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Reviewed by:
Michael Hader,

University Hospital Erlangen,
Germany

Shixiang Wang,
ShanghaiTech University, China

*Correspondence:
Terufumi Kubo

kuboteru@sapmed.ac.jp
Yoshihiko Hirohashi

hirohash@sapmed.ac.jp

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Oncology

Received: 11 March 2021
Accepted: 18 June 2021
Published: 05 July 2021

Citation:
Kubo T, Shinkawa T, Kikuchi Y,

Murata K, Kanaseki T, Tsukahara T,
Hirohashi Y and Torigoe T (2021)

Fundamental and Essential
Knowledge for Pathologists Engaged

in the Research and Practice of
Immune Checkpoint Inhibitor-Based

Cancer Immunotherapy.
Front. Oncol. 11:679095.

doi: 10.3389/fonc.2021.679095

REVIEW
published: 05 July 2021

doi: 10.3389/fonc.2021.679095
Fundamental and Essential
Knowledge for Pathologists Engaged
in the Research and Practice of
Immune Checkpoint Inhibitor-Based
Cancer Immunotherapy
Terufumi Kubo*, Tomoyo Shinkawa, Yasuhiro Kikuchi , Kenji Murata , Takayuki Kanaseki ,
Tomohide Tsukahara , Yoshihiko Hirohashi* and Toshihiko Torigoe

Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan

Extensive research over 100 years has demonstrated that tumors can be eliminated by
the autologous immune system. Without doubt, immunotherapy is now a standard
treatment along with surgery, chemotherapy, and radiotherapy; however, the field of
cancer immunotherapy is continuing to develop. The current challenges for the use of
immunotherapy are to enhance its clinical efficacy, reduce side effects, and develop
predictive biomarkers. Given that histopathological analysis provides molecular and
morphological information on humans in vivo, its importance will continue to grow. This
review article outlines the basic knowledge that is essential for the research and daily
practice of immune checkpoint inhibitor-based cancer immunotherapy from the
perspective of histopathology.

Keywords: immune checkpoint inhibitors, pathology, immunohistochemistry, PD-L1, HLA class I
INTRODUCTION

In the late 19th century, Coley proposed that malignant tumors could be eliminated by means of
autologous immunity. Toward this aim, he inoculated cancer patients with heat-inactivated bacteria
(1). In the context of immunology, this represents the induction of innate immunity. In the following
century, cancer immunology has progressed with repeated cycles of optimism and pessimism. At the
end of the 20th century, Boon et al. reported that melanoma-associated antigen-A1 was a specific
antigen of malignant melanoma (2). This report provided confidence for the first time that malignant
tumors could be specifically eliminated by the patient’s own immune system. However, it took an
additional two decades for immunotherapy to become an option for cancer treatment in daily clinical
practice. With the advent of immune checkpoint inhibitors (ICIs) in recent years, immunotherapy has
been established as the fourth standard cancer treatment method along with surgery, chemotherapy
including cytotoxic agents and molecular targeted based agents, and radiotherapy (3). However, the
overall response rate of ICIs is only 15%–25% in the approved types of cancer, excluding malignant
melanoma (4). However, up to 30% of patients treated with PD-1 and/or CTLA-4 inhibitors
experience grade 3 or 4 immune-related adverse events (5). In addition to enhancing its efficacy
and reducing harmful adverse effects, the development of relevant biomarkers that can predict the
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efficacy of immunotherapy is also required. Histopathological
analysis is a classic method and the only commonly accessible
approach to observe and characterize human diseases including
molecular and morphological information in vivo. Therefore, the
importance of histopathological analysis will continue to grow.
This review article outlines the basic knowledge of cancer
immunity and the mechanism underlying the effect of ICIs. We
also discuss how histopathological analysis can be used to
investigate cancer immunity.
FUNDAMENTAL STRATEGY OF CANCER
IMMUNOTHERAPY

Before a tumor can become established, the immunosurveillance
system eliminates cells that accumulate gene mutations, which
are the origin of clinical cancer (6). However, clinically malignant
tumors have survived a putative three-step immune-editing
mechanism, as we discuss later (7). In other words, a cell
with gene mutations needs to evade immunosurveillance in
order to develop into a tumor. Therefore, to establish effective
immunotherapy, it is necessary to break the tolerance of the
immune system to tumor cells. There are two major strategies for
cancer immunotherapy: enhancing immunity or reducing
immune suppression.

Enhancing anticancer immunity has been a fundamental
strategy of cancer immunotherapy for a considerable period of
time, from Coley’s bacterial vaccination to cancer vaccines based
on antigen-specific peptides or dendritic cells (8). The antigen-
specific elimination of tumor cells is the strongest advantage of
this approach. However, simply enhancing specific and/or non-
specific immunity has not led to clinically relevant cancer
immunotherapy because of its low efficacy (9).

In contrast, recently developed ICIs confer an antitumor effect
by blocking immune checkpoint-driven immunosuppression.
Although the clinical efficacy of ICIs is higher than that of
conventional immune enhancement, we are unable to induce
cancer-specific immune reactions. Therefore, ICIs often provoke
immune-related adverse events (10). ICI-related immune-related
adverse events may show characteristic clinical manifestations,
which are sometimes different from those of ordinary
autoimmune diseases (11). Immune-related adverse events not
only deteriorate patients’ quality of life but are also occasionally
life-threatening (12, 13).

