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Osteosarcoma is the most common primary bone malignancy, typically occurring in
childhood or adolescence. Unfortunately, the clinical outcomes of patients with
osteosarcoma are usually poor because of the aggressive nature of this disease and
few treatment advances in the past four decades. N6-methyladenosine (m6A) is one of the
most extensive forms of RNA modification in eukaryotes found both in coding and non-
coding RNAs. Accumulating evidence suggests that m6A-related factors are dysregulated
in multiple osteosarcoma processes. In this review, we highlight m6A modification
implicated in osteosarcoma, describing its pathophysiological role and molecular
mechanism, as well as future research trends and potential clinical application
in osteosarcoma.
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INTRODUCTION

Osteosarcoma is a relatively rare bone malignancy that predominantly occurs in children and
adolescents (1, 2). It is highly aggressive and difficult-to-treat (3, 4). Although the introduction of
chemotherapy since the 1970s has increased the 5-year survival rate of patients with non-metastatic
osteosarcoma to 70%, the 5-year survival rate of patients with metastatic osteosarcoma is only 20%
(5, 6). More importantly, metastasis of osteosarcoma is not uncommon (7). Osteosarcoma is known
to exhibit high heterogeneity and significant genome complexity (8–10); thus, tremendous efforts
are needed to define the biology of osteosarcoma for developing new therapeutic alternatives.

The discovery of heritable alterations of chromatin structure and DNAmodifications that do not
change their DNA or RNA sequence itself pioneers a new field of epigenetics (11, 12). N6-
methyladenosine (m6A) modification refers to the addition or deletion of the methyl group to/from
the nitrogen on the 6th carbon of the adenine nucleotide, which is one of the most abundant
epigenetic modifications found in RNA molecules (13). First discovered by Desrosiers in the 1970s,
m6A modification has been found to be involved in almost all steps of RNA processing and
metabolism, including pre-mRNA splicing, export, translation, stabilization, and degradation (14–
19). With the burgeoning advances in molecular biology and sequencing, m6A modification has
been reported to be implicated in virtually all cellular functions and multiple diseases (including
osteosarcoma) (20–23). In this review, we intended to summarize the current advances in the
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pathophysiological roles and molecular mechanism of m6A
modification in osteosarcoma and related diseases, and discuss
the potential clinical application of m6A modification
in osteosarcoma.
m6A REGULATION

Similar to DNA and histone methylation, m6A modification is a
dynamic and reversible process that is regulated by methylases
and demethylases (Figure 1) (24, 25).

M6A methylases, also called “writers”, can transfer a methyl
group to the N-6 position of adenosine in the nucleic acid (26). It
commonly works in the form of a multicomponent m6A
methyltransferase complex (MTC) (27). Methyltransferase-like
3 (METTL3) has long been considered as the central catalytic
subunit of MTC, while other components have recently been
discovered (28). METTL14 is an allosteric adaptor of METTL3
that can stabilize METTL3 and recognize the substrate (29). In
addition, Wilms tumor 1-associated protein (WTAP), Vir-like
m6A methyltransferase associated (KIAA1429), and Cbl proto-
oncogene-like 1 (Hakai) participate in the formation of MTC
and play a vital role in m6A modification (30–32).

M6A demethylases, also named “erasers”, are proteins that
remove the methyl groups from RNA; thus, conferring a
reversible and dynamic nature to the regulation of m6A
methylation (33). These enzymes mainly include fat mass and
obesity-associated protein (FTO), and a-ketoglutarate-dependent
dioxygenase alk B homolog 5 (ALKBH5) (34, 35). FTO was the
first identified m6A demethylase (36). Since then, research on m6A
modification has gained attention. FTO can demethylate m6A into
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N6-hydroxymethyladeosine (hm6A), which is further converted to
N6-formyladenosine (f6A) before being hydrolyzed to the stable
form adenine (37). The writers and erasers maintain the dynamic
balance of m6A in the transcriptome, which is essential for normal
physiological processes.

