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Variations in the intrinsic radiosensitivity of different cells to ionizing radiation is now widely
believed to be a significant driver in differences in response to radiotherapy. While the
mechanisms of radiosensitivity have been extensively studied in the laboratory, there are a
lack of models which integrate this knowledge into a predictive framework. This paper
presents an overview of the Medras model, which has been developed to provide a
mechanistic framework in which different radiation responses can be modelled and
individual responses predicted. This model simulates the repair of radiation-induced
DNA damage, incorporating the overall kinetics of repair and its fidelity, to predict a
range of biological endpoints including residual DNA damage, mutation, chromosome
aberration, and cell death. Validation of this model against a range of exposure types is
presented, including considerations of varying radiation qualities and dose-rates. This
approach has the potential to inform new tools to deliver mechanistic predictions of
radiation sensitivity, and support future developments in treatment personalization.

Keywords: radiation biology, computational biology, radiosensitivity, radiotherapy, Medras
INTRODUCTION

Radiotherapy remains a key modality in the treatment of cancer, a role which has expanded through
the development of novel technologies enabling improved imaging of tumor targets and precise
delivery of individually-tailored treatment plans (1). This physical precision has led to reduced
doses to organs at risk, and improved treatment outcomes across a range of cancers.

However, in contrast to this physical precision, biological precision remains an under-explored
avenue of treatment optimization. The majority of cancers are treated in a one-size-fits-all
approach, with all patients with a given type of cancer receiving the same treatment dose and
fractionation. While this has been successful at delivering effective treatments on the population
level, there is now significant evidence of inter-patient heterogeneity in radiosensitivity which could
be exploited to maximize patient benefit (2–4).

Efforts to reach this goal have been hampered by the difficulties in generating a robust model of
how cells respond to ionizing radiation. While simple approaches such as the Linear Quadratic (LQ)
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model have proven effective at describing overall patient
responses (5), the development of more detailed mechanistic
approaches have proven challenging (6). Much of the
mechanistic modelling of radiation responses has focused on
the earliest stages of radiation interaction with biological
systems. Here, it is known that differences in how densely
energy is deposited within the cells (characterized in terms of
Linear Energy Transfer, LET) impacts on the sensitivity of cells
to a given dose of radiation, and numerous models seek to link
this with the Relative Biological Effectiveness (RBE) of different
types of radiation. A range of models have been developed and
applied to predict physical differences in DNA DSB yield
and distribution, using different underlying approaches and
assumptions (7–15).

These physical differences in DNA damage represent only the
first stage in radiation’s biological effects, however. These initial
damages are then processed by a range of cellular repair
processes, and the cell’s ability to detect, repair and respond to
this data is critical in determining its radiation sensitivity, more
so than the better-studied physical effects. In many models these
biological effects are reflected through cell-specific fitting
parameters which, while useful in describing individual
systems, are of limited use in more general predictions or
possible treatment personalization approaches. The most
widely used of these include the Local Effect Model (LEM) (16)
and the Microdosimetric Kinetic Model (MKM) (17), which
have seen clinical adoption as tools to predict RBE in clinical
carbon ion therapy for cancer. However, these approaches still
lack patient-specific predictive power.

One approach which has seen significant attention in recent
years is through the definition of genetic or transcriptional
signatures of radiation sensitivity which can be used to
personalize radiation therapy. While a number of signatures
have been proposed (most notably the Radiosensitivity Index/
Genetically Adjusted Radiation Dose approach, but also a range
of others (18–21)) and some have been tested in limited clinical
datasets, these signatures have proven highly heterogeneous, and
often difficult to reproduce in independent studies or using other
techniques, suggesting they are not capturing the true underlying
mechanisms of radiation response (21).

A range of mechanistic modelling work has been carried out
in this area, seeking to develop new approaches to link from early
DNA damage to biological effects (22–26). However, in many
cases these models are closely linked to original datasets, and
there remains few models which have been independently
validated across a wide range of cell types and endpoints,
suggesting significant further development is needed in this area.

In this manuscript, we present a significant update to the
Medras mechanistic model of DNA repair and cell death (27, 28).
This model begins from initial distributions of DNA damage,
and simulates how these DSBs interact to either repair
successfully or misrepair and lead to significant genetic
alterations, and the subsequent likelihood of cell death
following these events. This model has been updated to enable
the simulation of a range of radiation deliveries, including
different dose-rates and fractionation schedules, and is
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validated against a broad panel of experimental endpoints for a
range of radiation qualities. Significantly, this model makes use
of no empirical cell-specific fitting parameters, potentially
opening the way for its use as a platform for treatment
personalization. This model is also available as an open-source
tool for other investigators to explore and expand in their
own work.
METHODS

Medras simulates the response of a cell to radiation beginning
from a distribution of DNA Double Strand Breaks (DSBs), and
simulates how these breaks may be (mis-)repaired as a function
of time. Based on this simulated misrepair pattern, the
probability of cell survival is then predicted, taking in various
death pathways available to the cell in a particular condition.
This is schematically illustrated in Figure 1, and each of the
stages is summarized below.

DNA Damage Distributions
Medras focuses on DNA Double Strand Breaks (DSBs) as the
primary driver of radiation response, as there is strong evidence
that they are the key lesion giving rise to cell death following
radiation exposure (29, 30). It is thus assumed that the initial
pattern of DSBs (in terms of both number and spatial
distribution) determines the biological consequences of a given
radiation exposure (31). Medras currently considers three key
methods of simulating radiation exposures.

For the most commonly used sparsely ionizing radiation,
such as X-rays and energetic electrons, a uniform distribution of
damage is assumed, within a spherical nucleus. The number of
breaks is taken to be directly proportional to the delivered dose
of radiation, with a yield of DSBs of 5.738 GBP-1 Gy-1,
corresponding to 35 DSB/Gy per human cell, in line with
published studies (32). This assumption of a uniform
distribution gives rise to a response which is purely determined
by the dose delivered to the cell, as described in more
detail below.

Two options are provided to describe the effects of particles
with a higher Linear Energy Transfer (LET), such as protons or
carbon ions. Firstly, Medras provides a tool to rapidly calculate
distributions of DSBs around representative tracks for a range of
particle LETs. To achieve this, radial track structures were
modelled using Geant4 10.2 (33–35) and the Geant4-DNA
toolkit (13, 36, 37). Ions of different species and energies were
directed along the center of a cylindrical water phantom with
radius 200 mm and depth 22 mm. Within the central 2 mm of
depth, energy deposition from both the primary ion and
secondary electrons were recorded and scored in terms of radial
distance to the primary particle trajectory as it entered the scoring
region. This provides a radial energy distribution, scored in
logarithmic bins (smallest bin 0.1 nm radius, 100 bins per
factor of 10 change in radius). Primary counts ranged from 600
to 20,000 depending on primary particle. Example radial energy
distributions are presented in the Supplementary Information.
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It is then assumed that all radiation types lead to the same
number of DSBs per cell per unit dose - 5.738 GBP-1 Gy-1. The
number of DSBs in a given radial bin around an ion track can thus
be calculated as E(r)

EDSB
, where E(r) is the energy in the bin at a distance

r from the ion track, and EDSB is the energy associated with the
creation of on average one DSB. It should be emphasized that EDSB
is independent of the distribution of the energy within the nucleus,
so it is assumed that it leads to an average of one DSB whether it is
uniformly distributed throughout the nucleus, or densely clustered
around a single ion track.