These two approaches are often described as “pushing the
accelerator” and “releasing the brake”, respectively. Notably,
these two strategies are not mutually exclusive. Therefore, their
combination can be a promising approach for the development
of the next generation of cancer immunotherapy.
TARGETS OF CANCER IMMUNITY

In principle, self-derived antigens are tolerated through thymic
selection. Then, how can self-derived tumor cells be targeted by
the immune system? Tumor cells possess cancer-specific
Frontiers in Oncology | www.frontiersin.org 2
antigens that are expressed at lower levels by non-tumor tissue.
The immunogenicity of a cancer antigen depends on the quantity
and quality of the antigen (e.g., the higher its expression level, the
higher its antigenicity). However, it has not been fully clarified
which factors determine the quality of an antigen. Nevertheless,
it is clear that cancer antigen-reactive T cells are not removed as
autoantigen-reactive T cells through thymic negative selection
(14). Although the classification of cancer antigens has not been
standardized, here we simply categorize them into three types:
neo-, viral, and self-antigens (15–17). Notably, viral antigens and
self-antigens are reproducible among patients, and these can be
detected by immunohistochemistry (IHC).

Neo-Antigens
In the process of cancer development, the accumulation of gene
mutations in somatic cells generates proteins with altered
structures, which we call neo-antigens. The majority of neo-
antigens are not considered to be highly antigenic. However,
when increasing numbers of neo-antigens are produced due to
the accumulation of a large number of gene mutations, it is more
likely that highly antigenic ones will be generated that could
serve as specific targets for immunity. Interestingly, the clinical
efficacy of ICIs is significantly correlated with the frequency of
gene mutations in malignant cells (18), suggesting that ICI-
induced cancer immunity targets neo-antigens (19). Because
neo-antigens are the product of accidental gene mutations, a
specific neo-antigen can principally be applied as a cancer
vaccine in a single case. Independent studies in the US and
Europe used gene sequencing of tumor tissues to identify
putative highly immunogenic neo-antigens, the inoculation of
which prevented the recurrence of melanoma (20, 21). Together
with the development of gene sequencing technology and
sophisticated estimation algorithms for the identification of
immunogenic neo-antigens, such personalized treatment may
become prevalent in the future (22).

In addition to “ordinary” neo-antigens generated via gene
mutation, reproducible neo-antigens are attractive targets for
next-generation cancer immunotherapy. Because reproducible
neo-antigens can be inventory-shared, they can be applied for
vaccination therapy or adoptive cell therapy for a considerable
number of patients. There are three candidates for inventory-
shared neo-antigens: spliced peptides, hotspot mutations, and
antigens derived from cancer-specific aberrant post-translational
modifications. Proteins are decomposed into peptides by the
proteasome and then recombined into spliced peptides (23, 24).
Although they do not depend on gene mutations, spliced
peptides differ from the original amino acid sequence and can
be neo-antigens in a broader sense. Although the generation of
spliced peptides often occurs in non-neoplastic cells, especially in
the endocrine system, tumor cells also possess them (25).
Hotspot mutations often generate diverse mutation-derived
neo-antigens. Indeed, hotspot mutations in tumor protein p53
(TP53) and isocitrate dehydrogenase 1 (IDH1) were reported to
generate antigenic peptides in ovarian cancer and glioma,
respectively (26, 27). In addition, the identification of hotspot
mutation-derived neo-antigens and their application for tailored
neo-antigen therapy has become reality (28). Regarding antigens
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derived from cancer-specific aberrant post-translational
modifications, protein phosphorylation can alter the structure
of self-peptides to generate tumor-specific epitopes (29–31). The
functional relevance and efficient detection of these reproducible
neo-antigens are under investigation.

Viral Antigens
Viral infection is an important factor in the development of
cancer. In viral infection-related cancer, viral antigens can be
targeted by the immune system. Carcinoma of the uterine cervix
is a representative viral infection-related cancer in which the
human papilloma virus is critically involved in carcinogenesis.
Autologous immunity can target human papilloma virus-derived
E6 and E7 proteins, which is the only clinically applied
prophylactic anti-cancer vaccine (32, 33). In addition, ICIs are
reported to induce an excellent clinical anti-tumor response to
Epstein-Barr virus-related malignant tumors, including a subset
of gastric cancer and natural killer/T cell lymphoma (34–36).
Clinical trials of ICIs in some other types of virus-associated
carcinoma are in progress (37). In addition, recent studies have
revealed that sequences derived from human endogenous
retroviruses, which are remnants of retroviruses integrated
into the human genome, can be associated with the clinical
response to programmed death-1 (PD-1) blockade in cancer
immunotherapy (38, 39).

