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Background: The use of circulating tumor DNA (ctDNA) to reflect clinical benefits of
advanced non-small cell lung cancer (NSCLC) patients during immune checkpoint
inhibitor (ICI) therapy remains controversial. This study aimed to determine the
association of pre-treatment and early dynamic changes of ctDNA with clinical
outcomes in advanced NSCLC patients treated with ICIs.

Methods: Electronic databases (PubMed, Embase, Web of Science, and Cochrane)
were systematically searched to include relevant studies published in English up to
November 2020. The primary outcomes were overall survival (OS) and progression-free
survival (PFS) and the secondary outcome was objective response rate (ORR) with
RECIST criteria.

Results: A total of 1017 patients from 10 studies were identified. The baseline ctDNA
levels (detected versus not detected) showed no significant association with clinical
outcomes regarding OS (hazard ratio [HR], 1.18; 95% confidence interval [CI], 0.93-1.51),
PFS (HR, 0.98; 95% CI, 0.80-1.21), and ORR (odds ratio [OR], 0.89; 95% CI, 0.54-1.46).
Interestingly, when taken early longitudinal assessment of ctDNA into consideration, the
early reduction of the concentration of ctDNA was associated with significant
improvements of OS (HR, 0.19; 95% CI, 0.10-0.35), PFS (HR, 0.30; 95% CI, 0.22-
0.41) and ORR (OR, 0.07; 95% CI, 0.03-0.18). Further subgroup analyses revealed that
the reduction magnitude did not significantly impact the association between ctDNA and
clinical outcomes, suggesting that both patients with decreased ctDNA or a ≥50%
reduction of ctDNA was associated with improved OS, PFS and ORR.
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Conclusion: Early reduction of ctDNA was associated with improved OS, PFS and ORR
in advanced NSCLC patients treated with ICIs.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO,
CRD42021226255.
Keywords: non-small-cell lung cancer, immune checkpoint inhibitor, circulating tumor DNA, biomarker, survival
INTRODUCTION

Over the past decade, immunotherapy, targeting immune
checkpoint molecules, programmed-death-1(PD-1)/PD ligand-
1 (PD-L1) axis, has turned into one of the most important
breakthroughs in cancer treatment, including non-small cell lung
cancer (NSCLC) (1). Although treatment of NSCLC with
immune checkpoint inhibitors (ICIs) can produce remarkably
durable responses, a considerable proportion of patients cannot
derive meaningful benefits from ICI therapy owing to drug
resistance (2), disease hyper-progression (3), or immune-
related adverse events (irAEs) (4).

Currently, several promising biomarkers for ICI therapy have
been widely investigated, such as tumor mutation burden
(TMB), PD-L1 expression, germline genotype of HLA-I, the
molecular profiling of the tumor microenvironment, mutations
in DNA mismatch repair and replication genes (1, 5, 6).
However, most of these biomarkers are far from perfect
biomarkers owing to being invasive, not always feasible, and its
spatial and temporal heterogeneity (6, 7).

In response to the demand for genetic predictive and non-
invasive molecular biomarkers in NSCLC, liquid biopsy,
including circulating tumor DNA (ctDNA), have been
developed. ctDNA, referring to a sub-set of cell-free DNA, is
released by tumor cells undergoing apoptosis, necrosis, and in
extracellular vesicles (exosomes) secreted from tumor cells and
can be found in plasma. ctDNA is highly fragmented and ranges
between 100 and 200 base pairs in size and represents genetic
material from the primary tumor as well as metastases (8).
ctDNA can be quantified using multiple metrics, such as
mutant allele fraction or mutant allele concentration (that is,
copies per milliliter) (9). The level of ctDNA in plasma has been
demonstrated to correlate with tumor size (10, 11), disease stage
(12), the clinical responses and prognosis of patients receiving
anti-tumor treatment (13–16). The short half-life of ctDNA (17,
18), as well as the reduced and ease risk of repeating liquid
biopsies relative to tissue biopsies (19) or imaging (20), enables
ctDNA to be used for real-time monitoring of tumor burden in
response to treatment. Although NSCLC is the cancer type for
which plasma ctDNA testing has the most comprehensive and
compelling evidence (21), it is still controversial regarding the
role of ctDNA in predicting survival and clinical response.

