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Glioblastoma (GBM) is the most common and aggressive type of tumour arising from the
central nervous system. GBM remains an incurable disease despite advancement in
therapies, with overall survival of approximately 15 months. Recent literature has
highlighted that GBM releases tumoural content which crosses the blood-brain barrier
(BBB) and is detected in patients’ blood, such as circulating tumour cells (CTCs). CTCs
carry tumour information and have shown promise as prognostic and predictive
biomarkers in different cancer types. Currently, there is limited data for the clinical utility
of CTCs in GBM. Here, we report the use of spiral microfluidic technology to isolate CTCs
from whole blood of newly diagnosed GBM patients before and after surgery, followed by
characterization for GFAP, cell-surface vimentin protein expression and EGFR
amplification. CTCs were found in 13 out of 20 patients (9/20 before surgery and 11/19
after surgery). Patients with CTC counts equal to 0 after surgery had a significantly longer
recurrence-free survival (p=0.0370). This is the first investigation using the spiral
microfluidics technology for the enrichment of CTCs from GBM patients and these
results support the use of this technology to better understand the clinical value of
CTCs in the management of GBM in future studies.
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INTRODUCTION

Glioblastoma (GBM) is the most frequent and aggressive type of
brain cancer in adults (1). Despite the standard of care treatment
(surgery followed by radio and chemotherapy), overall survival is
poor at approximately 15 months (2). Moreover, GBM has high
recurrence rates (>90%) compared to other cancer types (3, 4). In
the recurrent setting, treatment options include reoperation, re-
irradiation, and combined therapy (5). Imaging techniques and
tissue biopsies are used to characterize the tumour and predict
treatment response (6). Nevertheless, not all patients are eligible
for operation and the resection or biopsy of the tumour may
present risks, such as brain swelling or affect neurological
functions (7).

In this context, interest in the use of liquid biopsies in GBM
management is emerging (8, 9). Liquid biopsy is defined as the
sampling and analysis of biomolecules in biofluids, such as
blood, urine and saliva (10, 11). This approach aims to capture
tumour activities in real-time to be used in the diagnosis and
prediction of disease progression in a minimally invasive way.
Tumoural content that can be shed into circulation includes
circulating tumour DNA (ctDNA) and circulating tumour cells
(CTCs). CTCs are cells that detach from the tumour and reach
the bloodstream (10). This is thought to be due to a process that
cells undergo called epithelial-mesenchymal transition (EMT)
(12) in which cells downregulate epithelial markers and upregulate
mesenchymal markers, gaining migratory and invasive properties.
CTCs contribute to tumour metastasis and their detection may be
used as a biomarker to predict disease outcome and monitor
response to treatment (13). Recent literature has shown that GBM
sheds tumoral content into the circulation (14, 15) and CTCs (16–
18) can be detected in patients’ blood. In brain tumours,
extracranial metastatic events are rare, possibly due to the
presence of the BBB, short survival rate and suppression of
brain cell growth extracranially by the immune system (16, 19).
Nevertheless, detection of GBM cells in peripheral blood of
patients can facilitate the assessment of tumoural information
without the need for invasive approaches.