Self-Antigens
Malignant cells often over-express apoptosis-inhibiting or cell
cycle-regulating molecules in comparison with non-tumor cells.
Cancer immunotherapy has applied these over-expressed
antigens as specific targets for a long period of time. A
strength of this approach is that this type of cancer antigen is
highly involved in the survival of malignant cells. Therefore,
acquired gene mutations that disable the immune escape effect of
these proteins render tumor cells non-viable. We reported that
immunization with a survivin-derived peptide, an apoptosis-
inhibiting molecule, conferred an immune response in some
types of cancer in vitro and in vivo (40, 41). However, survivin
peptide vaccination did not prolong survival in patients with
advanced pancreatic adenocarcinoma in a phase II clinical trial
(42). None of the other cancer vaccination therapies targeting
this type of antigen has been clinically applied. Because this kind
of antigen is also expressed at a low level in normal tissue, they
tend to show less antigenicity due to immune tolerance.

Cancer-testis antigens (CTAs), which are also included as
self-antigens, are thought to be more immunogenic than over-
expressed antigens. They are expressed only in the testis and
cancer cells. Although the transcriptional expression of CTAs
was reported in the thymic medullary epithelium, negative
selection for CTAs and consequent immune tolerance was not
proven (43). Theoretically, given that the testis is an immune-
privileged site due to the lack of human leukocyte antigen
(HLA) class I molecules and the presence of the blood-testis
barrier, these antigens in cancer cells can only be targeted by
immunity. In recent years, some CTAs, which are involved in
spermatogenesis, were shown to be highly and specifically
expressed in human cancer stem-like cells/cancer-initiating
Frontiers in Oncology | www.frontiersin.org 3
cells of solid tumors. These cancer stem-like cell/cancer-initiating
cell-specific antigens induced a strong immune response,
suggesting their potential usefulness for immunotherapy
specifically targeting cancer stem-like cells/cancer-initiating
cells (44).

A recently published study revealed that malignant melanoma
tissue harbors numerous tumor-infiltrating lymphocytes, which
are self-antigen cognitive (45). Significantly, antigen spreading, a
cardinal process for effective cancer immunotherapy, can
potentiate not only neo-antigens but also self-antigens during
the killing of tumor cells (46–48). Although inoculation with self-
antigens alone does not induce a satisfactory immune reaction,
combination therapy with additional ICIs may contribute to
disease control (49). The evaluation of self-antigens may become
increasingly important toward the realization of a persistent anti-
tumor effect.
PROCESS OF THE IMMUNE REACTION
TO TUMOR CELLS AND ICIS

Cancer immunity involves various types of immune cells such as
lymphocytes, innate lymphoid cells including natural killer cells,
monocytes/macrophages, and granulocytes. Although several
immune cells that can exhibit cytotoxic activity have been
reported, including natural killer and T cells, a definite
antitumor function in human tumor immunity has been
described only for CD8-positive cytotoxic T lymphocytes
(CTLs). For immune cells to eliminate malignant cells, it is
necessary to complete a series of several functional stepwise
events described as the “cancer immunity cycle” (Figure 1) (50):
release of cancer antigens from injured tumor cells (step 1);
uptake of cancer antigens by dendritic cells and antigen
presentation (step 2); priming phase (T cell activation; step 3),
migration of CTLs to tumor site (step 4); infiltration of CTLs into
tumor tissue (step 5); recognition of cancer antigens presented by
the HLA class I molecules of tumor cells (step 6); and effector
phase (destruction of tumor cells; step 7). Dysregulation of even a
single phase stops the whole cycle, resulting in the failure of
cancer immunity. Of these steps, the currently available ICIs act
in the priming and effector phases.
Priming Phase
This process occurs primarily in lymph nodes and/or putative
tertiary lymphoid structures close to the tumor (51). Tumor
antigens from disrupted tumors are taken up by dendritic cells
and presented by HLA class I and class II molecules. T cells are
activated and proliferate once the following three signals are
achieved: T cell receptor recognition of the corresponding
antigen peptide-HLA molecule complex (first signal), signaling
from the co-stimulatory molecule (second signal), and
stimulation by the relevant cytokines (third signal). In this
phase, ICIs inhibit co-inhibitory molecules, including PD-1
axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
that repress the second signal.
July 2021 | Volume 11 | Article 679095
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Effector Phase
After the priming phase, activated cancer antigen-specific CTLs
migrate and infiltrate into tumor tissue. CTLs recognize cancer
antigens presented by HLA class I molecules in the tumor cells
and kill the cells. Notably, although it has been considered that
CTLs induce apoptosis in tumor cells, these cells do not appear to
Frontiers in Oncology | www.frontiersin.org 4
be apoptotic but rather necrotic in morphological observations
(Figure 2) (52). In addition, although classic apoptosis is not
supposed to evoke inflammation, immunogenic cell death is
required to promote the cancer immunity cycle. Indeed, CTL-
induced immunogenic cell death has been reported (53).
Alternatively, ICIs may evoke secondary necrosis, which is an
FIGURE 1 | Cancer immunity cycle and mechanism of immune checkpoint inhibitors. (Step 1) Release of cancer antigens from injured tumor cells; (Step 2) uptake of
cancer antigens by dendritic cells and antigen presentation; (Step 3) priming phase (T cell activation); (Step 4) migration of cytotoxic T lymphocytes (CTLs) into the
tumor; (Step 5) infiltration of CTLs into the tumor; (Step 6) recognition of cancer antigens presented by HLA class I molecules of the tumor cells; and (Step 7) effector
phase (destruction of tumor cells). Repeated cycles of the cancer immunity system can eliminate a tumor. Modified from Chen et al. (50) CTLA-4, cytotoxic T-
lymphocyte-associated protein 4; DC, dendritic cell; HLA I, human leukocyte antigen class I molecules; HLA II, human leukocyte antigen class II molecules; PD-1,
programmed death-1; PD-L1, programmed death ligand 1; Th1, type 1 helper T cell; Th2, type 2 helper T cell; Treg, regulatory T cell.
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autolytic process of cell disintegration with the release of cell
components when the remnants of apoptotic cells are not cleared
by scavenger cells (54, 55). Together with uncovering the
mechanism of CTL-induced tumor cell death, it is important
to investigate the significance of alarmin proteins as a danger
signal released from the destroyed tumor cells in the context of
the cancer immunity cycle (56).