This assumption enables the yield of DSB to be readily
calculated for any given energy deposit. However, it also
represents a degree of simplification, as there is some evidence
that the yield of DSBs is affected by LET. However, robust
quantification of an RBE for DSBs has proven challenging.
Different DSB assays produce very different measurements for
this value, with some identifying increases, some decreases, and
some more complex patterns (38, 39). While the evidence as a
whole suggests that an excess of DSBs is produced within the
track of charged particles, the total size of this effect is small –
with many assays suggesting at most an increase in DSBs of a
factor of around 1.4 for particles with LETs of 100 keV/mm (39).
By contrast, the RBE for cell killing at this LET is several-fold
higher, suggesting the increased lethality per DSB, rather than an
Frontiers in Oncology | www.frontiersin.org 3
increase in the number of DSBs is the primary driver of increased
RBE, similar to observations elsewhere in the literature (40).

As dose is defined as energy deposited per unit mass, EDSB is
closely related to the volume of the nucleus. In particular,
assuming a human cell which experiences 35 DSB/Gy, we can
say 35 = 1  Gy�VNuc

EDSB
, where VNuc is the volume of the nucleus and a

density of 1 g/cc has been assumed. If EDSB is expressed in keV
and VNuc is mm3, this can then be expressed as VNuc =5.16EDSB, or
equivalently rnuc = 1:1

ffiffiffiffiffiffiffiffiffi
EDSB3

p
, which provides a useful

benchmark for the value of EDSB. EDSB is not determined a
priori, and has instead been fit to observed RBE data, as described
in previous publications (28) and summarized below. In this
approach, a best-fitting value of EDSB=56.5keV has been
obtained, equivalent to rnuc=4.23 µm, in agreement with typical
estimates of cell nucleus radii.

Finally, this radial DSB distribution can be used to calculate
the average number of intra-track DSBs as a function of distance
from an average break within the track. The interaction rate of
breaks within the track can then be calculated as described below,
and combined with the inter-track break distribution (which is
taken as random and uniform on average) to provide an estimate
of the total rate of misrepair.

For very high-LET exposures, it is also important to note that
each track will likely cause multiple DSBs and each exposure may
FIGURE 1 | Schematic of key stages in Medras simulation of damage. 1) Cells are initialized, based on provided characteristics, determining rates and fidelity of
repair. 2) Damage patterns are generated, either in Medras based on a described exposure or a provided SDD input file, incorporating details of track structure as
relevant. 3) Repair is simulated as a function of time, tracking both amount of repair and distribution of misrepaired DSBs, with misrepair probability governed by
inter-break separation d. Interacting breaks indicated by grey lines. 4) Biological endpoints are quantified. This can include number of unrepaired and misrepaired
DSBs, but also mutations and chromosome aberrations, taking into account a simplified chromosome model, where spherical territories (dashed circles) are
modelled to identify inter-chromosome (left) and intra-chromosome (right) aberrations.
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only consist of a few particle traversals. This gives rise to a non-
Poisson distribution of initial damage, and can significantly
increase observed survival. To account for this, when the
expected number of DSBs per track is greater than 0.5, cell
responses as described below are simulated for a range of
different incident particles, weighted assuming a Poisson
distribution of tracks with a mean equal to that which delivers
the prescribed dose, and the average responses are returned.

As an alternative approach to these averaged estimates of DSB
induction for ions, damage distributions can also be imported
using the Standard for DNA Damage (SDD) file format (41). The
SDD format provides a standardized method for recording DSB
damage from physical simulations so they can be imported into
repair code, such as their spatial and temporal distribution, as
well as genetic and break complexity info. Medras provides an
interface through which these files can be read and repair
simulated within them, and can also export representative
damage distributions based on the assumptions above for
reference. This facility for arbitrary input enables the
simulation of full details of DSB distributions without any
simplifying assumptions, and the possibility of benchmarking
repair predictions comparing different DNA damage models.

Regardless of the method used to generate these DSB
distributions, they can then be imported into the core Medras
repair simulation, and used to predict radiation responses as
described below.

Repair Rates
Within Medras, breaks are separated into broad categories of
‘simple’ and ‘complex’. Currently, the model deliberately does
not explicitly consider the details of break complexity on the level
of features such individual base or strand damages, local
chromatin environment, or other biological factors, as it
remains unclear which of these features are key to determining
break repair process (42). Instead, within Medras break
complexity is assigned randomly with a probability pcomplex at
break creation, or it can be read from data provided in the
SDD file.

Double strand breaks can be repaired by one of three
pathways – Nonhomologous End Joining (NHEJ) ,
Homologous Recombination (HR) and Microhomology
Mediated End Joining (MMEJ, also known as alternative end
joining, alt-EJ), depending on cell cycle phase and pathway
activity (43–45). In normal cells, simple breaks are repaired by
NHEJ in all cell cycle phases, while complex breaks are repaired
by NHEJ in G1, and HR in later phases once replicated sister
chromatids are available to act as a template. However, in cells
with repair defects, some DSBs which attempt to repair through
these pathways will fail and instead be repaired by the backup
MMEJ pathway, with probability pfail.

This gives rise to up to three populations of breaks, repaired
by different kinetics. “Fast” repair represents the simple breaks
which are repaired by NHEJ throughout the cell cycle. “Slow”
repair represents complex breaks which require more time to be
processed, either by NHEJ following a degree of end processing
to reduce end complexity (in G1) or HR (in S and G2) (46).
Frontiers in Oncology | www.frontiersin.org 4
Finally, a subset with “Very Slow” repair kinetics is present in
cells with DNA repair defects requiring the use of MMEJ, which
is significantly slower than any other process.

Medras simulates all of these repair pathways as a two-step
process, schematically illustrated in Figure 2A. Each DSB
initially consists of two free ends, which are rapidly bound by
a selection of sensing and repair proteins. Such breaks are
detected on both ‘physical’ assays which detect break structure
such as Pulse Field Gel Electrophoresis (PFGE) or Premature
Chromosome Condensation (PCC), as well as through
immunofluorescent staining of associated repair proteins. Pairs
of break ends can then be bound together to restore the physical
structure of DNA. At this stage, the DSB ends are no longer free,
can no longer interact with other break ends, and the break will
not be detected through physical assays. However, repair
proteins remain bound at the site of the break for some time
after this physical rejoining, and it is not until these proteins have
been cleared that the break will no longer be detected
by immunofluorescence.

Both of these stages in repair are simulated in the analytic
model as simple exponential processes. For a simple acute
exposure which induces N0 initial DSBs, the kinetics of
physical breaks Nphys is given by:

Nphys = N0 pf e
−lf t + pse

−lst + pme
−lmt

� �
(1)

Where px and Lx are the probability of a break being repaired
by pathway x and the associated repair rate, where x corresponds
to is fast (f), slow (s) or MMEJ (m) repair. In repair competent
cells, these probabilities are given by pf=(1-pcomplex), ps=pcomplex

and pm=0 If either one or both of the preferred repair mechanism
are knocked out, then these probabilities are updated to reflect
the rate of failure. For example, if a cell in G2 is deficient in HR,
the repair probabilities would become pf = (1-pcomplex),
ps=pcomplex(1-pfail), and pm=pcomplexpfail. A full tabulation of
possible combinations of break complexity and repair capacity
and the resulting repair rates is presented in the Supplementary
Information. Each of the rate repair coefficients is taken as a
model fitting parameter.