In addition to writers and erasers, “readers” are binding proteins
that recognize the chemical signatures that are important for the
regulation of m6A modification (38). The YTH domain-containing
proteins are the first discovered readers, which interact with m6A
through a “tryptophan cage” (39). The family of YTH domain-
containing proteins consist of the following five proteins:
YTHDC1, YTHDC2, YTHDF1, YTHDF2, and YTHDF3 (40).
M6A can alter the structure of RNA substrates, and thereby,
promote the binding of RNA-binding proteins (RBPs) to
substrates (41). These RBPs are called “m6A structural switch”
readers, and include heterogeneous nuclear ribonucleoprotein C
(HNRNPC), HNRNPG, and HNRNPA2B1 (25, 41, 42). Insulin-
like growth factor 2 mRNA-binding (IGF2BP) proteins (IGF2BP1,
IGF2BP2, and IGF2BP3) are another category of m6A readers,
which can stabilize RNA by interacting with YTHDF proteins or in
an m6A structural switch manner (43, 44).

M6A can affect the whole process of gene expression, including
transcription, post-transcription, translation, and post-translation
(45). In the “life cycle” of m6AmRNA (Figure 2) (46, 47), the m6A
writers and erasers first regulate the change in m6A during
transcription in the nucleus. Then, m6A binds to specific nuclear
readers and affect mRNA splicing, exporting, and other
bioprocesses (48, 49). After being exported to the cytoplasm, the
cytoplasm readers bind to m6A and influence mRNA decay,
translation, and stabilization (46, 50). Through these processes,
m6A modification regulates gene expression and exerts profound
FIGURE 1 | The molecular mechanism of m6A modification. It is a dynamic and reversible epigenetic modification that is regulated by “writers” and “erasers.” m6A
markers in the RNA can be recognized by “readers”.
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and diverse functions in cell differentiation, immune response, and
disease development, especially tumorigenesis, progression, and
cancer metastasis (51–54).
m6A AND BONE DEVELOPMENT

The bone is a complex connective tissue, which is always under a
dynamic balance between bone formation mediated by
osteoblasts and bone resorption regulated by osteoclasts (55). If
the bone homeostasis is disturbed, many bone metabolic diseases
such as osteosarcoma, osteoporosis, and osteoarthritis may occur
(56). M6A is reported to participate in the regulation of bone
homeostasis (57). METTL3 is significantly increased during the
process of osteogenic differentiation of the bone marrow stem
cells (BMSCs). Specifically, silencing METTL3 can suppress the
osteogenic differentiation by directly and indirectly regulating
RUNX2 (METTL3/m6A-pre-miR-320/miR-320-RUNX2 Axis)
in BMSCs (58). Remarkably, the expression of METTL3 was
also increased during osteoclast differentiation. It can regulate
the bone resorption by controlling Atp6v0d2 mRNA degradation
and Traf6 mRNA nuclear export (59). METTL14 was found to
be positively associated with bone formation in older women
with fractures and ovariectomized mice. It promotes osteoblast
activity by regulating miR-103-3p processing viamicroprocessor
protein DGCR8 (60). Similarly, the FTO, represented as the RNA
demethylase, is also closely related to the fate of BMSCs. Li et al.
(61) reported that FTO could interact with miR-149-3p and
promote osteogenic differentiation of BMSCs.
m6A AND OSTEOSARCOMA