CTCs are rare events in circulation, with an average of 1-10
cells per 10 ml of blood depending on the cancer type (10). In
GBM, Muller et al. reported CTC counts ranging from 1 to 22
cells per 2.1 × 106 mononuclear cells (MNCs) (16). This
highlights the challenge for current techniques to isolate cells
in a sensitive and reproducible way for further characterization.
Currently, the only FDA-approved platform for CTC isolations
is the CellSearch® system (Menarini Silicon Biosystems, Italy)
(20, 21) which enumerates CTCs of epithelial origin and consists
of a positive selection of EpCAM+ cells. Nevertheless, so far, this
method has not been applied for the isolation of CTCs from
GBM since these cells tend to present a more mesenchymal
phenotype (17). This emphasizes the need for a different
approach to be implemented to isolate CTCs in non-epithelial
tumours. To overcome this limitation, label-free technologies are
emerging as potential platforms to fulfil this need (22). These
techniques explore the physical properties of tumour cells, as size
and deformability, which tend to differ from white blood cells
(WBCs) in circulation (23). Among these technologies, the spiral
Frontiers in Oncology | www.frontiersin.org 2
microfluidic device is an alternative device that sorts cells by size
using a combination of inertial lift force and Dean drag forces
(24). This technique allows relevant blood volumes to be
processed rapidly for the enrichment of CTCs. This technology
has been used to isolate CTCs from other solid epithelial cancer
types such as head and neck cancer (25), lung cancer (26), breast
cancer (27) and melanoma (28). However, there are no studies to
date on the application of this spiral microfluid technology for
the isolation of CTCs from GBM patients.

Another challenge faced in the field is the characterization of
CTCs from GBM. Currently, no marker can specifically confirm
GBM cell in origin. We have elected glial fibrillary acidic protein
(GFAP) and cell-surface vimentin (CSV) as markers to
differentiate putative GBM cells in circulation from other
blood cells. GFAP has high sensitivity and specificity for cells
of neural origin and primary brain cancer cells. It has previously
been observed that GFAP-positive cells found in peripheral
blood of GBM patients present the same genomic aberrations
with matching tumour tissue by genomic hybridization,
sequencing analysis and fluorescence in-situ hybridization
(FISH) (16). In addition to GFAP, the marker CSV was
included in our characterization. CSV is a mesenchymal CTC
marker and is mostly associated with tumour cells (29, 30). CTCs
from GBM were shown to have a mesenchymal phenotype (17)
and CSV has been detected in GBM cancer stem cells (CSC) (31).
Also, CSV+ CTCs enumeration has been shown to correlate with
prostate cancer progression (32).

In this pilot study, we used a spiral microfluidic technology to
isolate CTCs from peripheral blood of 20 newly diagnosed GBM
patients, before and after surgery. We characterised these cells by
immunofluorescence staining, using GFAP, CSV and DNA FISH
for EGFR amplification. We detected CTCs in thirteen patients
in total, including nine patients before surgery and eleven
patients after surgery. Further analysis of patients’ clinical
outcomes showed that patients with CTC count 0 after surgery
presented significantly prolonged recurrence-free survival. This
is the first study of its kind confirming CTC enrichment from
whole blood of GBM patients using a spiral microfluidics chip.
MATERIAL AND METHODS

Cell Culture
Q-Cell primary GBM cell lines have been developed and
characterised in detail, data is publicly available from Q-Cell
https://www.qimrberghofer.edu.au/q-cell/ (33, 34). GBM lines
are maintained as glioma neural stem cell (GNS) cultures (35)
or as neurosphere cultures using StemPro NSC SFM (Invitrogen)
as per manufacturer’s guidelines. U87MG and U251MG and Q-
Cell patient-derived cell lines (BAH1, PB1 and MN1) were kindly
gifted by Prof. Bryan Day (QIMR, Brisbane, Australia). All cells
were cultured under standard conditions in humidified incubators
at 37°C, 5% CO2. For U87MG and U251MG cell lines, RPMI-
1640-Glutamax (Life Technologies, Inc) supplemented with 10%
foetal bovine serum, FBS (Life Technologies, Inc) and 1%
Penicillin-Streptomycin (Life Technologies, Inc) was used. Cell
June 2021 | Volume 11 | Article 681130
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dissociation was done using TryPLe (Thermo Fisher Scientific,
USA). For patient-derived cell lines (BAH1, proneural; MN1,
mesenchymal; PB1, classical; HW1, classical) culture, flasks were
previously coated with Matrigel (1:100 in PBS). Cells were
maintained using StemPro NSC SFM media (Thermo Fischer)
as per manufacturer’s instructions. This media contains
KnockOut™ DMEM/F12, StemPro® Neural Supplement, FGF-
basic (AA 10–105) Recombinant Human, EGF Recombinant
Human. Exclusively for BAH1 cells, no EGF supplementation
was added to the media. Cell dissociation was done using
Accutase® solution (Merck) followed by its inactivation using
Trypsin inhibitor (Merck). Cell lines were STR profiled for
authenticity and were confirmed negative for mycoplasma
infection by PCR.