In a more general case where breaks are not initially generated
in a single acute exposure but rather over some time, the number
of breaks repaired by each pathway can be described by a rate
equation. For example, for breaks repaired through the fast
pathway the rate of change in physical breaks repaired with
fast kinetics, Nf

phys, is:

dNf
phys

dt
= −lf N

f
phys + pf k _D(t) (2)

Where _D(t) is the dose rate at time t, and k is the yield of
double strand breaks per Gy. The first term thus represents the
standard exponential decay of breaks, and the second term
represents the number of fast-repairing breaks induced as a
function of time. Similar expressions can be formulated for
breaks repaired through the other pathways. This can be
readily solved numerically to provide the kinetics of physical
DSBs for an arbitrary pattern of dose delivery. In particular,
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time-varying dose rates can be considered by using a time-
dependent value of _D(t), which can include fractionation by
modelling inter-fraction gaps as a period where _D(t) = 0. At
present this expression is only accurate for quiescent cells, as
proliferation during exposures is not incorporated.

For joined breaks which still bear repair proteins, the
expression is somewhat more complex, as these are not created
directly by radiation, but rather after some delay associated with
initial end joining. We can define the kinetics of the number of
protein-bearing rejoined breaks being repaired with fast kinetics,
Nf
prot as:

dNf
prot

dt
= lf N

f
phys − nf N

f
prot (3)

Where vf is the rate at which proteins are cleared in this
pathway. Similar expressions apply to the other pathways. In
general, this then introduces a complex dependence on the
pattern of dose-rate and physical break repair, and requires
numerical solutions for many approaches. For the specific case
of a single acute exposure inducing N0 initial breaks, however,
this can be explicitly solved to give (see Supplementary
Information):
Frontiers in Oncology | www.frontiersin.org 5
Nf
prot =

N0pf lf e−lf t − e−nf t
� �
nf − lf

(4)

Which gives rise to an initial rise and then fall in the number
of protein-bearing joined breaks, as expected. Of more relevance
to experimental endpoints, immunofluorescence studies of
markers such as gH2AX foci thus measure the total number of
both physical and protein-bearing breaks, for a total count
of visible foci being repaired with fast kinetics,Nf

foci, of:

Nf
foci = Nf

phys + Nf
prot = N0pf e

−lf t +
N0pf lf e−lf t − e−nf t

� �
nf − lf

= N0pf
nf e−lf t + lf e−nf t

nf − lf
(5)

And similar expressions for each of the other pathways. Using
these expressions, the yields of both physical breaks and foci can
be calculated for any acute or protracted radiation exposure.
These can both be used for direct comparison with experimental
observations of DNA repair kinetics, as well as to support
calculations of misrepair following different radiation exposures.
A B

DC

FIGURE 2 | Illustration of DNA repair kinetics. (A) Key modelled stages in DNA repair. Break ends are initially free, and interact physically with a nearby end with a
rate which is related to the break complexity and initial separation. Once joined, the associated foci is cleared after a delay which depends only on break complexity.
(B) Break kinetics for physical breaks and foci (solid and dashed line) in normal cells. Points represent measured breaks via PFGE (solid) and PCC (open). Error bars
not shown for clarity. (C) Break kinetics compared to measurements via foci (points) illustrating impact of foci clearance on repair kinetics. (D) Measurements of
repair in ATM-defective lines for both physical breaks (filled) and foci (open), showing similar impact on kinetics and final breaks for both endpoints.
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Repair Fidelity – Analytic
As breaks repair, the model then simulates the probability that
each break undergoes either ‘correct’ repair or misrepair.
Misrepair is here defined as when ends from two distinct DSBs
are joined together, leading to at least some degree of genetic
rearrangements and potentially significant genetic alterations. In
Medras, we define the probability of any given pair of ends being
joined together as

z (r) ∝ e
−r2

2s2 (6)

Where z(r) is the relative interaction rate of two breaks
separated by a distance r, and s is a scaling coefficient related
to the characteristic rejoining range of breaks within the cell. As
the two ends of a single DSB are naturally in close proximity, for
correct repair z ≈ 1, while the rate of incorrect joining depends
on the number and distribution of other breaks within
the nucleus.

The total rate of misrepair depends on the sum of these rates
of incorrect misrepair, that is

hi = 2o
N

j≠i
z ri,j
� �

(7)

Where the total misrepair rate for the i-th break, ni is equal to
the sum of (ri,j) over the other N-1 breaks, multiplied by two to
reflect each break consists of two free ends. For a single break
repair event, the probability of correct repair is then given by the
rate of correct pairing as a fraction of the total rate, that is:

pcorrect =
1

1 + hi
(8)

Where we assume the rate of correct interaction is equal to 1.
We have previously shown (27) that for a situation where all
breaks are fully repaired, the total probability of each break being
correctly repaired is given by:

Pcorrect =
1 − e−h

h
(9)

Which was validated against a range of experimental and
theoretical benchmarks in previous work (27, 28). However, this
formulation is only applicable for complete repair from a single
fraction – it cannot be applied to scenarios of e.g. fractionated or
prolonged exposures. A general summation of equation 8
reflecting the discrete nature of breaks is not possible, but it
can be closely approximated by a continuous integration for
more than a few breaks. However, this cannot be simply used
directly, as when a misrepair event happens, the other ends of the
two involved DSBs have lost their partner, and thus are no longer
able to correctly repair. This necessarily leads to an additional
misrepair events following a first event, which leads to a small
but significant increase in misrepair events after a first repair
event. To take this into account, we add an additional term of n2i
to the misrepair rate, reflecting the first-order contribution of
misrepaired breaks. Thus we have:
Frontiers in Oncology | www.frontiersin.org 6
Pcorrect =
Z 

pcorrect(h)dh =
Z  1

1 + hi + h2
i
dh (10)

To solve this, we define h = h'N, where N is the number of
breaks present and h' is the average value of z across all breaks
within the system. We can thus say the number of correct repair
events when the number of breaks repaired goes from N0 initial
breaks to N1 final breaks is:

Ncorrect =
Z N0

N1

1
1 + h0N + h02N2 dN

= 2atan
2h0N + 1ffiffiffi

3
p

� �	 
N0

N1

(11)

Substituting in N0 and N1 into the final part of equation 11,
simplifying through trigonometric identities and dividing by
h'(N0 – N1) to express this as a probability gives a probability
of correct repair of:

Pcorrect =
2ffiffiffi

3
p

 h0 N0 − N1ð Þ atan
ffiffiffi
3

p
 h0 N0 − N1ð Þ

2 + h0 2h0N0N1 + N0 + N1ð Þ
� �

(12)

While somewhat unwieldy, this gives a flexible way to predict
the degree of correct and incorrect repair following any amount
of repair, for any initial and final yield of DSBs. This enables
generalized predictions to be made for any combination of
fractionated exposures, or prolonged exposures through
numerical integration. In the special case of complete repair
(N1=0), Pcorrect simplifies to

Pcorrect =
2ffiffiffi

3
p

 h0N0

atan

ffiffiffi
3

p
 h0N0

2 + h0N0

� �
(13)