ctDNA assays for the evaluation of cancers that harbor EGFR-
sensitizing or EGFR-resistance mutations have already entered
into clinical practice (22). A recent prospective study using
ctDNA to guide matched targeted therapy in lung cancers
supported the incorporation of plasma ctDNA into clinical
practice (23). In addition to the direction of molecular
2

targeted treatment, ctDNA could also potentially help monitor
ICI response as the quantitative level in plasma has been
demonstrated to reflect the tumor burden in patients even
earlier than clinical detection (17, 24–27) and might identify
response earlier than clinical detection (28, 29). However, these
studies are mostly retrospective design, lacking high-level
medical evidence, and some results were even inconsistent.
Therefore, we conducted this meta-analysis to comprehensively
investigate the predictive value of ctDNA for advanced NSCLC
patients who received ICI therapy.
METHOD

The authors declare that all supporting data, study materials and
analytic methods within the article and the online supporting
information are available to other researchers. This systematic
review was performed in adherence to the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (30). The PRISMA checklist is provided in
Supplementary Table S1.
Search Strategy
The systematic search of the scientific literature was performed.
The search was conducted up to November 2020 in PubMed,
EMBASE, Web of Science, and the Cochrane Library database.
The main keywords used for the online search were “Circulating
Tumor DNA,” “Carcinoma, Non-Small Cell Lung,” “Immune
Checkpoint Inhibitor.” The full online search strategies were
demonstrated in Supplementary Text S1. We also manually
examined the references of each screened study until no
additional articles could be added.
Exclusion and Inclusion Criteria
Studies were selected if they met the following inclusion criteria
(1): patients with advanced NSCLC; (2) patients received ICIs
alone or ICI-based therapy; (3) ctDNA was analyzed in these
groups; (4) information on the clinical response or prognosis of
these patients were provided; (5) if multiple studies from the
same populations were available, to avoid repetition information,
only the one with the largest sample size was included. Reviews,
case reports, conference reports, abstracts, phase I studies and
non-English publications were excluded. Endnote (Thomson
Research Soft; Stanford, Connecticut, the United States) was
used to select and screen the literature.
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Data Extraction
Data extraction and analyses were performed by 2 independent
reviewers (HW and FZ). Any disagreement was discussed with
the senior author (XC). Extracted study characteristics included:
first author, publication year, country of the study, number of
patients who underwent ICIs alone or combined therapy, gender,
median/mean age, histological types, stage, smoking history, PD-
L1 expression, ECOG PS, follow up duration, drugs, sample,
extraction method, detection method, platform, detection time,
most mutated genes.
Outcomes
The primary outcomes were overall survival (OS) and
progression-free survival (PFS), then the secondary outcome
included objective response rate (ORR) with RECIST criteria.
Risk of Bias Assessment
To assesses the quality of non-randomized studies (31), the
Newcastle-Ottawa scale was used to assess the risk of bias. The
scale assesses risk of bias in the following 3 aspects: selection of
the study which include adequate definition and representation
of the case, comparability of groups, and ascertainment of
exposure and outcome for cases and controls. Studies with
score less than 4 were considered as a high risk of bias, those
with scores of 4 to 6 were regarded to have an intermediate risk
of bias, and scores of 7 or more represented a low risk of bias. The
results displayed in Supplementary Table S2
Statistical Analysis
The heterogeneity of different studies was tested by using the Q
test. The HRs and ORs with 95% CIs were directly extracted from
the research article or calculated using previously published
methods, as proposed by Tierney et al. (32). We calculated the
I2 to assess the extent of variability attributable to statistical
heterogeneity across studies. I2 < 50% and P > 0.10 were
interpreted as signifying low-level heterogeneity. Across the
studies, if no significant heterogeneity was found, the results
were combined with the fixed-effects model (Mantel–Haenszel)
(33); otherwise, the random-effects model (DerSimonian-Laird)
was used (34). Publication bias was assessed by visual inspection
of a funnel plot, Begg’s and Egger’s tests. A sensitivity analysis
was performed by serially excluding each study to determine its
influence. P values were two-sided and considered significant if
less than 0.05. STATA 15.1 software for Mac was used to evaluate
the outcomes.
Subgroup Analysis
The following subgroup analyses were performed. Firstly, as
already assessed, the patients were stratified with two groups
depending on different cutoff value of longitudinal ctDNA
dynamic. Then, we also performed subgroup analysis
considering that different platforms in studies might provide
Frontiers in Oncology | www.frontiersin.org 3
heterogeneity. The details of groups and outcomes were provided
in the results of subgroup analysis.
RESULTS