Spiking Experiments
GBM cell lines were labelled using Cell Tracker™ Green CMFDA
(5-chloromethylfluorescein diacetate) (Life Technologies) as per
manufacturer’s instructions. Subsequently, cells were observed
under a fluorescence microscope to check if labelling was efficient.
Cells were counted and different numbers of cells were spiked in
healthy control whole blood or directly into white blood cells. The
sample was loaded into a 10 ml syringe and pumped through the
spiral chip at 1.7 ml/min. Both outlet tubes (CTC and waste) were
connected to a falcon tube. Subsequently, total volume from both
outputs was seeded in p96 well plates and counted manually using
fluorescence microscopy (Nikon Eclipse Ts2). Recovery rates were
defined as (Stained cells on CTC output)/(stained cells on CTC +
stained cells on waste output) (25, 28).

Patient Recruitment and Ethics
This study was approved by the human research ethics committee
(HREC) of Royal Brisbane and Women’s Hospital (Brisbane
Australia), approval number: HREC/2019/QRBW/48780, and the
Queensland University of Technology (approval number:
1900000292). All documents were acknowledged by the RBWH
research governance (RGO). Samples were collected between June
2019 and November 2020. All participant patients gave their written
consent to participate in this study and blood samples were collected
from patients before and after brain surgery or needle biopsy.

Spiral Microfluidic Technology
Blood was collected in EDTA tubes and incubated with a red blood
cell (RBC) lysis buffer (Astral Scientific). Cells were then centrifuged
(500 x g for 10 min) and the pellet resuspended in 10 ml sheath
buffer (PBS containing 2mM EDTA, 0.5% BSA). Samples were
loaded into a 10 ml syringe and pumped through the spiral chip at
1.7 ml/min. Both outlet tubes (CTC and waste) were connected to a
15 ml falcon tube. Both outputs collected were spun down at 1200
RPM for 5 min, fixed using 4% PFA for 10 min. Subsequently,
enriched cells were washed (PBS) three times and CTC output was
immediately cytospun onto glass slides using the Cytospin™ 4
Cytocentrifuge (ThermoScientific, USA).

Immunofluorescence
Following enrichment, slides were permeabilised using 0.1%
Triton-X 100 for 10 min at room temperature (RT) and
Frontiers in Oncology | www.frontiersin.org 3
incubated with blocking solution (10% FBS) for 1 h at RT.
Cells were stained with GFAP Polyclonal Antibody (Dako), cell
surface vimentin (Abnova) and CD45 Monoclonal Antibody
(Abcam) diluted in blocking solution. A summary of the
staining conditions and antibody dilutions is shown in
Table S2. Subsequently, slides were stained with DAPI (1:1000;
stock solution 1mg/ml) for nuclear staining for one minute at
RT. Slides were mounted using ProLong™ Gold Antifade
(Invitrogen), coverslipped and imaged using a Zeiss Axio
Imager Z2 microscope.

Fluorescence In-Situ Hybridization (FISH)
DNA FISH for the detection of EGFR amplification was carried
out using EGFR/CEN-7probes (SureFISH 7p11.2 EGFR 188kb
RD; SureFISH Chr7 CEP GR - Agilent) according to the
manufacturer’s protocol using a FISH accessory kit (Dako,
K5799). This experiment was performed in the same slides in
which putative CTCs were identified by IF. Briefly, the slides
were incubated in pretreatment buffer at 98°C for 10 min;
followed by incubations in wash buffer and incubation with
pepsin. The slides were then incubated in ethanol series (70%,
85% and 90%) and the probe mix was incubated at 90°C for
5 min followed by overnight incubation at 37°C. Slides were
counterstained with DAPI, coverslipped and imaged on a Zeiss
Axio Imager Z2 microscope in FITC and texas red channels for
detection of the chromosomal-7 and EGFR signals, respectively.
The number of EGFR signals was compared to the centromeric
probe to determine whether the signal was amplified.