Which can be compared to the form in equation 9 to confirm
it accurately reproduces misrepair rates at a broad range of doses
(see Supplementary Information). This enables the analysis of a
broad range of scenarios not covered by the original Medras
model for further validation and testing. by the original Medras
model, and the integration of new endpoints for validation and
ras model, and the integration of new sce

The value of h' can be estimated in a number of ways. For a
known break distribution it can be calculated explicitly, while for
a uniform break distribution within a spherical nucleus it can be
estimated analytically. As described previously, this analytical
estimate is given by:

h0(R,s ) =
6

4pR3 q(R,s ) (14)

Where R is the radius of the nucleus and q is the rejoining rate
between two randomly placed DSB ends, given by:

q(R,s ) =
2ps 2

R3

ffiffiffiffiffiffi
2p

p
 R2s  erf

R
ffiffiffi
2

p

s

� �
− e

−4R2

2s2 s 2 − R2s2� �
+ s 2 − 3R2s 2� �

 

� �
(15)

To incorporate intra-track events, based on the break
separation distributions as described above we can calculate an
June 2021 | Volume 11 | Article 689112
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htrack value, reflecting the average intra-track contribution for a
randomly given break for a given particle and energy. This can
then be combined with the h′ value described above to give the
total misrepair rate per track, that is h′track=h′+htrack, and this
can be used directly in equation 12 or 13 to calculate the rates of
correct repair, incorporating intra-track effects in an
analytic way.

Finally, even in the absence of incorrect end joining, repair
pathways have an inherent probability of misrepair. For NHEJ
and MMEJ, this is reflected with an additional reduction in the
total rate of correct repair independent of binary misrepair,

defined as Pcorrect = mx(
2ffiffi

3
p

 h0N0
atan(

ffiffi
3

p
 h0N0

2+h0N0
)), where mx is a

process-specific fidelity factor. For HR, it is instead assumed
that repair is always correct, giving Pcorrect=1.

Repair Fidelity – Monte Carlo
As an alternative to the above analytic approach, physical
misrepair rates can also be simulated via Monte Carlo
approaches. This uses a simple sampling approach to replicate
the assumptions of the analytic model, but enables a flexible
calculation for more complex DSB distributions (as those
imported from external packages using the SDD interface
(41)), and enables the temporal impact of misrepair to be
accounted for.

The Monte Carlo simulation begins from a full distribution of
all of the DSBs resulting from each exposure. It calculates and
stores the full set of zi,j interaction rates for every pair of break
ends, and then calculates the total interaction rate hi for each
break end with all other free break ends, including the correct
partner. This total interaction rate then scales the effective repair
rate for a given break, Li, as:

li = lxhi (16)

Where Lx is the repair rate associated with the pathway
through which the break end will be repaired as described
above (f,s,m), and Li is the effective rate of repair for the i-th
break. This enables the Monte Carlo model to reflect the slight
elevation in repair rate seen in regions with many DSBs, and the
significant fall in repair rate if the correct partner end is repaired,
which substantially reduces hi.

For each break end, the associated time of repair is then
randomly sampled as:

ti = −
log (X)
li

(17)

Where ti is the time until the break end is repaired, and X is a
randomly uniformly distributed value between 0 and 1,
replicating the exponential distribution of repairs. This
approach is conceptually similar to those used in, for example,
independent reaction times modelling in chemistry
simulations (47).

The simulation then proceeds by identifying the break end
with the smallest ti to be the next end to undergo repair. A
partner end is then selected at random from all remaining ends,
with probabilities weighted by their interaction rates zi,j. This
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pair of break ends are then logged as a repair event, removed
from the simulation, and values for hi and ti are updated for all
remaining breaks. Then the process is repeated with the next-
smallest ti until all break ends have been rejoined.

Protracted exposures are modelled in a similar fashion. In
addition to ‘active’ breaks which have already been created, a list
of breaks induced at later timepoints is also stored. If the next
repair is predicted to occur after a new break will be induced, that
break will instead be added to the simulation, and hi and ti
updated for all breaks as above to reflect the newly available
repair partners.

Once all breaks have been repaired, a full list of repair events
is then available, and can be used to plot the kinetics of repair of
physical breaks, have a delay associated with repair protein
clearance added to predict the yields of foci as for analytic
breaks, or the patterns of misrepair can be analyzed to produce
predictions of not only total misrepair, but also model-specific
information on consequences of misrepair such as affected genes,
chromosomes, and types of aberrations form, if underlying data
is available.

This approach has been shown to accurately reproduce the
behaviors of the analytic approach, as illustrated in the
Supplementary Information.

Misrepair Consequences
Misrepair events represent a broad category of events, ranging
from smal l de le t ions to large-sca l e chromosomal
rearrangements. In addition to simply predicting the yield of
misrepairs, Medras also estimates the yield of several relevant
types of alteration, particularly mutations and significant
chromosomal aberrations. These have been described in
previous work (27), and the concepts are summarized here
for completeness.

Chromosome aberrations are the most significant class of
genetic rearrangement for cell survival, potentially leading to
large genetic losses or aberrant chromosomes which cannot
separate during mitosis. They reflect large-scale rearrangements
of chromosome structure, and can be classified as inter- or intra-
chromosome, depending on which chromosomes contained the
DSB ends involved in the repair. As a simplified analytic model of
chromosome structure, chromosomes are modelled as spheres
packed within the nucleus with radius rc =

Rffiffiffi
nc3

p , where nc is the
number of chromosomes in the nucleus. While this neglects
variations in factors such as chromosome size and packing, as it
focuses on average rates across the whole nucleus the impact of
these factors is reduced.

From this, when misrepair occurs the probability of the
interaction being intra-chromosome is given by the average
interaction rate within a chromosome compared to that
throughout the nucleus, that is:

Pintra =
q(rc,s )
q(R,s )

(18)

A second classification is whether the exchange is symmetric
(both resulting chromosomes contain a centromere) or
asymmetric (at least one acentric fragment is produced).
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Symmetric exchanges leave a relatively intact chromosome
structure and are typically non-lethal, while asymmetric
exchanges include acentric fragments, dicentrics, rings
and other rearrangements which are often incompatible with
cell survival (48). As the symmetry of the break is solely
determined by the alignment of DSB ends which are otherwise
treated as identical, this model assumes symmetric
and asymmetric exchanges occur with equal frequency,
Pasym=0.5. Thus, the number of deletion (asymmetric intra-
chromosome) and dicentric (asymmetric inter-chromosome)
events can be calculated as Ndic=0.5Nmis(1-Pintra) and
Ndel=0.5NmisPintra, where Nmis is the number of misrepaired
breaks as calculated above.

The size of deletions is also important for their lethality. By
assuming that the separation of breaks in base pairs increases
monotonically with distance between the break ends, the size of a
deletion can be given by D = 2Lr3D

R3 , where L is the total length of all
chromosomes and rD is the separation of the break ends. The rate
of deletions smaller than D is given by the rate of misrejoiing
events over distances shorter than rD , given both events occur
within the same chromosome. This is given by Pdel<D = q(rc ,s ,rD)

q(rc ,s )
where the generalized q is given by:

q rc,  s ,   rDð Þ = ps 2

4r3c
ð8 ffiffiffiffiffi

2p
p

r3cs erf
rd

ffiffiffi
2

p

s

� �

− e
r2
D

2s2 ðr4D + 4r2D s2 − 3r2c
� �

+ 16rDr
3
c + 8s2 s2 − 3r2c

� � Þ
+ 8s4 − 24r2cs

2� � Þ

(19)

And we can then express the number of deletions larger than
some threshold size as Ndel>D=0.5NmisPintra(1-Pdel<D). For this
work, we define a ‘large deletion’ of the type typically associated
with cell death as one of 3 MBP or greater size, as this has been
shown to correlate well with cell death in Giemsa-stained
cells (49).