Osteosarcoma always occurs where the bones are growing the
fasted (62). The inseparable relationship between m6A regulators
Frontiers in Oncology | www.frontiersin.org 3
and bone development implies that m6A modification might
contribute to the progression of osteosarcoma. Herein, we
comprehensively review the current research on the association
of m6A and osteosarcoma.
Dysregulation of m6A Writers
in Osteosarcoma
In osteosarcoma cells, m6A writers, including METTL3,
METTL14, WTAP, and KIAA1429 are mostly present in the
nucleus (63). Zhou et al. (64) revealed that METTL3 acts as an
oncogene in osteosarcoma. Knockdown of METTL3 can
suppress the proliferation, migration, and invasion of the
human osteosarcoma cell lines SAOS-2 and MG63 by
inhibiting the m6A methylation level and expression of the
ATPase family AAA domain-containing protein 2 (ATAD2).
Additionally, Miao et al. (65) found that METTL3 expression
and m6A methylation levels were higher in human osteosarcoma
tissues and osteosarcoma cells. METTL3 can promote
osteosarcoma development by directly increasing the m6A
methylation level and the expression of lymphoid enhancer-
binding factor 1(LEF1), and by activating the Wnt/b-catenin
signaling pathway. METTL3 has also been found to facilitate the
methylation of GTP-binding protein (DRG) 1, and thereby,
promoting osteosarcoma growth, migration, and colony
formation (66). Conversely, METTL14 has an inhibitory effect
in osteosarcoma. METTL14 overexpression promotes
osteosarcoma cell apoptosis and slows tumor progression
through caspase 3 activation (67). Recently, Chen et al. (68)
demonstrated that another m6A writer, WTAP, can positively
regulate osteosarcoma tumorigenesis and metastasis by reducing
the stability of HMBOX1 in a m6A-dependent manner.
Inhibiting PI3K/AKT pathways can partly reverse WTAP/
HMBOX1- induced osteosarcoma progression.
FIGURE 2 | The life cycle of m6A mRNA. First, m6A writers and erasers regulate the change of m6A during transcription in the nucleus. After that, m6A can bind to
specific nuclear readers, and influence mRNA splicing, exporting, and other bioprocesses. Then, m6A is exported to the cytoplasm where it binds to cytoplasm
readers and influences mRNA decay, translation, and stabilization.
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METTL3/14 also plays an important role in modulating the
chemoresistance of osteosarcoma. METTL3 and METTL14
decrease the RNA level of tripartite motif 7 (TRIM7), while the
upregulation of TRIM7 can increase metastasis and the
chemoresistance of osteosarcoma by regulating ubiquitination of
breast cancer metastasis suppressor 1 (BRMS1) (69). The
transcriptome-wide m6A sequencing result of chemoresistant
osteosarcoma stem cells revealed that over-expression of METTL3
and low METTL14 expression are associated with doxorubicin
chemoresistance and stemness of osteosarcoma cells (70). The
regulatory mechanism of writer is shown in Table 1 and Figure 3.

Dysregulation of m6A Erasers
in Osteosarcoma
The m6A erasers, FTO and ALKBH5, are distributed in both the
nucleus and cytoplasm (63). The effect of ALKBH5 in osteosarcoma
remains controversial. Chen et al. (71) revealed that ALKBH5 can
promote osteosarcoma cell proliferation and tumor growth by
decreasing the m6A modification of plasmacytoma variant
translocation 1 (PVT1), subsequently impairing the binding of
reader protein YTHDF2 in PVT1. However, Yuan et al. (72)
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showed that ALKBH5 can epigenetically silence pre-miR-181b-1/
YAP signaling axis, and thus, suppress tumor progression in
osteosarcoma. In addition, upregulation of ALKBH5 expression
also contributes to chemoresistance and predicts worse metastasis-
free survival in patients with osteosarcoma (70). The regulatory
mechanism is shown in Table 1 and Figure 3.

Dysregulation of m6A Readers
in Osteosarcoma
The subcellular location of m6A readers in osteosarcoma cells
is relatively complicated. YTHDF1 and YTHDF2 are mainly
distributed in the cytoplasm. YTHDC1 is mainly located in
the nucleus, while YTHDC2 is uniformly distributed in the
nucleus and cytoplasm. Additionally, HNRNPC and
HNRNPA2B1 are found only in the nucleus (63). YTHDF2
can directly bind to the 3’-UTR of TRIM7 mRNA and
negatively regulate the expression of TRIM7 in osteosarcoma
HOS and MG63 cells (69). ELAVL1 (also known as HuR) is a
recently discovered m6A reader, which is located in the nucleus.
It has been reported to regulate the stability of DRG1 mRNA.
Silencing ELAVL1 inhibits osteosarcoma progression by
FIGURE 3 | The pathophysiological roles and molecular mechanism of m6A modification in osteosarcoma.
TABLE 1 | Roles of m6A regulators in osteosarcoma.