Study Selection
Of the 427 articles retrieved by the literature search, 97 duplicates
were removed, left 330 studies available for screening. 50 studies
underwent full-text review, after screening the title and abstract.
Of these studies,10 pieces of literature met the inclusion criteria
and were chose for the current meta-analysis (7, 35–43). The
detailed flow chart is shown in Figure 1.
Study Characteristics
The basic characteristics of the studies are summarized in
Table 1. A total of 1017 patients were included in the study.
Data from 3 studies (7, 36, 43) analyzed the PFS, 3 studies (36, 37,
43) consideredOS and 4 studies (35, 36, 39, 43) discussed theORR
with the association of baseline ctDNA. 7 studies (37–43)
presented PFS, 4 studies (37–39, 43) reported OS and 6 (35, 37–
39, 41, 43) studies treated ORR as one of the results in early
dynamic assessment of ctDNA. There were 2 studies (36, 38), both
of which had 2 independent cohorts, so we used (1) and (2) to
distinguish them.
The Association of Baseline
(Pre-ICI Therapy) ctDNA
and Clinical Outcomes
4 cohorts from 3 studies (36, 37, 43) were included for analyzing
the association between baseline ctDNA and OS (Figure 2A).
Considering that the results were not heterogeneous, we chose
fixed effects models. There was no statistical significance between
the two groups regarding OS (HR, 1.18; 95% CI, 0.93-1.51;
I2<0.1%; p=0.181). Data from 3 studies (7, 36, 43) and 4
cohorts were pooled for the analysis of PFS (Figure 2B), with
a total of 625 patients. Considering that the results were
homogeneous, we also used fixed-effects models. There was
still no evident difference between the groups in terms of PFS
(HR,0.98; 95% CI, 0.80-1.21; I2 = 38.1%; p=0.865) The results of 4
studies (35, 36, 39, 43) and 5 cohorts were pooled to examine the
relationship of baseline detected ctDNA and ORR (Figure 2C),
with a sample size of 641 patients. The pooled OR in the detected
group with ORR (OR,0.89; 95% CI,0.54-1.46; I2 = 7.6%; p=0.641)
showed no significant difference between the two groups.
The Association of Early Reduction
of ctDNA and Clinical Outcomes
207 patients from 5 cohorts in 4 studies (37–39, 43) were
included to investigate the pooled association between
early reduction of ctDNA and OS. Eight cohorts from 7 studies
(37–43) were included to survey the relation between early
assessment of ctDNA and PFS, with a sample size of 412
July 2021 | Volume 11 | Article 671874
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patients. The pooled HR for OS with the fixed-effects model
(Figure 3A) was 0.19 (95%CI, 0.10-0.35; I2<0.1%; p<0.001);
the HR for PFS with random-effects model (Figure 3B) was
0.25 (95%CI, 0.16-0.40; I2 = 44.8%; p<0.001); Sensitivity
analysis and Star Plot were performed because of the
significant heterogeneity (Figure 4). When excluding group 1
in the study by Raja et al. (38), the heterogeneity decreased to
I-squared<0.1%; with a pooled HR (Figure 3C) of 0.30 (95%
CI, 0.22-0.41; p<0.001). In the early reduction ctDNA group,
the pooled OR (Figure 3D) for ORR in 6 studies (35, 37–39,
41, 43) with 230 patients with fixed-effect models was 0.07
(95% CI,0.03-0.18; I2<0.1%; p<0.001).
Subgroup Analysis in Longitudinal
Observation of Patients With ICIs
Therapy and Platform
Taking into account these studies, the authors selected different
degrees of the reduction of ctDNA during treatment as the
cutoff to define the positive group. Therefore, we further
Frontiers in Oncology | www.frontiersin.org 4
adopted subgroup analysis to divide the studies that dropped
into the positive group and those with different degrees of
decline into two subgroups: a decline of >50% as the threshold
to define ctDNA response (subgroup 1) vs others; decreased vs
others (subgroup 2). 73 patients from two studies (37, 39) were
included in subgroup 1 with a HR (Figure 5A) of 0.16 for OS
(95%CI, 0.06-0.43; I2 <0.1%, p<0.001), 106 patients from two
studies were included in subgroup 2 with a HR (Figure 5A) of
0.21 for OS (95%CI, 0.10-0.46; I2 <0.1%, p<0.001). 181 patients
from 4 studies (37, 39, 41, 42) were included in subgroup 1
with a HR (Figure 5B) of 0.33 for PFS (95%CI, 0.20-0.54;
I2 <0.1%, p<0.001). 203 patients from 3 studies (38, 40, 43)
were included in subgroup 2 with a HR (Figure 5B) of 0.28 for
PFS (95% CI, 0.18-0.41; I2 <0.1%, p<0.001). When regarding
ORR, 73 patients from 2 studies (37, 39) were included in
subgroup 1 with an OR (Figure 5C) of 0.03 (95%CI,0.01-0.25;
I2<0.1%, p=0.001), and 157 patients from 4 studies (35, 38, 41,
43) in subgroup 2 with an OR (Figure 5C) of 0.09 (95%
CI,0.03-0.26 I2 <0.1%, p<0.001). Considering that most studies
included used illumina platform, the subgroup was utilized to
FIGURE 1 | Flow diagram of the study selection.
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TABLE 1 | Basic characteristics of the included studies in the present meta-analysis.

