, for example
dose and fractionation. Further research is needed to clarify the
means in order to provide theoretical guidance for the rational use
of its immune activation effect to achieve anti-tumor effects and to
avoid its immune suppressive effect.

At present, RT combined with immunotherapy has entered
the stage of clinical trials, but the following issues need to be
solved before it is actually applied to the clinic: expanding the
sample size of clinical trials to confirm safety and effectiveness;
optimizing the complex immunological effects of RT and its
compatibility with ICI interaction; treatment sequence and the
Frontiers in Oncology | www.frontiersin.org 6
issue of different doses and fractionation of RT, etc. Only by
solving these problems can the two therapy be better integrated
and their synergistic effects can be optimized.
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30. Rodrıǵuez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S.
Immunological Mechanisms Responsible for Radiation-Induced Abscopal
Effect. Trends Immunol (2018) 39:644–55. doi: 10.1016/j.it.2018.06.001

31. Luke JJ, Lemons JM, Karrison TG, Pitroda SP, Melotek JM, Zha Y, et al. Safety
and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body
Radiotherapy in Patients With Advanced Solid Tumors. J Clin Oncol (2018)
36:1611–8. doi: 10.1200/jco.2017.76.2229

32. Vignard J, Mirey G, Salles B. Ionizing-Radiation Induced DNADouble-Strand
Breaks: A Direct and Indirect Lighting Up. Radiother Oncol J Eur Soc Ther
Radiol Oncol (2013) 108:362–9. doi: 10.1016/j.radonc.2013.06.013

33. Zou Z, Chang H, Li H, Wang S. Induction of Reactive Oxygen Species: An
Emerging Approach for Cancer Therapy. Apoptosis (2017) 22:1321–35.
doi: 10.1007/s10495-017-1424-9

34. Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol
Sci (2018) 39:24–48. doi: 10.1016/j.tips.2017.11.003

35. Santivasi WL, Xia F. Ionizing Radiation-Induced DNA Damage, Response, and
Repair. Antioxid Redox Signaling (2014) 21:251–9. doi: 10.1089/ars.2013.5668

36. Wu Q, Allouch A, Martins I, Brenner C, Modjtahedi N, Deutsch E, et al.
Modulating Both Tumor Cell Death and Innate Immunity Is Essential for
Improving Radiation Therapy Effectiveness. Front Immunol (2017) 8:613.
doi: 10.3389/fimmu.2017.00613
Frontiers in Oncology | www.frontiersin.org 7
37. ChaurasiaM, Gupta S, Das A, Dwarakanath BS, Simonsen A, Sharma K. Radiation
Induces EIF2AK3/PERK and ERN1/IRE1 Mediated Pro-Survival Autophagy.
Autophagy (2019) 15:1391–406. doi: 10.1080/15548627.2019.1582973

38. Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A,
Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity:
MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling
Pathways. Cancers (2020) 12(6):1622. doi: 10.3390/cancers12061662

39. Maier P, Hartmann L, Wenz F, Herskind C. Cellular Pathways in Response to
Ionizing Radiation and Their Targetability for Tumor Radiosensitization. Int J
Mol Sci (2016) 17(1):102. doi: 10.3390/ijms17010102

40. Pollom EL, Chin AL, Diehn M, Loo BW, Chang DT. Normal Tissue
Constraints for Abdominal and Thoracic Stereotactic Body Radiotherapy.
Semin Radiat Oncol (2017) 27:197–208. doi: 10.1016/j.semradonc.2017.02.001

41. Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell
(2010) 140:805–20. doi: 10.1016/j.cell.2010.01.022

42. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating
Mitochondrial DAMPs Cause Inflammatory Responses to Injury. Nature
(2010) 464:104–7. doi: 10.1038/nature08780

43. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P.
Immunogenic Cell Death and DAMPs in Cancer Therapy. Nat Rev Cancer
(2012) 12:860–75. doi: 10.1038/nrc3380

44. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-
Ullrich JE, et al. Cell-surface Calreticulin Initiates Clearance of Viable or
Apoptotic Cells Through Trans-Activation of LRP on the Phagocyte. Cell
(2005) 123:321–34. doi: 10.1016/j.cell.2005.08.032

45. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in
Inflammation and Cancer. Annu Rev Immunol (2010) 28:367–88.
doi: 10.1146/annurev.immunol.021908.132603

46. Denning NL, Aziz M, Gurien SD, Wang P. Damps and NETs in Sepsis. Front
Immunol (2019) 10:2536. doi: 10.3389/fimmu.2019.02536

47. Pellegrini L, Foglio E, Pontemezzo E, Germani A, Russo MA, Limana F.
HMGB1 and Repair: Focus on the Heart. Pharmacol Ther (2019) 196:160–82.
doi: 10.1016/j.pharmthera.2018.12.005

48. Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E, Di Virgilio F. The
P2X7 Receptor: A Main Player in Inflammation. Biochem Pharmacol (2018)
151:234–44. doi: 10.1016/j.bcp.2017.12.021

49. Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al.
Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-
1beta-dependent Adaptive Immunity Against Tumors. Nat Med (2009)
15:1170–8. doi: 10.1038/nm.2028

50. Matsumura S, Wang B, Kawashima N, Braunstein S, Badura M, Cameron TO,
et al. Radiation-induced CXCL16 Release by Breast Cancer Cells Attracts
Effector T Cells. J Immunol (Baltimore Md 1950) (2008) 181:3099–107.
doi: 10.4049/jimmunol.181.5.3099

51. Chew V, Lee YH, Pan L, Nasir NJM, Lim CJ, Chua C, et al. Immune
Activation Underlies a Sustained Clinical Response to Yttrium-90
Radioembolisation in Hepatocellular Carcinoma. Gut (2019) 68:335–46.
doi: 10.1136/gutjnl-2017-315485

52. McLaughlin M, Patin EC, Pedersen M, Wilkins A, Dillon MT, Melcher AA, et al.
Inflammatory Microenvironment Remodelling by Tumour Cells After
Radiotherapy. Nat Rev Cancer (2020) 20:203–17. doi: 10.1038/s41568-020-0246-1

53. Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, et al. Ionizing
Radiation Sensitizes Tumors to PD-L1 Immune Checkpoint Blockade in
Orthotopic Murine Head and Neck Squamous Cell Carcinoma.
Oncoimmunology (2017) 6:e1356153. doi: 10.1080/2162402x.2017.1356153

54. Draghiciu O, Walczak M, Hoogeboom BN, Franken KL, Melief KJ, Nijman
HW, et al. Therapeutic Immunization and Local Low-Dose Tumor
Irradiation, a Reinforcing Combination. Int J Cancer (2014) 134:859–72.
doi: 10.1002/ijc.28418

55. Mondini M, Loyher PL, Hamon P, Gerbé de Thoré M, LavironM, Berthelot K,
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