Statistical Analyses
All statistical analyses were performed using JMP Pro version
15.2.1 (SAS Institute, Cary, NC, USA). CTC numbers are reported
as whole numbers in 1 ml of whole blood. CTC counts before and
after were compared to patients’ outcomes using a negative
binomial distribution. In addition, recurrence-free survival curves
were estimated by Kaplan Meier analyses which were based on the
number of CTCs (patients with CTC ≥1 and CTC = 0) before or
after surgery and the clinical outcome. The time to disease
progression or death was calculated by the time elapsed between
the blood collection date and the date of clinical progression, death,
or the last follow-up visit with an MRI scan image. Differences were
considered statistically significant when p ≤ 0.05.
RESULTS

Recovery Rates Using GBM Cell Lines
In order to optimise the spiral microfluidic device, two
immortalized GBM cell lines (U251MG, U87MG) and three
primary Q-Cell GBM cell lines (BAH1, MN1, PB1) were used
(33, 34, 36). This panel of cell lines exhibited different cell sizes, to
assess the efficiency of detection using the microfluidic chip (Figure
1A).We next labelled cells with a Cell Tracker™Green CMFDA (5-
chloromethylfluorescein diacetate) (Life Technologies, USA) and
spiked GBM cells into whole blood from healthy controls or directly
into white blood cells diluted in PBS (~1x106 cells/ml). Different cell
June 2021 | Volume 11 | Article 681130
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quantities were spiked-in (10, 50, 100, 200, 300 and 500) in the
attempt to reflect clinically relevant numbers. Both U251MG and
U87MG cell lines presented similar recovery rates, ranging from 60
to 80% (Figure 1B), as expected from the comparable cell diameter
size. When patient-derived cell lines (MN1, BAH1 and PB1) were
assessed, recovery rates differed from 23 to 90%, according to their
size (Figure 1B). MN1 has the largest cell size, presented the highest
recovery rates (approximately 90%). BAH1 recovery rates ranged
from 56 to 71% whereas the smallest cell line, PB1, had the lowest
recovery rates from 23 to 33%.

Patients Cohort and Collection Timepoints
A total of 20 GBM patients and 3 healthy controls (HC) have
been investigated in this study. Blood from GBM patients was
collected before and after surgery. A schematic overview of
timepoints for blood collections in potential GBM patients is
shown in Figure 2. The average age for GBM patients was 60.7
years (ranging from 37 to 82) whereas for HC was 31 years
(ranging from 27 to 35). The clinicopathological findings of
GBM patients are presented in Table 1. The majority of patients
Frontiers in Oncology | www.frontiersin.org 4
in this study were IDH wildtype, presented with variable p53
staining and were positive for ATRX. MGMT status information
was not available (Table 1).

Enrichment and Characterization of
Putative CTCs From GBM Patients
GBM patients’ blood was collected in two different time points,
before and after surgery (Figure 2). After collection, blood
samples from patients and healthy controls were processed
within two hours using the spiral microfluidic device (Figure 3A).
Enriched cells were characterized using immunofluorescence,
targeting GFAP, CSV and leukocyte common antigen (CD45)
(Figure 3B). CD45 staining was used to exclude white blood cells.
Putative CTCs were considered positive when met the criteria of (1)
cell diameter of at least 9µm and (2) DAPI positive (nuclei staining),
GFAP or CSV positive and CD45 negative staining (16). No GFAP+
or CSV+/CD45- cells were found in peripheral blood of the control
group. In GBMpatients before surgery, CTCs were found in 9 out of
20 patients (45%), whereas after surgery in 11 out of 19 patients
(58%). Cell counts varied between 1 to 24 cells per ml of whole
A B