This relationship between spatial separation and genetic
separation can also be used to calculate the rate of inter-arm
interactions (relevant for chromosome aberration visibility in
G2) and the rate of mutation in a particular gene (by calculating
the probability a misrepair event spans some or all of the gene of
interest). For the specific case of mutation, mutations can also be
caused even during correct end joining, where NHEJ can
introduce small changes in sequence to one or a few base
pairs, affecting the sequence but not overall structure. This is
accounted for with a point mutation probability, pmut, which
applies when a break is correctly repaired within a gene but may
still cause a mutation.

Cell Death
Medras considers three cell key mechanisms – genetic damage
which renders the cell unviable, apoptosis, and mitotic
catastrophe. The impact of genetic damage is determined
directly from the yields of misrepair, and in particular lethal
chromosome aberrations. We define lethal aberrations as those
which prevent segregation at mitosis (dicentrics, rings) or those
which remove enough genetic material to prevent cell function
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(large deletions). Cell death in quiescent cells has been shown to
correlate extremely well with such aberrations measured in
Giemsa-stained cells, an assay which is sensitive to deletions
greater than 3 MBP in size (49). Thus, the rate of cell death from
such aberrations in quiescent and G1 cells is given as S =
e−Ndic−Ndel>3MBP , assuming aberrations occur with a Poisson
distribution. For cells irradiated in G2 a single large deletion is
insufficient to lead to cell death, as DNA has already been
replicated and both daughter cells must see genetic loss to be
rendered unviable. As a result, survival in such cells is given by
S=e-Ndic-Ninterarm. This neglects the small contribution of cells
dying due to multiple independent large deletions, but this is rare
at relevant doses.

In addition to these misrepair-driven events, the presence of
unrepaired breaks at mitosis can also lead to cell death through
mitotic catastrophe. This may be due to either newly formed
breaks, or escaping the G2 DNA damage checkpoint (observed
when fewer than 20 DSBs remain (50)). Extensive experimental
evidence (51) indicates that the dependence of mitotic
catastrophe on induced DSBs is a simple exponential kinetic,
with similar rates across cell lines. Medras thus models the
probability of successfully completing mitosis as Smitosis=e

-fNm,
where Nm is the number of DSBs present in mitosis, and f is a
rate constant shared across all cells.

Finally, cells can also undergo long-term arrest (senescence)
or programmed cell death (apoptosis) following irradiation.
These are complex processes depending on a range of genetic
and environmental factors, but play a particularly important role
in in vitro survival in G1, where they are most commonly
observed. Experimental quantification of their relative
importance remains difficult (52), and even a partial systems
biological model remains outside the scope of this work. Instead,
a simple empirical approach is applied, based on experimental
evidence which shows that the likelihood of cells escaping the G1
checkpoint is an approximately exponential function of dose.
Thus, as with mitotic catastrophe, the probability of escaping
apoptosis in G1 is modelled as Sapop = e−yxNG1 , where NG1 is the
number of DSBs induced in G1. For cells irradiated while non-
cycling or in other phases of the cell cycle, apoptosis does not
occur.Yx has two possible values. For cells with fully functional
DNA damage sensing and apoptotic processes, it has the value
Yfull. However, dysregulation or mutation of this pathway is very
common in many cancer cells, particularly through mutation in
TP53 and associated genes (53). As a result, this process is
inhibited in many cells, and happens at a much lower rate of
Ybase The exact values of these two rate parameters was fit to
experimental data in acutely irradiated cells as described below.

Data Acquisition
To test and validate the model, a broad panel of data was
acquired from the literature. As described in previous work
(27, 28), data was obtained for DNA repair kinetics, misrepair
via PFGE, chromosome aberrations, mutation rates, and cell
survival following a range of exposure conditions. Values were
extracted from published tables or figures along with
uncertainties. An additional 5% uncertainty was added to all
points to reflect uncertainties in data extraction.
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For all experimental data used in this work, the cell line(s)
used was identified, and related back to published datasets to
determine a set of key cell-specific features. These are the genome
size, chromosome number, NHEJ repair capacity, HR repair
capacity, activity of G1 arrest (typically via p53 status) and the
cell cycle phase of the irradiation. These parameters impact on
response pathways as summarized in Table 1, and are the only
cell-specific parameters used in a given simulation. No fitting
parameters are adjusted on a cell- or experiment-specific basis.

A number of different data types were extracted from a range
of publications to characterize different endpoints. For DNA
repair kinetics, data was obtained for measurements of
chromosome breaks measured using premature chromosome
condensation (PCC) (54, 55), DSBs measured using Pulse Field
Gel Electrophoresis (PFGE) (56–58), and DSB foci measured
using immunofluorescent labelling (59, 60). Misrepair rates were
obtained from PFGE measurements (61, 62). Mutation data was
obtained for gross and point mutations in the HPRT gene (63–
65). Yields of total chromosome aberrations measured through
Giemsa staining were obtained for normal human cells (66–70),
human-hamster hybrid cells (71), and NHEJ-defective cells (72)
for acute exposures, and a number of human cells exposed at low
dose rates (70, 73–75). Clonogenic survival data was obtained for
a range of human (49, 55, 60) and hamster lines, including
NHEJ-defective sublines (32, 76–78). Clonogenic survival values
were also obtained for a number of cell lines exposed at varying
dose rates to validate low dose-rate predictions (79–93).

To provide broader datasets for overall predictions of
intrinsic sensitivity and to analyze the effects of RBE on
survival, the proton RBE dataset published by Paganetti (94)
was used for basic model fitting. This analysis focused on single-
fraction exposures of adherent cells in oxic conditions, excluding
exposures where the primary particle had an extremely low range
(<1 cell diameter), or very limited dose rantes (max dose < 2 Gy).
For each experiment which satisfied these conditions, the cell
line, proton LET, and X-ray and proton a and b values
were extracted. Mean Inactivation Doses (MID) were then
calculated based on provided a and b parameters to
characterize the overall sensitivity of the cells. The MID is
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defined as the average dose required to kill a cell in the
population, equivalent to the area under the LQ response
curve, and is given by ∫0+∞e−aD−bD2 dD, with units of Gy.
This was used as a measure of overall survival, and to fit RBE
parameters as described below.

To validate the RBE model predictions, the Particle
Irradiation Data Ensemble (PIDE) (95) was used as a
validation dataset, as it included proton data together with a
range of other ions. For validation, all proton experiments not
represented in the Paganetti dataset, as well as all carbon ion
exposures were extracted from the PIDE, and analyzed in the
same fashion as above to calculate MIDs and the resulting RBEs.
This data was not used for fitting, but instead to test predictions
made using parameters fit to the lower LET proton dataset.

Model Parameter Fitting
The full set of model parameters used in this work is presented in
Table 2 together with their best-fitting values. To obtain these
parameter values, the model was implemented in Python and fit
using nonlinear regression in a number of stages, as described in
previous work (27, 28). Some details on parameter covariance are
presented in the Supplementary Information.