PD-L1 Expression ECOG PS Follow up duration
median or up to(M)

sitive negative unknown 0 ≥1

2 0 12 10 4 10
NA NA NA 48 96 27
NA NA NA 155 270 27
NA NA NA NA NA 20
13 13 2 10 18 15
58 11 3 27 45 9
NA NA NA NA NA 12.7
35 40 22 87(0-2) 4(≥2) 24
11 4 7 NA NA 15
NA NA NA NA NA 10
58 24 17 NA NA 50
NA NA NA NA NA 13.1
tform Detection time

(weeks)
Most mutated genes

Proton baseline, 1, 2, 4, 6,8 TP53
mina HiSeq 4000 baseline KRAS
mina HiSeq 4000 baseline EGFR
mina HiSeq 2500 baseline, 2 KRAS

ardant360 baseline, 6 TP53
ardant360 baseline, 6 TP53
mina HiSeq 2500 baseline, 4 or 8,

the time of disease
progression

KRAS

mina NextSeq 500 baseline, 4 KRAS
mina Novaseq 6000 baseline TP53
mina Novaseq 6000 baseline, 8 TTN

mina HiSeq4000 baseline,
the time of the second
infusion

TP53

-Rad QX200 baseline,
first radiological
restaging

KRAS

ital PCR; M, months.
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First author Year Country Total cases Female(%) Age Histological types Stage Smoking history

NSCC SCC III IV current former never po

Iijima, Y. 2017 Japan 14.00 5 (36) 66 10 4 0 14 0 10 4
Gandara, D. R (1) 2018 US 144.00 51 (35) 62 95 49 advanced 25 92 27
Gandara, D. R (2) 425.00 164 (39) 63 313 112 advanced 59 282 84
Goldberg, S. B 2018 US 49.00 31 (63) 67 47 2 advanced 1 43 5
Raja, R (1) 2018 US 28.00 8 (29) 62 10 18 3 25 22 6
Raja, R (2) 72.00 30 (42) 61 57 15 16 56 59 13
Anagnostou, V. 2019 US 24.00 12 (50) 64 16 8 0 24 3 18 3
Guibert, N 2019 French 97.00 37 (38) NA 76 21 11 86 22 63 7
Chen, Y. 2020 China 22.00 5 (23) 62 10 12 5 17 15 7
Jia, Q 2020 China 9.00 1 (11) 65 6 3 0 9 0 8 1
Nabet, B. Y. 2020 US 99.00 51 (52) 65 85 14 advanced 13 64 22
Zulato, E 2020 Italy 34.00 NA 68 NA NA advanced NA NA NA
First author Year Drugs (number) Previous therapy