FIGURE 1 | Recovery studies using GBM cell lines. (A) Cell size distribution of five different GBM cell lines (U251MG, U87MG, MN1, BAH1 and PB1) and white
blood cells (WBCs). Cells were harvested and plated into a 96 well plate. Cell diameter was measured using Nikon Eclipse Ti-S. Software NIS-Elements, n = 30. The
dashed line represents the cutoff of the spiral microfluidic device used (14 µm). (B) Spiral Chip recovery rates. Different numbers of GBM cell lines labelled with a Cell

Tracker™ Green CMFDA (5-chloromethylfluorescein diacetate) (Life Technologies, USA) were spiked into whole blood and/or directly into WBCs. Samples were
pumped through the spiral chip at 1.7ml/min. All volume was distributed into a 96 well plate and counted using fluorescence microscopy (Nikon Eclipse Ts2).
Recovery rates were calculated as the total of labelled cells found in the CTC-output/total of labelled cells from both outputs. For U87MG and U251MG recovery
rates using 10, 50, 100, 200 cells, n = 3. For 300 cells, n = 1. For MN1, BAH1 and PB1 recovery rates using 500 cells and 10 cells for MN1, n = 2. For recovery
rates using 10 and 50 cells (BAH1, PB1), n = 1. Error bars indicate the standard deviation from the mean value across replicates.
FIGURE 2 | Schematic overview of timepoints for blood collections in potential GBM patients.
June 2021 | Volume 11 | Article 681130
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blood. In addition to single CTCs, cell clusters were observed
(Figure 3D) in two different samples.

After immunofluorescence, characterization at the molecular
level was performed in a subset (n=3) of samples using DNA
FISH to detect EGFR amplification. EGFR signal was measured
in the nuclear area and the number of EGFR probe to
chromosome 7 centromere probe was measured per cell. In
cells where EGFR probe was found to be 3 or more times
higher than the chromosome 7 centromere probe, this was
recorded as an amplification (Figure 3C). CTC counts for all
GBM patients, including the time of collection and EGFR
amplification results are shown in Table S1.

CTC Counts and Clinical Data
To investigate a potential clinical utility of the presence or
enumeration of CTCs in the blood of GBM patients, CTCs
counts were coupled with clinical data from patients (Table 2).
The outcome of patients has been evaluated after 17 months from
the collection of the first patient. The time to disease progression
or death was calculated by the time elapsed between the collection
date and the date of clinical outcome. The recurrence-free survival
curves were estimated by Kaplan Meier analysis for patients with
(≥1) and without CTCs (=0), before (Figure 4C), and after surgery
(Figure 4D) (log-rank p=0.7705, 0.0370, respectively).
Interestingly, patients with a CTC count equal to 0 after surgery
presented with significantly prolonged recurrence-free survival
TABLE 1 | Demographic and clinical information of GBM patients.

Characteristic n % of total

Total patients enrolled 20
Gender
Female 10 50
Male 10 50
Age
30-40 1 5
40-50 2 10
50-60 6 30
60-70 8 40
70-80 2 10
80-90 1 5
P53 (positive)
Majority positive (>50%) 5 25
Variable positive (≤50%) 10 50
% not available 5 25
ATRX
Positive 18 90
Negative 1 5
Not available 1 5
IDH-1-R132H
Positive 1 5
Negative 18 90
Not available 1 5
Ki67
Increased 6 30
Not available 14 70
MGMT status
Not available 20
A C