In this phase, cancer cells express programmed death ligand 1
(PD-L1) and/or PD-L2, which dampen anti-cancer immunity by
interacting with PD-1 on CTLs. Anti-PD-1/PD-L1 antibodies
inhibit this reaction. However, anti-CTLA-4 antibody was not
considered to have a function in this phase. Nevertheless, the
most prevalent anti-CTLA-4 antibody, ipilimumab (IgG1 type),
eliminates CTLA-4-expressing regulatory T cells by means of
antibody-dependent cellular cytotoxicity (57). Antibody-
dependent cellular cytotoxicity activity may increase anti-cancer
immunity and unfavorable adverse effects. Tremelimumab,
another anti-CTLA-4 antibody (IgG2 type) shows lower
antibody-dependent cellular cytotoxicity activity. Compared
with ipilimumab, the clinical utility of tremelimumab has not
been established. An early study investigating the utility of
tremelimumab for malignant melanoma was disappointing,
potentially implying the functional significance of anti-CTLA-4
antibody-dependent cellular cytotoxicity activity in the effector
phase (58). In addition to these molecules, research and clinical
trials have been conducted to investigate whether targeting other
types of inhibitory receptors, including lymphocyte activation
gene 3 (LAG3), T cell membrane protein 3 (TIM3), and T cell
immunoglobulin and ITIM domains (TIGIT), might enhance the
efficacy of cancer immunotherapy (59–62).
IMMUNE EDITING AND IMMUNE ESCAPE

In our current understanding, the immune system continually
detects tumor antigens and eliminates mutant cells regardless of
treatment. In the mid-1960s, Bernet named this mechanism
“immune surveillance”. However, tumor cells evade immune
Frontiers in Oncology | www.frontiersin.org 5
surveillance by immune editing, which consists of three phases
(7). The first is the “elimination phase”, which is the stage where
the immune surveillance mechanism works. If elimination fails,
it progresses to the “equilibrium phase”, which is the antagonistic
state of immune surveillance and immune escape of malignant
cells. The final phase is the “escape phase”, in which cells that
have accumulated mutations to escape from immunity start to
proliferate. Most clinically apparent tumors are at this stage. ICIs
can only partially block the immune escape mechanisms in the
priming and effector phases. In other words, the reason that
many patients do not respond to ICIs is largely attributed to the
interruption of the cancer immunity cycle at a certain phase.
There are two major patterns of cancer immune escape.

The first is the decreased immunogenicity of malignant cells.
As in Darwin’s Theory of Evolution, malignant cells with high
adaptation to their environment survive and proliferate. In the
context of cancer immunity, a mutant cell with high antigenicity
may be eliminated by the immune system. In contrast, cells with
low antigenicity can survive.

The second is the cancer cell-mediated reconstruction of the
local immune microenvironment. If the expression of co-
stimulatory or co-inhibitory molecules is eliminated or
increased in tumor cells, respectively, CTLs cannot efficiently
eliminate these cells. PD-L1 over-expression on tumor cells is a
representative cancer immune escape mechanism. Alternatively,
tumor cells and surrounding stromal cells may produce
immunosuppressive cytokines such as tumor growth factor-b
(63, 64). In addition, tumor cells control the migration,
maturation, and/or cytokine production of stromal fibroblasts
and/or various immune cells, which leads to the generation of a
cancer immune microenvironment with decreased antitumor
immunity. For example, the infiltration of regulatory T cells
and myeloid-derived suppressor cells into tumors is reported to
suppress anti-cancer immunity, resulting in a poor prognosis
(65, 66). In contrast, CD8-positive lymphocyte infiltration is
often observed only in tumor-associated fibroblastic lesions, but
not in tumor cells. In such a setting, CTLs cannot recognize and
eliminate tumor cells, which can be the result of a deviated
FIGURE 2 | Histology of renal cell carcinoma after the administration of immune checkpoint inhibitors. Left: Hematoxylin and eosin (HE) staining of a case of renal
cell carcinoma (arrows) after ipilimumab and nivolumab therapy. Typical morphological changes in apoptosis such as shrinkage of the cell and/or fragmentation into
apoptotic bodies are not seen (circle). Right: Immunohistochemical staining for CD8 in a serial section. Numerous CD8-positive cells have infiltrated the tumor.
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immune cell homing process (67). An increasing number of
studies have reported that the manipulation of chemokine-
mediated immune cell trafficking ameliorates effector cell
infiltration into tumors (68–70).
PREDICTIVE MARKERS OF ICI EFFICACY
BY HISTOPATHOLOGICAL ANALYSIS