M6A regulators Role in cancer Biological function Target/signaling axis Ref.

METTL3 Oncogene Promote cell proliferation, migration, and invasion ATAD2 (64)
Promote cell proliferation, migration, and invasion LEF1/Wnt/b-catenin (65)
Promote osteosarcoma growth, migration, and colony formation DRG1 (66)

Tumor suppressor Suppress osteosarcoma metastasis and chemoresistance TRIM7/BRMS1 (69)
METTL14 Tumor suppressor Promotes osteosarcoma cell apoptosis and slows tumor progression Caspase 3 (67)

Suppress osteosarcoma metastasis and chemoresistance TRIM7/BRMS1 (69)
WTAP Oncogene Promote proliferation and metastasis HMBOX1/PI3K/AKT (68)
ALKBH5 Oncogene Promote cell proliferation, tumor growth PVT1 (71)

Tumor suppressor Suppress cell proliferation, tumor growth Pre-miR-181b-1/YAP (72)
YTHDF2 Oncogene Promote cell proliferation, tumor growth Critical for ALKBH5-mediated PVT1 stability (71)

Tumor suppressor Suppress osteosarcoma metastasis and chemoresistance Directly bind to the 3’-UTR of TRIM7 mRNA (69)
hnRNPA2/B1 Oncogene Independent prognostic factor for overall survival (63)
ELAVL1 Oncogene Promote osteosarcoma growth, migration, and colony formation DRG1 (66)
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decreasing the expression of DRG1 in an m6A-dependent pattern
(66). These processes have been summarized in Table 1 and
Figure 3.
m6A AND OSTEOSARCOMA-RELATED
DISEASES

m6A and Bone Disease
As an essential component of epigenetic regulation, m6A
modification also has inextricable link with other bone diseases,
such as intervertebral disc degeneration (IDD), osteoarthritis, and
osteoporosis (73). In IDD, the microarray results showed that most
of the dysregulated RNA was in a demethylated state. FTO and
ZFP217 can demethylate LOC102555094 and activate downstream
Wnt pathway, which may contribute to metabolic reprogramming
of glucose metabolism in the IDD process (74). METTL14 can
accelerate TNF-a-induced nucleus pulposus cell cycle arrest and
senescence via processing miR-34a-5p (75). In osteoarthritis,
METTL3 is suggested to be responsible for the development of
the disease by regulating NF-kB signaling and extracellular matrix
synthesis in chondrocytes (76). As for osteoporosis, Mo et al. (77)
revealed that m6A-associated single nucleotide polymorphisms
(SNPs) can affect bone mineral density (BMI). Their GWAS
result showed that 138, 125, and 993 m6A-SNPs were associated
with femoral neck, lumbar spine, and quantitative heel ultrasounds
BMI respectively. Besides, METTL3 is found to be downregulated
in human osteoporosis and the ovariectomized mouse model (58).
The up-regulation of METTL3 in MSCs can prevent estrogen
deficiency-induced osteoporosis (78).

m6A and Other Cancer
Since the mechanism of m6A in osteosarcoma is not well
understood, we presumed that the mechanism of m6A in other
cancer may provide some clue in this regard. Based on our
review, we principally summarize the following three point:

First, the dysregulation of erasers and readers has been more
investigated in other cancers. In pancreatic cancer, ALKBH5 acts as
a tumor suppressor by decreasing WIF-1 RNA methylation
and suppressing the Wnt pathway (79). It can also prevent
the progression of pancreatic cancer by regulating the
posttranscriptional activation of PER1 in an m6A-YTHDF2-
dependent manner (80). In acute myeloid leukemia (AML),
YTHDF2 decreases m6A RNA stability and is crucial for AML
initiation and propagation (81). In breast cancer, hnRNPA2B1 can
directly bind to the UAGGG locus of PFN2 mRNA to reduce its
stability, and thereby, inhibit themetastasis of breast cancer (82). In
light of the significant role ofm6Aerasers and readers in cancers,we
look forward to more investigation about dysregulation of erasers
and readers in osteosarcoma.