B D

FIGURE 3 | (A) Schematic representation of CTC isolation using the spiral microfluidic device and characterization using IF (GFAP/CSV/CD45) and FISH (EGFR
amplification). (B) Representative image of CTC characterization using immunofluorescence targeting GFAP (red), CD45 (green) and DAPI (blue), scale bar = 20µm.
(C) Characterization of putative CTC at a molecular level using DNA FISH to detect EGFR (red) copies and CEP-7 (green). (D) Characterization of putative CTC
cluster using immunofluorescence targeting GFAP (orange), CSV (green), CD45 (red) and DAPI (blue), scale bar = 20µm.
June 2021 | Volume 11 | Article 681130
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curves compared to patients with ≥1 CTCs. Also, CTC counts of
patients with poor outcomes (recurrence or death) versus patients
with good outcomes (stable disease and no recurrence) were
compared using a negative binomial distribution. Nevertheless,
there was no statistically significant association between CTC
counts and patients’ outcomes before (p=0.5960) (Figure 4A) or
after surgery (p=0.5237) (Figure 4B). Patients with CTC >= 1
were more likely to have recurrence (80%) versus patients with
CTC = 0 (20%) but the small number of patients means this
difference was not statistically significant (Likelihood Ratio chi-
square test, p=0.1247).
DISCUSSION

One of the challenges in the CTCs field pertains to the isolation
and enrichment technologies as CTCs are very rare events in
blood. Sensitive techniques which can reliably and reproductively
isolate CTCs are currently lacking. There are few studies on the
detection of CTCs in patients with GBM using different
approaches for isolation and characterization and also different
cohorts, including newly diagnosed patients, or patients with
progressive or stable disease (16–18, 37–40). For example,
Muller et al. analysed newly diagnosed and also recurrent
patients, using density-gradient centrifugation and considered as
putative CTCs, cells that were GFAP positive, whereas Sullivan
Frontiers in Oncology | www.frontiersin.org 6
et al. used the CTC-iChip and considered as CTCs cells that were
positive for SOX2 or Tubulin beta-3 or EGFR or A2B5, and c-
MET. MacArthur et al. used an improved version of the isolation
technique used by Muller et al., nevertheless, the use of density-
gradient centrifugationmethods may result in low enrichment and
purity whereas microfluidics methods could result in higher
purities (41, 42). In our study, we assessed the spiral
microfluidic device for CTC isolation. This technology presents
some advantages such as the ability to process large volumes of
blood, easy manipulation, speed and cost-effectiveness (24, 25).
This technology is also capable of isolating CTC clusters which are
known to increase the metastatic potential when compared to
single CTCs (43). CTC clusters were recently reported in GBM
(39), nevertheless, further research should be carried out to
establish a clinical significance. Cells isolated using the spiral
chip are still viable and could be used for downstream analysis.
However, when only few cells are found, an extended profile
analysis may not be possible. Another drawback of this technology
is that this chip sorts cells by size, and cells that are smaller than 14
µm would be lost. In addition, after enrichment through the spiral
microfluidic device, we transfer the cell pellet onto glass slides and
this step may also include bias.

Five cell lines, including patient-derived cell lines covering all
GBMmolecular subtypes, were used to optimise the spiral device
and to assess recovery rates of captured cells. The average cell size
varies (from 11 to 21 µm) among all cell lines, larger variation
TABLE 2 | CTCs counts and clinical data from GBM patients.

Pt Tumour location Tumour volume (cm3) Oedema* Enhancement* Necrosis* Extent of resection* CTC count Before/
after surgery

Outcome

01 Left side brain 20.0 ++ ring ++ Biopsy 1 2 Deceased

02 Right temporal lobe 14.4 + confluent + Near total 1 3 Deceased

03 Left frontal 1.7 + ring ++ Complete 1 0 No
recurrence

04 Right parietal 26.3 +++ ring + Complete 0 0 No
recurrence

05 Left temporal 38.7 +++ confluent + Near total 17# 3# Recurrence

06 Right temporal 83.2 + ring ++ Near total 5 5 Deceased

07 Right parietal brain lesion 24.8 +++ confluent + Debulking 0 0 Recurrence

08 Left frontal lesion 4.4 ++ confluent + Near total 1 0 Deceased

09 Right side brain lesion - frontal 53.8 +++ ring ++ Debulking 0 2 Deceased

10 Right frontal lesion 44.9 +++ ring ++ Near total 3 2 Deceased

11 Right frontal lesion 40.5 + ring ++ Biopsy 0 3 No
recurrence

12 Temporal tumour 33.0 ++ thick + Near total 0 1 Recurrence

13 Right temporal lobe 39.9 +++ thick ++ Complete 0 0 No recurrence
14 Right parietal 63.8 ++ ring ++ Near total 0 1 Recurrence