The first stage of the model focused on the DNA repair
model. In this, a single simultaneous fit was performed across
all DNA repair model parameters, fitting to data on repair
kinetics, misrepair, mutation and aberration in a single step. A
weighted least-squares regression was performed using Scipy
(96) across all data in the dataset. Overall performance was good,
with a mean c2 of in a single step. oss all DNA repair model
parameters, fitting to data on repair kinetics, misrepair,
aberration ross all model 1.04. Parameter confidence intervals
were also generally small, and covariance between parameters
was low, supporting that the model could be adequately fit across
this diverse dataset.

In the second stage of the fit, parameters relating to cell death
pathways were obtained. As with the DNA repair model, data
was collected for a range of different cell lines, genetic
June 2021 | Volume 11 | Article 689112
TABLE 1 | List of cell-specific features which define the minimal radiation
phenotype used to predict the sensitivity of cells in this model.

Radiation Phenotype Parameters

Parameter Description

Genome size Total genome size of cell in MBP
Chromosome
number

Total number of chromosomes in cell

NHEJ repair
capacity

Availability of NHEJ pathway

HR repair
capacity

Availability of HR pathway

G1 Arrest
function

Availability of G1/S phase damage arrest checkpoint

Cell cycle phase Phase of cell during irradiation (specified as single phase or
asynchronous)
All parameters determined from published literature and genetic status, without free fitting
parameters.
TABLE 2 | Best-fit MEDRAS model parameters with uncertainty.

DNA Repair Parameters

Parameter Interpretation Value

s Rejoining range 0.0418 ± 0.0003 R
mNHEJ NHEJ misrepair probability 0.985 ± 0.001
mMMEJ MMEJ misrepair probability 0.44 ± 0.05
pm Point mutation probability 0.046 ± 0.004
pc Complex break probability 0.43 ± 0.02
pfail Repair failure probability 0.74 ± 0.09
lf Fast repair rate 2.1 ± 0.2 h-1

ls Slow repair rate 0.26 ± 0.02 h-1

lm MMEJ repair rate 0.0085 ± 0.001 h-1

nf Fast foci delay 8.1 ± 0.9 h-1

ns Slow foci delay 0.41 ± 0.09 h-1

Survival model parameters
F Mitotic catastrophe rate 0.014 ± 0.001 DSB-1

yfull Full apoptosis rate 0.012 ± 0.001 DSB-1

ybase Base apoptosis rate 0.0007 ± 0.0002 DSB-1

High LET parameters
EDSB Average energy per DSB 56.5 ± 15 keV
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backgrounds and irradiation conditions, and the model was fit
using Scipy’s nonlinear least-squares regression, with the best
fitting DNA repair model parameters used as a fixed input.
Robust parameters were once again obtained, although survival
data is subject to more heterogeneity and significant outliers than
the DNA damage data (mean c2=7.7, dominated by a small
number of outliers with individual c2>100).

Finally, to enable RBE predictions, EDSB was fit. A nonlinear
least squares regression was carried out, varying EDSB to
maximize correlation between the model’s predicted MID for a
given exposure and those experimentally observed in the
Paganetti dataset, using Scipy’s nonlinear least-squares
regression. The PIDE data was deliberately not used in this fit,
but retained as a testing dataset to both confirm the model’s
ability to predict RBE in proton data, as well as its ability to
extrapolate from a fit performed on protons to other
radiation qualities.

Code Availability
The Medras model has been made publicly available on Github.
The analytic version of the model is available at https://github.
com/sjmcmahon/MEDRAS, whi le the Monte Car lo
implementation is available at https://github.com/sjmcmahon/
Medras-MC. A current version of the code is also available as
Supplementary Material to this paper, but these models are
undergoing continuing evolution and up-to-date versions will be
available online.
RESULTS

DNA Repair Kinetics
A characterization of Medras’ ability to predict the kinetics of DNA
repair is shown in Figure 2. Here, model predictions for the kinetics
of physical breaks (solid line) and visible foci (dashed line) in repair
competent cells are shown, compared to relevant experimental
observations. In Figure 2B, points show physical breaks measured
via Pulse Field Gel Electrophoresis (PFGE) or Premature
Chromosome Condensation (PCC), while in Figure 2C points
show the yield of foci. Good agreement is seen with both types of
damage, suggesting that this two-stage model with only a simple
categorization of simple and complex damage can effectively
reproduce results between these different approaches.

These panels currently focus on repair-competent cells for
brevity, but the model has also been shown to effectively
reproduce repair kinetics in a range of cell lines with DNA
repair defects, as presented in previous work (27).

Figure 2D shows further validation of this by considering
data from ATM-deficient cells which has been plotted for both
physical breaks and foci. In ATM-deficient cells, a subpopulation
of breaks have long-term repair failure, here modelled as 22% of
the total breaks. Both physical breaks and foci show the same
impact of this knockout, on both the initial kinetics as well as
long-term levels of damage, further supporting the ability of the
model to classify damage in this way and effectively reproduce
observed repair kinetics.
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DNA Repair Fidelity
A summary of key Medras predictions relating to DNA repair
fidelity and cell survival is presented in Figure 3, covering DSB
misrepair, mutation yields, chromosome aberrations and cell
survival in a selection of systems.

Figure 3A shows a comparison of Medras predictions (line)
against experimental observations of DNA DSB misrepair
measured by PFGE. The updated repair kinetic model
effectively reproduces the yield of misrepair over the entire
dose range, ranging from 5 to 80 Gy. Similarly, Figure 3B
shows good agreement between model predicted rates of
mutation (solid line) and experimentally observed mutations in
the HPRT gene in a variety of studies in hamster lines.
Significantly, the model also provides a good estimate of the
rate of intra-gene point mutations compared to experimental
observations, based on the spatial and genetic distribution of
breaks (dashed line).

Figure 3C presents data on the yield of chromosome
aberrations in a number of systems. Much of the data in this
work has been obtained for human lines, and good agreement is
seen with model predictions (solid line). However, it can be
shown that by taking into account differences in genome size and
chromosome number, the model also effectively reproduces the
rate of chromosome aberrations in human-hamster hybrid cells
(dashed line). Finally, if DNA repair defects are taken into
account, the model also effectively reproduces the rate of
misrepair in NHEJ-defective cell lines also (dash-dot line). We
have also shown that this model provides a good estimate of the
fraction of dicentric breaks compared to the total yield (27).

Finally, Figure 3D compares observed and predicted survival
for a range of cells – Chinese hamster cells (top, solid line),
normal human fibroblast (middle, dash line), and NHEJ-
defective hamster cells (bottom, dash-dot line). In all three
cases, the model effectively reproduces trends in sensitivity
across the different lines without any cell-specific fitting,
reflecting differences in their underlying genome, DNA repair
capability, and cell cycle checkpoints. Of note, for both the
normal and repair-defective Chinese hamster cells no direct
fitting is performed to the survival data, with survival being
entirely predicted from the mechanistic DNA repair model.

Intrinsic Radiation Sensitivity
As described above, Medras makes no use of cell-specific fitting
parameters in its predictions of sensitivity, instead using a
simplified phenotypic description to predict cellular responses.
Thus, it is possible to compare its predicted radiosensitivity to
that observed in a range of cell lines, to evaluate its overall ability
to predict intrinsic radiation sensitivity.