lines
Sample Detection method Pl

0-1 >1
Iijima, Y. 2017 Nivolumab (14) NA plasma NGS Ion
Gandara, D. R (1) 2018 Atezolizumab (144) 93 51 plasma NGS Illu
Gandara, D. R (2) Atezolizumab (425) 320 105 plasma NGS Illu
Goldberg, S. B 2018 anti–PD-1 (36); anti–PD-L1 (2)

anti-PD-L1+ID01 inhibitor (2)
anti-CTLA-4+anti PD-L1 (7)
anti-CTLA-4+anti PD-1 (2)

40 9 plasma NGS Illu

Raja, R (1) 2018 Durvalumab (28) 11 17 plasma NGS Gu
Raja, R (2) Durvalumab (72) 0 72 plasma NGS Gu
Anagnostou, V. 2019 Nivolumab (14); Pembrolizumab (5)

Nivolumab+anti-LAG3 (1)
Nivolumab+Ipilimumab (1)
Pembrolizumab+chemotherapy (3)

NA plasma NGS Illu

Guibert, N 2019 Nivolumab (90); Pembrolizumab (7) 57 40 plasma NGS Illu
Chen, Y. 2020 Camrelizumab + Apatinib (22) 14 8 plasma NGS Illu
Jia, Q 2020 Durvalumab (4)

Tremelimumab+Durvalumab (5)
NA plasma NGS Illu

Nabet, B. Y. 2020 anti–PD-L1 (1); anti–PD-1 (31)
anti–PD-1+anti–CTLA-4 (5)
anti–PD-1+Chemotherapy (5)

41 58 plasma NGS Illu

Zulato, E 2020 Nivolumab (12)
Pembrolizumab (18)
Atezolizumab (4)

NA plasma ddPCR Bi

NSCC, Non-squamous cell carcinoma; SCC, Squamous cell carcinoma; NA, not applicable; NGS, Next-generation sequencing; ddPCR, Droplet Di
a

o
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A

B

C

FIGURE 2 | Meta-analysis of the associations between baseline ctDNA and (A) overall survival, (B) progression-free survival, (C) objective response rate. HR, hazard
ratio; OR, odds ratio.
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analyze the difference of illumina platform vs other platforms
(Supplement Figure S1). The results still maintained
coherence in different platforms both in baseline detection
and dynamic observation, showing consistent with previous
research (44).
Publication Bias
As shown in Figure 6, the funnel plots were almost symmetrical
and the test results indicated that no publication bias existed
regarding the HRs for OS (Begg’s test, p=1.000; Egger’s test,
p=0.802), PFS (Begg’s test, p=0.734; Egger’s test, p=0.699) and
OR for ORR (Begg’s test, p= 0.806; Egger’s test, p=0.493) in
baseline detected ctDNA. However, there are inconsistent results
when taking early ctDNA dynamics into consideration, with HRs
for OS (Begg’s test, p=0.308; Egger’s test, p=0.023) or PFS (Begg’s
test, p=0.230; Egger’s test, p=0.160) and OR for ORR (Begg’s test,
p= 0.548; Egger’s test, p=0.009), suggesting that publication bias
might exist among these studies.
DISCUSSION