Second, m6A modification is associated with the molecular
epidemiology and clinicopathology of cancer. Zeng et al. (83)
performed a case-control study based on Chinese population,
which showed that different SNPs of FTO were concerned with
varying risk of breast cancer. For instance, presence of rs1477196,
rs16953002, and TAC haplotype (rs9939609-rs1477196-
Frontiers in Oncology | www.frontiersin.org 5
rs1121980) in the FTO gene is associated with a high risk of
breast cancer. Wu et al. (84) revealed that overexpression of
METTL3, METTL14, FTO, and ALKBH5, and under-expression
WTAPwas closely relatedwith luminal typebreast cancer,while the
expression level of FTO was significantly decreased in human
epidermal growth factor receptor 2 (HER2) positive breast cancer.
Xiao et al. (85) illustrated that detection of m6A combined with
METTL14 and FTO expression in peripheral blood can diagnose
breast cancer with a specificity of 97.4%.

Third, recent studies have found that the tumor
microenvironment can induce the dysregulation of m6A regulators
(86–88). For example, hypoxia can alter the level/activity of
METTL14, ALKBH5, and YTHDF3, leading to decreased m6A
modification in the target transcripts in breast cancer cells (86).
Stress due to metabolic starvation can elevate the expression of FTO
through the autophagy and NF-kB pathways (87). Inflammatory
stimuli can induce YTHDF2 expression in hematopoietic stem cell
(88). The bone microenvironment including mesenchymal stem
cells (MSCs), hypoxia, acidic condition, chemokines and immune
cells, is regarded as fertile soil for osteosarcoma (89, 90). Given this,
the elucidation of m6A signatures and the bone microenvironment
in osteosarcoma deserves further study.
DISCUSSION

Clinical Implications of m6A
for Osteosarcoma
Considering that the dysregulation of m6Amodification has been
linked to the initiation, metastasis, drug resistance, and other
processes of osteosarcoma, m6A may bring new breakthroughs
in the diagnosis and treatment of osteosarcoma.

On the one hand, m6A regulatory enzymes could be novel
potential biomarkers for the early diagnosis and prognosis of
osteosarcoma. High m6A methylation levels and dysregulated
m6A enzymes always occur in patients with osteosarcoma. Based
on two large-scale cohorts, HNRNPA2B1, HNRNPC, RBM15,
YTHDF1, and YTHDC1 expression levels are upregulated in
osteosarcoma tissues. Among them, HNRNPA2B1 was suggested
to be an independent prognostic risk factor in patients with
osteosarcoma and predict poor survival rates (63). On the other
hand, m6A may also serve as a novel therapeutic target in
osteosarcoma. M6A modification is pivotal in almost all
pathophysiological processes of osteosarcoma, including
tumorigenesis, invasion, and metastasis (64, 68, 69, 71). The small
molecule inhibitor ofm6A regulators has been regarded as a kind of
potential anti-cancer agent (91, 92). Currently, several FTO and
ALKBH5 inhibitors have been successfully identified, including
N-oxalylglycine, entacapone, andmeclofenamic acid (MA) (93–95).
Furthermore, in vitro experiments have shown that these inhibitors
can inhibit tumor growth (96). Encouragingly, entacapone and
MA are already in the early phases of clinical trials for patients with
late-stage cancer (97). Additionally, m6A also plays a key role in
the resistance to chemotherapy of osteosarcoma. METTL3 and
ALKBH5 expression levels are upregulated indoxorubicin-resistant
osteosarcoma cells, while METTL14 expression is downregulated
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(70). YTHDF2 knockdowncan significantly increase the expression
of TRIM7 and cause resistance to doxorubicin and methotrexate
treatment (69). Therefore, targeting dysregulated m6A enzymes
represents an attractive strategy for cancer therapy. It can not
only directly inhibit tumor growth but also sensitize cancer cells
to anti-cancer agents.