This is illustrated in Figure 4, which compares the model-
predicted and observed MID for acute X-ray exposure across a
panel of more than 200 experimental observations. The majority
of these (over 170) are extracted from the PIDE and Paganetti
databases, and have not been used to fit any of the DNA repair or
cell survival points and thus can be viewed as true predictions.

The performance across the entire range of data is good, with
a correlation coefficient of R2=0.75, and a best fitting slope of
June 2021 | Volume 11 | Article 689112
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0.93, showing both good correlation and good overall agreement.
Good correlation can be seen across a range of cell lines from
different species, with different genetic alterations, and different
irradiation conditions. Notably, some significant unexplained
variance remains among cells with the same model phenotype –
seen in the large groups of P53-competent human cells, P53
negative human cells, and hamster cells (around 2.2, 3.4, and 3.8
Gy MID, respectively) showing broad ranges of sensitivity.
Possible factors impacting on this will be discussed below, but
even taking this into account overall performance is good.

Impact of High LET Irradiation
Similar predictions for a range of different LETs are shown in
Figure 5. Here, data for both proton and carbon ion irradiations
are plotted, compared to experimental observations, for a total of
590 observations, of which 325 are carbon ion exposures and 265
are proton exposures. As with the overall sensitivity prediction
above, the overall correlation is good, with R2 = 0.78 and a slope
coefficient of 0.96. There is also significant heterogeneity, but
significantly the model is able to effectively capture the responses
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across a wide range of LETs and cell backgrounds by fitting a
single damage complexity parameter to proton data, and
extrapolating this across carbon ion exposures with LETs up to
50 times greater, providing confidence in the underlying
mechanistic interpretation. Significantly, this good agreement
at very high LETs indicates that the model effectively captures the
initial rise and eventual turnover in RBE with increasing LET
(being driven by Poisson statistics of arriving tracks) which leads
to an increase in MID at very high LETs. Similarly, the model
also correctly identifies the negligible impact of elevent LET on
RBE, as the death of these cells is dominated by misrepair
through the MMEJ pathway, as discussed in previous work (28).

Impact of Dose Rate
This paper presented significant improvements in how Medras
handles damage which is not induced instantly, enabling it to
now incorporate the impacts of dose-rate on a range of
endpoints. This is illustrated in Figure 6 exploring the impact
of dose-rate on chromosome aberrations. In Figure 6A, yields of
chromosome aberrations are compared for human cells
A B

C D

FIGURE 3 | Comparison of model prediction and misrepair endpoints. (A) Model prediction (line) compared to observed rates of DSB misrejoining. (B) Mutation
rates of HPRT gene, considering either all mutations (circles, line) or only point mutations (triangles, dashed line); (C) Chromosome aberration yield, for normal human
cells (circles, line), human-hamster hybrid cells (upwards triangle, dashed line) or NHEJ-defective human cells (downward triangles, dash-dot line); (D) Cell survival for
normal Chinese hamster (solid line, triangles), normal human (dashed line, circles) or NHEJ-defective hamster (dash-dot line, downward triangle) cells. For all plots,
colours are used to indicate different data sources.
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irradiated in acute (solid line, >5 Gy/hr dose rate) or chronic
(dashed line, <0.1 Gy/hr dose rate) exposures. It can be seen that
the updated model effectively distinguishes between these
limiting cases, separating out binary misrepair from single-hit
misrepair events.

This is further illustrated in Figure 6B, which shows
the dependence of chromosome aberration as a function of
dose, compared to published data for dose rates from 0.05 to
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4 Gy/hour. Medras effectively reproduces both the kinetics
and magnitude of recovery with low dose rates across several
different doses, suggesting it also effectively handles
intermediate doses.

To evaluate this over a broad range of conditions, Figure 6C
presents a correlation plot of modelled and observed chromosome
aberration yields for a variety of cell lines, conditions, dose rates and
doses. Points have been colored according to the delivered dose-rate.
Medras effectively reproduces the observed yield of chromosome
aberrations across the whole range considered here, including both
low- and high-dose and dose-rate conditions (0.05 to 120 Gy/hour).
It also effectively reproduces the observation that DNA repair
defective cells are largely insensitive to changes in dose rate (note
cell lines with very low dose rates and high yields of aberrations).

For these predictions, it is important to note that only one set
of limiting low dose-rate chromosome aberration data was used
to fit the underlying model parameters in this dataset (70), with
all predictions for intermediate dose-rate recovery emerging
from the model kinetic fits to DNA repair.

Finally, a similar analysis can be performed for predictions
of survival. This is shown in Figure 7, comparing model-
predicted and experimentally observed MID for a selection of
exposures at different dose rates. Good correlation is seen across
the whole range of sensitivities and dose-rates (an R2 of 0.84
and a slope coefficient of 1.0 ± 0.03), including effectively
identifying lines where dose rate is significant and where it is
not (E.g. DNA repair defective cells, bottom left). Significantly,
this correlation is achieved despite parameters governing the
rates of DNA repair being fixed based on fundamental
mechanistic mechanisms and not being allowed to vary to
improve the quality of the survival fit. Due to limitations in
available data a similar MID benchmarking is not possible for
fractionation, but illustrations of the ability of Medras to predict
the impact of fractionation on dose response is presented in the
Supplementary Information in Figure S4.
DISCUSSION

Predicting the intrinsic radiosensitivity of cells is of both
scientific and clinical interest. After more than a century of
research into the radiosensitivity of cells, we now know a great
deal about the physical and biological processes which drive cell
death and their genetic determinants, but an integrated
predictive framework remains elusive, hampering our scientific
understanding of this system as a whole. This limitation is a
significant challenge to the translation of preclinical knowledge
into clinical applications, including the use of intrinsic
radiosensitivity as a method for treatment personalization (3, 4).

The Medras model presented here offers a step towards more
integrated prediction of radiation sensitivity. This model offers a
high-level mechanistic summary of key processes involved in
DNA repair, misrepair and cell death, and has been shown to
effectively reproduce radiation-induced effects across a range of
endpoints including misrepair, mutation, chromosome
aberration, and cell death. This integrated approach has a
FIGURE 4 | Intrinsic radiosensitivity predictions. Predicted MID for acute X-
ray irradiation (x-axis) is compared to observed MID (y-axis) for a range of cell
lines (points, coloured by species of origin). The model effectively captures the
impact of a range of modifications on radiosensitivity. Best fitting slope line
has a slope of 0.93, and an R2 of 0.75.
FIGURE 5 | Impact of high LET on radiosensitivity. Predicted MID for acute
ion exposures (x-axis) is compared to observed MIDs for a range of cell lines
(points, coloured by species of origin) for LETs between 1 and 1,000 keV/mm.
Again, the model effectively captures the range of sensitivity, and its
dependence on both underlying biology and physics. Best fitting line has a
slope of 0.96, with an R2 of 0.78.
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number of advantages over other models which focused more
closely on individual pathways or endpoints.

Firstly, by developing a model which mechanistically
considers a range of intermediate states before cell death, it is
able to naturally generate predictions across a range of
measurable endpoints. This means the model is able to be
draw on a wide range of types of data to constrain its
parameters – spanning over 1,000 measurements of different
radiation responses analyzed in this work. Thus, while survival
itself depends on more than a dozen parameters, many of these
are strongly constrained by other measurements – such as s on
the rate of misrepair as a function of dose – enabling robust, well-
constrained fits to be developed. Significantly, this single
parameter set also has cross-endpoint predictive power
enabling, as in the examples presented here, the impact of dose
rate on cell death to be informed by measurements of DNA
repair kinetics.