15 Right temporal tumour 39.5 ++ Ring ++ Complete resection 24# 3 Deceased

16 Left frontotemporal 14.3 +++ Ring ++ Complete resection 0 0 N/A

17 Bifrontal and corpus callosal 50.0 + Thick ++ Biopsy 0 N/A N/A

18 Left frontal 19.0 ++ Ring ++ Debulking 0 0 N/A

19 Right frontal 30.2 +++ Ring ++ Debulking 2 1 N/A

20 Right frontal 57.6 – Confluent – Complete 0 0 N/A
Ju
ne 2021 | Volume 11 |
 Article 68113
*Oedema on FLAIR; – no significant oedema; + diameter of oedema less than tumour; ++ diameter of oedema similar to tumour; +++ diameter of oedema greater than tumour.
*Enhancement: - Ring: periphery only: typical thin ring-enhancing, confluent, including thick ring enhancement).
*Necrosis: + necrosis present; < half the diameter; ++ necrosis; > half diameter.
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was seen in the patient-derived cell lines. This finding reflects
that the tumour cells are heterogeneous, known to be a hallmark
of GBM (44). In addition, the WBCs diameter was also
measured, with a mean size of approximately 10 µm. WBCs
consist of different cell types which have varied diameters,
lymphocytes (small 7-8 µm; large 12-18 µm), neutrophils (9-15
µm), eosinophils (9-15 µm), basophils (10-16 µm) and
monocytes (12-20 µm) (45). Therefore, WBCs’ mean diameter
may range from ~10 to 15 µm (24) which is consistent with our
finding. Since the majority of GBM cell lines had diameters larger
than the cut-off of the chip and were successfully sorted, these
results encouraged us to proceed using the spiral microfluidic
technology for GBM clinical samples for CTC enrichment.

In our study, blood samples from newly diagnosed GBM
patients were collected before (n = 20) and after surgery (n = 19)
and CTC numbers were assessed. After isolation with the spiral
microfluidic device, putative CTCs were characterized at the
protein level using immunofluorescence. Currently, there is no
specific marker to characterise GBM cells. Our analysis included
GFAP, CSV and CD45 to exclude white blood cells. GFAP is an
intermediate filament protein which is strongly expressed in
Frontiers in Oncology | www.frontiersin.org 7
mature astrocytes (46) and has previously been used to
characterize putative CTCs found in peripheral blood of GBM
patients (16). Vimentin is also an intermediate filament protein
which is associated with cellular motility and is upregulated in
CTCs derived from GBM patients (17). In addition to vimentin’s
intracellular functions, vimentin can be recruited to the cell
surface (cell-surface vimentin - CSV) and contribute to
different cell processes, like migration, adhesion, and cell
signalling. Interestingly, CSV is mostly expressed in tumour
cells (29) and has been used as a CTC mesenchymal marker in
other cancer types (29, 30, 32). Our conservative CTC-positive
criteria included cells that were larger than 9 µm, positive for
DAPI, positive for GFAP or CSV and negative for CD45.