Immunotherapy has emerged as a promising treatment
modality that largely expands the therapeutic regimen for cancer
(98). Bone is characterized as a highly specialized immune
environment, and some immune-related factors are frequently
dysregulated in osteosarcoma (99). Overall, the expression level of
tumor-associated macrophages is reduced in metastatic
osteosarcoma, while tumor-infiltrating lymphocytes appear to be
associated with enhanced metastases in osteosarcoma (100).
Programmed death ligand-1, one of the most effective immune
checkpoint modulators, is expressed in approximately 25% of
primary osteosarcoma tumors and is associated with poor
prognosis (100, 101). However, immune checkpoint inhibitors are
less effective in treating osteosarcoma (102). In the SARC028 trial,
only 1 of the 22 patients with osteosarcoma, who received
pembrolizumab (an anti-programmed death 1 (PD-1) antibody)
showed a good response (103). In the PEMBROSARC study, 17
patients with advanced osteosarcoma received a combination of
pembrolizumab and cyclophosphamide, and only 2 patients had
significant clinical benefits (104). Interestingly, more studies have
indicated that m6A regulators play an essential role in host
immunity and may contribute to anticancer immunotherapy
(105, 106). For instance, Han et al. (105) found that the m6A
reader, YTHDF1, can promote the translation ofmRNAs encoding
lysosomal proteases. Downregulation of YTHDF1 results in the
reduction of antigen cross-presentation and alleviation of the
cytotoxic lymphocyte response against tumor antigens in
dendritic cells, thereby enhancing the effectiveness of the PD-1
blockade therapy. Similarly, them6A eraser, ALKBH5, can regulate
the lactate content, tumor-infiltrating regulatory T cells, and
myeloid-derived suppressor cell accumulation in the tumor
microenvironment. In mouse melanoma, depleting ALKBH5
improved the efficacy of anti–PD-1 therapy and had survival
benefits (106). In view of the promising effect of immunotherapy
in cancers and the close association of m6A modification with
immune response, there are reasons to believe that combining
anticancer immunotherapywithm6A signaturesmay pave away to
improve the therapeutic effects of osteosarcoma.

Conclusions and Future Perspective
M6A modification has emerged as an indispensable factor that
accounts for tumor initiation and progression in osteosarcoma.
Frontiers in Oncology | www.frontiersin.org 6
The function of m6A modification is just like that of a “double-
edged sword”, by which it can either accelerate or inhibit the
progression of osteosarcoma via different modes. Undoubtedly,
the advent of m6A regulation has provided new insight into the
molecular mechanism of osteosarcoma and will potentially help
develop new more effective therapies.

However, a full understanding of the mechanism underlying
m6A modification is still in its infancy, several knowledge gaps
remain. First, existing studies on m6A in osteosarcoma mainly
focused on writers; the dysregulation of m6A erasers and readers in
osteosarcoma require further study. Second, although m6A is
considered a potential biomarker for the diagnosis and prognosis
of osteosarcoma, only few studies have yet elucidated the
relationship between m6A-related factors and the molecular
epidemiology as well as clinicopathology of osteosarcoma. Third,
the clinical guidance of sequencing data of small osteosarcoma
samples is limited due to the high genomic heterogeneity of this
disease. Therefore, a large sample of sequencing database for m6A-
related factors and osteosarcoma is warranted. Fourth, researchers
have noted the potential of m6A as a therapeutic target for
osteosarcoma, but few studies have focused on the application of
potent and specific drugs that target m6A enzymes in osteosarcoma.
In addition, compared with other cancer, osteosarcoma has its own
biological and clinical features, such as the close connection with
bone microenvironment and poor immunotherapy effect. Hence,
combining m6A factors with tumor microenvironment and
anticancer immunotherapy in osteosarcoma must be explored.
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