ICIs are expensive and can become a socioeconomic burden, and
thus relevant biomarkers are urgently required that can
distinguish whether an antibody drug would be effective in
each patient (71). In our current understanding, there are
common denominators that are recognized as potential
prediction markers for estimating the efficacy of anti-PD-1/
PD-L1 antibodies (72). The first is whether cancer cells express
PD-L1, which may mean that tumor cells have escaped from
cancer immunity by utilizing the PD-1/PD-L1 axis. The second is
whether CD8-positive cells have infiltrated the tumor. The third
is how many gene mutations tumor cells have. Strictly speaking,
whole exome sequencing is required to estimate mutational
burden; however, the detection of defects in DNA mismatch
repair proteins (dMMRs) or microsatellite instability can be used
as a surrogate marker for mutational burden (73, 74). In
addition, the appropriate expression of HLA class I molecules
on tumor cells is a prerequisite for CTL-based cancer
immunotherapy. Notably, all of these factors can be
investigated using formalin-fixed paraffin-embedded (FFPE)
specimens and histopathological analysis. The combination of
Frontiers in Oncology | www.frontiersin.org 6
these factors would provide further reliable predictions of
treatment efficacy. Table 1 lists commercially available
antibodies for other markers that can be used for the
investigation of FFPE specimens. However, the problem is that
tumor cells are heterogeneous; therefore, small specimens
obtained by biopsy do not always represent the majority of
the lesion.

IHC for PD-L1
Currently, PD-L1 immunostaining with FFPE specimens is
performed routinely as a biomarker to estimate the efficacy of
anti-PD-1/PD-L1 antibodies. It is worth noting that there are
multiple clones of anti-PD-L1 monoclonal antibodies that can be
used for IHC. Whereas the 22C3, 28-8, and SP263 clones
recognize the extracellular domain of PD-L1, the SP142 and
E1L3N clones bind to its intracellular domain (75). PD-L1
staining results differ depending on which antibody clone is
used (Figure 3A) (76). In particular, the differential recognition
domain of each antibody clone affects the results of PD-L1
staining in diffuse large B cell lymphoma. A recent report
investigating the interchangeability of PD-L1 IHC concluded
that it cannot be simplified (76). Therefore, the appropriate
protocol for evaluating PD-L1 expression differs according to
the type of cancer to be analyzed.

The interpretation of PD-L1 IHC results is also important. In
non-small cell lung cancer, pembrolizumab is significantly more
effective in PD-L1-positive cases than in PD-L1-negative
cases (77). However, a favorable effect of this antibody drug
is not guaranteed even in PD-L1-positive cases. In contrast,
pembrolizumab is not necessarily ineffective in PD-L1-negative
TABLE 1 | Representative antibodies for immunohistochemical investigation of human cancer immunity.

Target molecule Clone Animal Localization Biological function

b2m D8P1H Rb Membrane Antigen presentation
CD3 - (polyclonal) Rb Membrane Pan T cell marker
CD4 1F6/EPR6855 Ms/Rb Membrane Helper T cell marker
CD8 4B11 Ms Membrane CTL marker
CD20 L26 Ms Membrane Pan B cell marker
CD56 1B6 Ms Membrane NK cell marker
CD163 10D6 Ms Membrane M2 macrophage
FOXP3 236A/E7/SP97 Ms/Rb Nuclear Treg cell marker
Granzyme B GrB-7 Ms Cytoplasm Cytotoxic granule
HLA class I (A, B, Cw) EMR8-5 Ms Membrane Antigen presentation
HLA class I (B, Cw) HC10 Ms Membrane Antigen presentation
HLA class I (A) HCA2 Ms Membrane Antigen presentation
HLA class II (DR) TAL 1B5 Ms Membrane Antigen presentation
IDO-1 SP260 Rb Cytoplasm Inducing the immunosuppressive activity of Treg cells
MLH1 ES05 Ms Nuclear DNA mismatch repair protein
MSH2 FE11 Ms Nuclear DNA mismatch repair protein
MSH6 EP49 Rb Nuclear DNA mismatch repair protein
PD-1 EH33/NAT105 Ms/Ms Membrane Activated or exhausted T cell marker
PD-L1 E1L3N//28-8/SP142/SP263/22C3 Rb/Rb/Rb/Rb/Ms Membrane Immune checkpoint molecule
PMS2 EP51 Rb Nuclear DNA mismatch repair protein
Tapasin TO-3 Ms Cytoplasm Required for antigen presentation on HLA class I
TIA-1 TIA-1 Ms Cytoplasm Apoptosis-promoting protein
Antibodies listed above are used in our laboratory. Detailed protocols are provided by each manufacturer. Ms, mouse; Rb, rabbit; CD, cluster of differentiation; CTL, cytotoxic T-
lymphocyte; NK, natural killer; FOXP3, forkhead box protein p3; HLA, human leukocyte antigen; IDO-1, Indoleamine 2,3-dioxygenase-1; MLH1, MutL homolog 1; MSH2, MutS homolog 2;
MSH6, MutS homolog 6; PD-1, programmed cell death-1; PD-L1, programmed death-ligand 1; PMS2, postmeiotic segregation increased 2; TIA-1, TIA1 cytotoxic granule associated
RNA binding protein.
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cases. In clear cell renal cell carcinoma, there was no correlation
between the therapeutic efficacy of nivolumab on advanced renal
cell carcinoma and PD-L1 tumor expression in the CheckMate-
025 study (78). In addition, PD-L1 expression in tumor tissue
Frontiers in Oncology | www.frontiersin.org 7
observed by IHC indicates only a part of the immune
environment in the effector phase, but not in the priming
phase or entire cancer immunity cycle. Therefore, evaluating
PD-L1 expression alone is insufficient for a precise estimate
A