CTCs were found in peripheral blood of thirteen out of the
twenty patients analysed (65%). However, no cells matching the
CTC criteria were found in blood of healthy controls. In nine of
the patients, cells were detected before surgery (45%) and in
eleven of them, after surgery (58%). These findings present
comparable rates to that of other studies (17, 18, 37). Sullivan
et al. reported CTCs in 13 out of 33 patients (39%), MacArthur
et al. found CTCs in 8 out of 11 patients (72%), whereas Gao et al.
A B

C D

FIGURE 4 | (A, B) CTC counts of patients with poor outcomes (recurrence or death) versus patients with good outcomes (stable disease and no recurrence), before
and after surgery, respectively. (C, D) Recurrence-free survival. Kaplan-Meier curves showing recurrence-free mean survival time of CTC = 0 group and CTC ≥1 group
before and after surgery, respectively.
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detected CTCs in 24 out of 31 patients (77%). Cell counts varied
from 1 to 24 cells per ml of whole blood, similar to other studies
(16). Nevertheless, taking into consideration our processing
method limitation, these numbers could be higher. In addition
to single CTCs, putative CTC clusters have been detected (Figure
3D). The presence of CTC clusters in GBM patients has been
reported for the first time by Krol et al. in 2018 (39). In the study,
the authors used Parsortix cassettes to capture CTCs and
identified clusters in seven out of 13 patients (53.8%) from a
clinical trial with recurrent or progressive GBM. In the Parsortix
system, captured cells (“CTCs”) are caught in the Parsortix
filtration cassette due to their larger size and lower
compressibility than other blood components and cells of
interest are kept in the cassette. This technology differs from
the one used in the present study, the spiral microfluidics, in
which larger cells (“CTCs”) focus near the inner wall due to the
combination of the inertial lift force and the Dean drag force at
the outlet WBCs would be trapped inside the core of the Dean
vortex formed closer to the outer wall. Therefore, the cells of
interest run through the chip and are found in an external tube
connected to the spiral device. In our study, we observed CTC
clusters in three different samples from 2 out of 20 (10%) with
newly diagnosed GBM patients. Both of these patients (#05 and #
15, Table 2) presented a poor outcome (recurrence or deceased).
These interesting findings suggest the ability of these circulating
cells to cross the blood-brain barrier but larger studies are
required to test the reproducibility of these data and potential
clinical value in GBM patients.

Further characterization was carried on assessing EGFR
amplification. EGFR is one of the most frequently mutated genes
and amplification or overexpression is present in around >50% of
the cases (47, 48). Also, Muller et al. reported an association between
EGFR amplification and CTCs release, suggesting EGFR signalling
may have a role in supporting the dissemination of GBM (16). In
the present study, due to the technique used (cells of interest being
fixed onto slides for characterization), in addition to the small CTC
counts in the majority of patients, we were not able to perform
further characterization on these cells.

To explore the clinical value of CTCs in GBM patients, the
recurrence-free survival time of patients with CTC = 0 and
patients with CTC ≥1 before and after surgery was assessed. This
analysis showed that patients that had CTC counts after surgery
equal to 0, had significantly longer recurrence-free survival time
(p = 0.0370) compared to patients with 1 or more CTCs. Due to
the limitation of a small cohort in this study, it is not yet possible
to confirm the clinical value of CTCs in GBM. Nevertheless,
these results encourage more studies to investigate the clinical
significance of CTCs in GBM patients.
CONCLUSION

This is the first study using the spiral microfluidic device for the
enrichment of CTCs found from peripheral blood of newly
diagnosed GBM patients. We isolated putative CTCs in a label-
free and cost-effective way from 13 out of 20 patients, before or
after surgery. These putative cells were then characterized using IF
Frontiers in Oncology | www.frontiersin.org 8
(GFAP, CSV, CD45, DAPI) and FISH (EGFR amplification). This
is a pilot study and has limitations such as a small cohort and the
lack of specific markers for the characterization of CTCs from
GBM. However, our results reinforce the knowledge that GBM
can shed content into circulation and highlight the importance of
studies using the spiral microfluidic technology - an easy, fast and
cost-effective technique for CTCs enrichment. Further research
should be undertaken to investigate the clinical value of CTCs in
GBM patients, and our results encourage the use of this label-free
technique to improve this understanding in the future.
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