To our knowledge, this was the first meta-analysis to
comprehensively investigate predictive significance of ctDNA in
advanced NSCLC patients treated with ICI therapy. The current
study found that early reduction of ctDNA was associated with
improved PFS, OS and ORR while there was no significant
association between baseline ctDNA and clinical outcomes.
Frontiers in Oncology | www.frontiersin.org 7
The concept of monitoring tumor burden and therefore
biological effects of treatment by analyzing circulating
biomarkers has been known for long, but only recently the
availability of techniques able to detect ctDNA has opened new
perspectives (17, 45). In lung cancer, the first experience concern
EGFR-mutated disease (46). The use of ctDNA as a quantitative
biomarker for assessment of ICI response has been investigated
in prior studies (47–50), most of which have focused on tracking
driver mutations in patients using digital PCR or allele-specific
PCR. Even previous studies concluded that pretreatment ctDNA
level appears to be an independent, inversely prognostic variable
across tumor types, characterized by an association with OS and
other known prognostic variables, but not with ORR (51). In this
meta-analysis, we did not find a significant association between
baseline ctDNA and clinical outcomes. Compared with tumor
tissue, the abundance of tumor DNA in plasma samples is
relatively low, which poses a great challenge to the sensitivity
of plasma detection. False-negative results may occur due to
insufficient plasma ctDNA content or lacking of inclusion of
altered genes in the targeted NGS panel (21). On the other hand,
false-positive results may also occur because of germline variants
or the presence of somatic mutations in hematopoietic stem cells
owing to clonal hematopoiesis, although most plasma ctDNA
assays use matched sequencing of white blood cells (52–54),
there still be sequencing errors and artifacts (55). A recent study
found that high allele frequency blood TMB was strongly
correlated with the ctDNA amount (56). However, high allele
frequency blood TMB was a negative prognostic factor rather
than a predictive factor (56), this may partially explain that there
A B

DC

FIGURE 3 | Meta-analysis of the associations between early reduction of ctDNA and (A) overall survival, (B, C) progression-free survival, (D) objective response rate.
July 2021 | Volume 11 | Article 671874

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. ctDNA for Outcomes With ICIs
was no significant association between baseline ctDNA and
clinical outcomes.

Interestingly, in this meta-analysis, patients with the
reduced dynamic ctDNA obviously obtained more clinical
benefits from ICI therapy. The early reduction of ctDNA
may reflect an early response of tumors to effective
treatment. This was consistent with previous studies, the
amount of ctDNA may be an independent factor to predict
the efficacy of patients receiving ICIs, and combined with other
predictive indicators can better distinguish potential benefit
populations (42). Subgroup analysis also indicated that a
decline of >50% as a threshold to define ctDNA response
and even achievement of undetectable ctDNA may prove to be
a stronger predictor of long-term response, compared with just
defining ctDNA response as decrease during ICIs therapy, and
may identify patients who comprise the “tail” of the survival
curve (57). Nevertheless, it still needs prospective studies to
confirm these findings. Interestingly, some studies report a
Frontiers in Oncology | www.frontiersin.org 8
transient spike preceding a decline in ctDNA levels in a subset
of patients, likely reflecting DNA release as tumor cells are
killed. It would be important to avoid misinterpreting such a
spike as disease progression (37, 58, 59).

There still were some limitations in our analysis. Firstly, all
data were extracted from retrospective or post-hoc analysis
studies. Secondly, the quality of data was heterogeneous as
several pieces of important information such as prior therapy
were not consistently reported. Finally, a high proportion of
patients in these studies had KRAS and TP53mutations. As TP53
and KRAS mutations showed remarkable clinical benefits from
ICIs (60), it remains undermined that whether detecting TP53
and KRAS in ctDNA for predicting the response to ICIs was as
effective as total ctDNA.

In summary, this current study suggested that early reduction
of ctDNA was associated with improved PFS, OS and ORR in
advanced NSCLC patients treated with ICIs. Further large-scale
and rigorously designed prospective studies are still warranted to
A

B

FIGURE 4 | Sensitivity analysis (A) and Star Plot (B) of the included literatures on the reduction of ctDNA with PFS as the result.
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A

B

C

FIGURE 5 | Subgroup analysis the associations between early decrease of ctDNA and (A) overall survival, (B) progression-free survival, (C) objective response rate.
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verify its clinical value. In the future, clinical trials will be
conducted in NSCLC patients to determine whether ctDNA
could be selected as a significant factor to monitor clinical
response to ICI therapy.
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