B

D

C

FIGURE 3 | Representative biomarkers estimating the clinical effect of immune checkpoint inhibitors. (A) Differential programmed death ligand 1 (PD-L1) staining at
the same site on serial sections in a case of melanoma. Left: 28-8 clone; Right: E1L3N clone. (B) Three major patterns of CD8-positive cell infiltration. All cases
presented here are clear cell renal cell carcinoma. The dotted line indicates the boundary between the tumor and interstitial tissue. (C) CD8-positive cell infiltration
pattern of colon adenocarcinoma. The maximum density of CD8-positive cell infiltration in these two cases is at the same level. In the left case, CD8-positive cells
infiltrated mainly the interstitial tissue. Meanwhile, CD8-positive cells also infiltrated the tumor tissue. (D) Immunohistochemistry for MutS protein homolog 2 (MSH2),
MutS protein homolog 6 (MSH6), MutL protein homolog 1 (MLH1), and postmeiotic segregation increased 2 (PMS2) in colon adenocarcinoma. MSH2, MLH1, and
PMS2 are stained in the nucleus. However, MSH6 staining is lost, indicating DNA mismatch repair protein deficiency. The staining has to be verified with an internal
positive control. Note that some of the infiltrated mononuclear cells show nuclear staining (arrows).
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of the clinical response of anti-PD-1/PD-L1 antibodies. It is
important to know the pathological significance of PD-L1
IHC results. Although it is difficult to determine this by
morphological analysis alone, there are four patterns of
PD-L1 staining that take the cancer microenvironment into
account (79).

PD-L1-Positive Expression Induced by
Activated CTLs
Interferon-g (IFNg) produced by activated CTLs infiltrating a
tumor induces PD-L1 expression in the tumor cells.
Consequently, CTLs are inactivated through the PD-1
signaling pathway. This phenomenon is called adaptive
immune resistance. In histological analysis, a large number of
CD8-positive cells should infiltrate a PD-L1-positive tumor.
However, stromal macrophages or other types of immune cells
can also express PD-L1. Thus, it is necessary to distinguish
whether PD-L1-positive cells are tumor cells or stromal
immune cells to predict a therapeutic response, which is
sometimes challenging and depends on the cancer type and
antibody drug (80–82). For example, when investigating the
indication for pembrolizumab in non-small lung carcinoma,
pathologists should evaluate PD-L1 expression in cancer cells
with the 22C3 clone (77). However, when investigating the
indication for atezolizumab in triple-negative breast cancer,
pathologists should evaluate PD-L1 expression in infiltrated
immune cells with the SP142 clone (83, 84). As a further
complication, PD-L1 expression is not important for the
application of atezolizumab for non-small cell lung carcinoma
after platinum-based chemotherapy (85).

PD-L1-Positive Expression Independent of CTLs
PD-L1 over-expression is induced by gene mutation of tumor
cells and oncogene activation. This CTL-independent PD-L1
expression is called innate immune resistance. To date, PD-L1
over-expression has been reported in adult T-cell leukemia/
lymphoma, in which transcripts are stabilized by disruption of
the 3′-untranslated region (86). PD-L1 is over-expressed in
Hodgkin’s lymphoma by the amplification of chromosome 9
(87). A similar mechanism has been confirmed in solid tumors at
a low frequency. In addition, chemotherapeutic agents can
induce PD-L1 expression (88, 89). However, the functional
significance of CTL-independent PD-L1 expression has not
been established.

PD-L1-Negative Expression Due to a Lack
of CTL Infiltration
Immune cell trafficking is determined by chemokines and cell
adhesion molecules produced by tumor cells and stromal cells,
including vascular endothelial cells and fibroblasts (90). Tumor
tissue without PD-L1 expression and T cell infiltration is called
an “immune desert”, for which administration of anti-PD-1/PD-
L1 inhibitor is not expected to produce a response (91). However,
the combination of anti-PD-1/PD-L1 inhibitor with an anti-
CTLA-4 antibody and some chemotherapeutic agents, which can
induce immunogenic cell death, may initiate an effective cancer
immunity cycle. Subsequently, CTLs can infiltrate tumor tissue
Frontiers in Oncology | www.frontiersin.org 8
and PD-1 inhibitors can exert an effect through the mechanism
described above (92).