A second key strength of this model is that it involves no
empirical cell-specific fitting parameters. While many models
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require individual fitting parameters as input (such as a and b
from the LQ model, or equivalent parameters), predictions in
Medras are based on a minimal radiation ‘phenotype’, which
contains a small number of explicitly measurable quantities
which characterize key aspects of the cell’s radiation response.
We have shown that this minimal set of data captures much of
the intrinsic sensitivity variation of cell lines, and provides a
foundation for more detailed experimental investigations.

These benefits provide a useful complement to much of the
radiation response modelling within the literature. A large
number of published models have been developed which
incorporate predictions of the yield and type of DSBs caused
by different qualities of radiation, building on a range of
underlying Monte Carlo toolkits to provide models of physical
interactions including Geant4-DNA, Topas-nBio, PATRAC and
KURBUC (9, 97–102), as well as a number of more empirical and
analytic approaches to initial damage and consequent death
(103–105). These models provide valuable insights into initial
yields and distributions of damage in a range of cell and radiation
A B

C

FIGURE 6 | Impact of dose rate on misrepair. (A) Comparison of modelled and observed chromosome aberration yields for acute X-ray exposures (circles, solid
line) and chronic low dose-rate exposures (triangles, dashed line). Different colours are used to represent different data sources. (B) Impact of dose-rate on dicentric
aberration yield at a series of different dose levels in human lymphocytes. (C) Correlation of modelled and observed chromosome aberration yields, across a range of
doses, dose-rates, and underlying biologies, with points coloured according to the delivered dose rate. Best fitting line has a slope of 0.99, with an R2 of 0.97.
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types. However, in most cases these models apply in ‘generic’
cells, and do not incorporate genetically-dependent features
which are known to modulate radiation sensitivity such as
DNA repair or activation of apoptosis, and so cannot be used
to predict individual sensitivity. There have also been a number
of models developed to explore some aspects of biological
response, in particular DNA repair pathways, through a range
of analytic and stochastic approaches (23–25, 106, 107). These
models provide some further insight into the underlying
mechanisms of these repair pathways, but are also typically not
useful for comparisons between cell lines, as they often involve
large numbers of cell-line specific parameters, or do not fully
describe the consequences of misrepair and so cannot be linked
to biological endpoints such as survival. More detailed
discussions on these model differences can be found elsewhere
(6). By offering a model which combines sufficient detail in the
pathways to reflect the heterogeneity between cell lines with
representation of the key biological features of cells, Medras
offers a potential way to incorporate knowledge into individual
predictions of intrinsic sensitivity.

In addition to its core development, Medras has been used in
other mechanistic studies, including investigations of the impact
of changing chromosome number and DNA content on
radiation sensitivity (108) and the use of different physical and
genomic models on the predicted yields of DNA damage and
chromosome aberrations (109). It is hoped that by making this
code more widely available and providing integration with the
SDD format for import of DNA damage data from other models,
Medras can help support further investigations in this area.

A number of limitations and challenges do remain, however.
One major challenge is that Medras still involves a number of
14
simplifying assumptions about how cells respond to ionizing
radiation, including around the nature and spatial distribution of
DNA damage, the distribution of DNA within chromosome
territories within the nucleus, and the relatively simple binary
model of misrepair pathways. All of these can potentially be
refined by drawing on additional sources of mechanistic
information such as improved Monte Carlo models of DNA
damage distributions (109), models incorporating realistic
chromosome territories (110), and new systems biology models
of the key DNA damage repair and cell death pathways.

The nature and role of damage complexity remains a
significant area of potential future development. In the current
model, break complexity is treated as a probabilistic binary
factor, with breaks deemed as either complex or not, which
impacts on the overall repair kinetics and likelihood of repair
failure. This repair failure rate is relatively small in repair
competent cells the repair failure rate is relatively low and
most effects, both at low and high LETs, are dominated by
interactions between independent DSBs, rather than local
complexity around individual DSBs. However, there is
evidence that there may be sub-classes of DSBs which are
more difficult to repair due to complexity on a scale of tens to
hundreds of bases, due to additional strand breakage, base
damage, and other local sequence alterations (111, 112). As
this local break complexity depends strongly on LET, this may
play a role in the LET-RBE relationship which is currently
unaccounted for. Unfortunately, to date there is no clear
consensus on what constitutes a complex DSB from the point
of repair processes, and thus no robust quantification of these
effects which can be used to parameterize models. As a result,
Medras’ current model focuses on binary misrepair as a driver of
lethality, which has been shown to effectively capture key trends
in radiation sensitivity across a wide range of scenarios. Future
work drawing on additional data sources, such as precise
quantification of DSB complexity or Monte Carlo simulations
on the base-pair scale may enable these two contributions to
lethality to be separated and understood in more detail.

One other major challenge in this area is the degree of data
heterogeneity seen in radiation response data, particularly relating
to survival. While many studies of mechanistic endpoints show
relatively consistent results (as seen in Figures 2, 3), survival
measurements are subject to significant heterogeneity, even for
cell lines which are believed to respond similarly (Figure 4).
However, how much of this variation reflects real underlying
biology remains an outstanding question. It is now widely
acknowledged that challenges in dosimetry in a range of
experimental systems can introduce uncertainties on the order of
20-30% in reported doses and derived sensitivity parameters (113,
114). In addition, extensive sequencing studies have shown
significant genetic differences in cell lines once they have been
cultured in different laboratories, in many cases dramatically
changing their sensitivity to targeted therapies (115). This
potential variation is supported by reports of variations of 15-30%
in published radiosensitivity parameters across over 100 studies of
A549 lung cancer cells, which were not adequately explained by any
reported experimental factors (116). A better understanding of these
FIGURE 7 | Model predictions of survival at varying dose rate. Modelled MID
is compared to observed MID across a range of cell lines and dose rates,
with points coloured according to delivered dose rate. Good correlation can
be seen, with the increase in radioresistance reflected for cells with
competent repair, but not for cells with DNA repair defects (bottom left). Best
fitting slope has a slope coefficient of 1.0 ± 0.03, with an R2 of 0.84.
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effects, ideally supported by matched characterization and response
data, is essential to future model refinement.

If this can be achieved, however, there remains significant
potential to deliver novel insights into intrinsic radiation
sensitivity and translate this into clinical impact. While the
current radiation phenotype parameters in the model depend
on direct measurement, many of these parameters are closely
linked to particular genetic pathways, which are very well-
characterized. If models could be developed which linked these
phenotypic parameters to factors which are measurable for
patient tumors at the time of treatment – such as gene
expression and mutation – then these models could in
principle be applied to patient samples as part of the treatment
workflow, enabling robust patient sensitivity stratification and
the possibility of personalized radiotherapy treatment schedules,
incorporating potentially not only overall sensitivity but also
variations in, for example, sensitivity to fraction size.

In conclusion, Medras provides a mechanistic model which
enables prediction of a range of experimentally and clinically-
relevant endpoints, without the use of any cell-specific fitting
parameters. This has the potential to be valuable not only for
improving our understanding of the processes involved in response
to ionizing radiation, but also potential clinical translation of these
effects for treatment personalization and optimization.
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