PD-L1-Negative Expression Due to Gene Mutation
Even when a tumor is profoundly infiltrated with CTLs, PD-L1
expression can be inhibited due to gene mutation such as in the
interferon receptor JAK pathway because these mutations
prevent IFNg signal transduction (93). This type of escape has
been reported in recurrent cases after anti-PD-1 antibody use
(94). In this case, tumor cells are considered to escape from
immunity via a non-PD-1/PD-L1 axis.

CD8 and Cytotoxic or Exhaustion Markers
Because PD-L1 expression reflects only a small part of the tumor
microenvironment, it can provide a limited prediction of the
efficacy of anti-PD-1/PD-L1 treatment. To analyze the tumor
microenvironment more precisely, it is necessary to analyze not
only tumor cells but also immune cells. The investigation of
CD8-positive lymphocytes, which are nearly equal to CTLs, by
IHC is the most accessible method for detecting CTLs (95).
There are three major patterns of CTL infiltration: inflamed,
excluded, and desert (Figure 3B) (96, 97). In the inflamed
pattern, the tumor harbors numerous CD8-positive cells,
whereas they are found only in interstitial tissue in the
excluded pattern. In the desert pattern, there are very few
CD8-positive cells in the tumor and interstitial tissue. It is
especially important to distinguish whether CD8-positive
lymphocytes infiltrate the tumor or interstitial tissue. In
Figure 3C, the maximum density of CD8-positive cell
infiltration in these two cases was at the same level. However,
the left panel is categorized as the excluded pattern, whereas the
right panel represents the inflamed pattern, for which we can
expect immunotherapy to be effective. Previous reports have
shown the importance of distinguishing these infiltration
patterns (40, 98).

CD8-positive lymphocytes do not consist of a uniform
population from the point of view of functional classification.
In addition to their location, the functional phenotype or
differential status of CD8-positive lymphocytes is an also
important information (Figure 4). The combination of CD8
with granzyme B and/or TIA-1, which are killing activity-related
molecules that are screened frequently in FFPE specimens, may
increase reliability (99, 100). In addition, the intratumoral
infiltration of transcription factor T cell factor 1 (TCF1)/TCF7-
positive CTLs, indicating central memory CD8-positive T cells, is
correlated with a positive clinical outcome in melanoma patients
(101, 102). Furthermore, potentially useful antibodies detecting
IFNg-inducible molecules, including C-X-C motif chemokine
(CXCL) 9, CXCL10, and CXCL11 or IFNg itself, have been
generated (103–105). However, continuous exposure of T cells
to antigen induces the deterioration of T cell function, which is
called “T cell exhaustion” (106). Exhausted CTLs do not show
sufficient antitumor activity in response to inhibition of the
PD-1/PD-L1 axis. An increasing number of studies have
reported the molecular mechanism and relevant markers of T
cell exhaustion. The expression levels of nuclear orphan receptor
4a and thymocyte selection-associated high-mobility group
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box transcription factors in CD8-positive T cells can be used to
determine T cell exhaustion (107–110). Additional examinations
of these molecules by IHC might confer further precise
evaluation of ICI efficacy.

Detection of Deficiency of Mismatch
Repair Proteins
ICIs are expected to be effective for tumors with a high
mutational burden or virus-related tumors. The former
includes mutagen-induced tumors such as smoking-associated
carcinoma, and tumors with disturbed DNA repair systems.
There are several DNA repair systems that maintain the
accuracy of DNA replication.

Mismatch repair proteins amend errors of the DNA sequence
during DNA replication. Germline mutation of these proteins,
which is called Lynch syndrome, significantly increases the
lifetime risk of colorectal and/or endometrial carcinoma (111,
112). In addition to approximately 10% of cases with colorectal
carcinoma and 30% of cases of endometrial carcinoma, sporadic
or germline dMMRs are also found in ovarian, urothelial,
gastric, hepatobiliary, and pancreatic carcinoma (113, 114).
Pembrolizumab, an anti-PD-1 antibody, has been adapted for
the treatment of any type of dMMR cancer. In a famous clinical
study, pembrolizumab was shown to be clinically effective in
more than 50% of dMMR cancers (115).

In histopathological analysis, four major dMMR proteins,
namely, MutL protein homolog 1 (MLH1), MutS protein
homolog 2 (MSH2), MutS protein homolog 6 (MSH6), and
postmeiotic segregation increased 2 (PMS2), can be examined
by IHC (Figure 3D). In daily practice, a two-antibody approach
with MSH6 and PMS2 is as effective as a four-antibody method
(116), because negative staining for MSH6 corresponds to a lack
of MSH2 and/or MSH6 proteins because the stability of MSH6
is dependent on MSH2. In the same way, staining for PMS2
covers the protein expression of PMS2 and/or MLH1. Therefore,
the loss of dMMR proteins is designated in cases with either
the loss of MSH6 or PMS2 staining. The pitfalls and caveats in
Frontiers in Oncology | www.frontiersin.org 9
assessing IHC results for these proteins are described elsewhere
(113, 117). Due to the simplicity of this assay, the evaluation of
dMMR proteins by IHC is useful for estimating the tumor
mutational burden.

HLA Class I Molecule Expression
Under immune pressure, tumor cells that no longer express HLA
class I molecules can survive due to loss of immunogenicity
(Figure 5A) (118, 119). Regardless of therapeutic intervention,
HLA class I molecules often disappear. We can assess HLA class I
molecule expression by IHC examination with FFPE specimens.
Notably, it is important for pathologists to evaluate HLA class I
molecules on the cell surface, but not in the cytoplasm (120). In
surgically resected specimens, a decrease of HLA class I molecules
is correlated to a poor prognosis in various types of malignancy,
indicating that immune surveillance also inhibits the further
growth of an established tumor (118, 121–124). Nearly all
current strategies for CTL-mediated immunotherapy cannot
theoretically surmount the loss of HLA class I molecules, which
is a serious problem for the future of cancer immunotherapy
(Figure 5B). It is urgently required to establish a relevant scoring
system that is reproducible among pathologists. In addition to
HLA class I molecules, the proper contribution of the antigen
processing and presentation machinery, including b2-
microglobulin, transporter 1, ATP-binding cassette subfamily B
member (TAP1), TAP2, or tapasin, is required for appropriate
cancer antigen presentation. Therefore, dysfunction of these
molecules is involved in cancer immune escape (125).

We previously reported that the expression of HLA class I
molecules tends to be reduced in dMMR colon cancer (120). We
can assume that dMMR tumor cells harboring abundant neo-
antigens are naturally exposed to a strong immune reaction,
whereas the expression of HLA class I molecules and b2-
microglobulin can be inhibited easily, thereby enabling
immune-escaped malignant cells to proliferate. We name this
phenomenon “adaptive immune escape”. However, surprisingly,
in endometrial cancer, this tendency is not the case, potentially
FIGURE 4 | Differentiation fate and immunohistochemistry (IHC) markers for CD8-positive T cells. The behavior of CD8-positive T cells is dependent on the differentiation
stage, which is not clearly defined. The schema shown here is extremely simplified. IHC for formalin-fixed paraffin-embedded specimens may reveal the functional
relevance of CD8-positive T cells in each stage of differentiation. TCM, central memory T cell; TE, effector T cell; TEM, effector memory T cell; Tex, exhausted T cell.
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because of differences in the immune microenvironment
between the two types of carcinoma (126).
UNRESOLVED ISSUES AND FUTURE
DIRECTIONS OF HISTOPATHOLOGICAL
INVESTIGATION IN CANCER
IMMUNOLOGY

Although, as noted above, histopathological analysis provides
valuable in vivo information in humans, a number of issues
remain unresolved. Such issues are attributable mainly to the
spatiotemporal phenotypic heterogeneity of cancer cells in cancer
tissue. Despite its utility and convenience, histopathological
investigation provides only a two-dimensional picture of the
three-dimensional tumor mass at a given point in time. This
raises questions the following questions. How much area needs to
be evaluated? Which area should be analyzed? Should it be the core
of the tumor, the invasion edge, or both? (127) It is possible that one
area harbors a dense group of inflammatory cells, while the other
area has far less inflammatory cell infiltration. These points of
evaluation vary according to the study. It is still not known how
other treatment modalities, including various chemotherapeutic
Frontiers in Oncology | www.frontiersin.org 10
agents and irradiation, influence the cancer immune
microenvironment. In addition, there is no established consensus
on which timing of biopsy can most accurately predict the clinical
efficacy of ICIs. Recent studies have reported positron emission
tomography-based monitoring of CD8-positive cell infiltrates in the
tumor (128, 129). This technology may provide a promising
monitoring tool for investigating specific molecular targets in
tumor and/or interstitial cells in the whole cancer lesion. In
addition, image analysis involving deep learning methods based
on artificial intelligence and neural networks may provide even
more accurate evaluation (130). However, it is essential for the
development of these technologies to establish an optimal
methodology for carrying out histopathological investigation.
CONCLUSION

Although cancer immunotherapy is becoming a major standard
treatment, we still have many unclear points regarding the
detailed mechanism or action of ICIs. In addition, single agent
administration is less effective in more than 70% of cases. The
risk of serious immune-related adverse events cannot be ignored.
Therefore, the development of more effective and highly cancer-
A

B

FIGURE 5 | Immune escape via loss of human leukocyte antigen (HLA) class I molecules. (A) Expression pattern of HLA class I molecules detected by the EMR8-5
monoclonal antibody in diffuse large B cell lymphoma. Left: intact cell boundary staining; Right: loss of staining. (B) Adaptive immune escape hypothesis:
immunogenic tumor cells are eliminated by cytotoxic T lymphocytes; nevertheless, tumor cells without HLA class I molecules survive and proliferate.
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specific immunotherapy and the development of reliable
biomarkers for optimal treatment selection are important
issues for the future. Histopathological analysis by IHC will
become progressively more important due to the limitation of
accessibility to clinical samples and the daily feasibility of
analysis. Furthermore, the recently developed Immunoscore
evaluation method of FFPE specimens has provided a
prognostic estimation as accurate as that of the tumor, node,
metastasis evaluation system (131–134). The evaluation of the
immune microenvironment may be required in diagnostic
routine in the near future. Immunopathologic research by
pathologists, who can form a bridge between clinicians and
basic researchers, might lead to the development of better
approaches for the understanding and treatment of cancer.
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