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Objectives: To date, radiomics has been applied in oncology for over a decade and has
shown great progress. We used a bibliometric analysis to analyze the publications of
radiomics in oncology to clearly illustrate the current situation and future trends and
encourage more researchers to participate in radiomics research in oncology.

Methods: Publications for radiomics in oncology were downloaded from the Web of
Science Core Collection (WoSCC). WoSCC data were collected, and CiteSpace was
used for a bibliometric analysis of countries, institutions, journals, authors, keywords, and
references pertaining to this field. The state of research and areas of focus were analyzed
through burst detection.

Results: A total of 7,199 pieces of literature concerning radiomics in oncology were
analyzed on CiteSpace. The number of publications has undergone rapid growth and
continues to increase. The USA and Chinese Academy of Sciences are found to be the
most prolific country and institution, respectively. In terms of journals and co-cited
journals, Scientific Reports is ranked highest with respect to the number of
publications, and Radiology is ranked highest among co-cited journals. Moreover, Jie
Tian has published the most publications, and Phillipe Lambin is the most cited author. A
paper published by Gillies et al. presents the highest citation counts. Artificial intelligence
(AI), segmentation methods, and the use of radiomics for classification and diagnosis in
oncology are major areas of focus in this field. Test-retest statistics, including
reproducibility and statistical methods of radiomics research, the relation between
genomics and radiomics, and applications of radiomics to sarcoma and intensity-
modulated radiotherapy, are frontier areas of this field.

Conclusion: To our knowledge, this is the first study to provide an overview of the
literature related to radiomics in oncology and may inspire researchers from multiple
disciplines to engage in radiomics-related research.
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INTRODUCTION

Unlike the natural intelligence displayed by humans and animals,
artificial intelligence (AI) is intelligence demonstrated by
machines. AI can be applied to develop systems possessing
characteristics of human beings: the ability to learn, reasoning,
sensing, and actioning. Initially, the development of automated
interpretation of medical images was based on human decision
models to perform high-level interpretations of images. At the
time, logical rules were applied to AI machines. AI machines
sought specific structures such as lines or circles for identification.
Such systems have succeeded in other fields, such as in business
and manufacturing. Next came the second generation of AI
algorithms. Instead of focusing on certain symbols of images,
such algorithms were designed to be more statistical. This kind of
model of medical images may develop from healthy individuals,
and its parameters are inferred from data. Such an algorithm can
assist in helping radiologists identify lesions. The segmentation
method serves as a classic example of this algorithm. Currently,
the explosion of big data has ushered AI into a new era, and
algorithms are called data-driven/model-free approaches, which
involve automating knowledge discovery. This approach is now
widely applied in medical research, and a popular application of
this method is called radiomics (1).

Radiomics, first pioneered by Philippe Lambin (2), uses high-
throughput data to extract certain features from medical images
for personalized precision medicine development. With the
development of AI, the field of radiomics has grown rapidly
and been widely used in every phase of tumor treatment. Relying
on quantitative data generated by medical imaging and the
support of technology, radiomics offers a risk-free and efficient
method for diagnosis (3, 4), classification (5), and prognosis
prediction (6, 7) in oncology.

Data selection, medical imaging, feature extraction, exploratory
analysis, and modelling are the five steps of radiomics (2, 8, 9).
Applying standard imaging protocols to generate high-quality
images from computed tomography (CT), positron-emission CT
(PET-CT), magnetic resonance imaging (MRI), radiography or
using high-quality photographs of lesions can enable radiomics
reproducibility. Then, the volume of interest (VOI), which
identifies lesions from images, is delineated by experienced
radiologists or semiautomated or automated segmentation
methods. The features extracted from VOIs are inputted to
generate quantitative descriptions, which contain semantic and
agnostic features. The value of extracted features is then analyzed,
and only the features most contributing to the classifiers are
retained for future modelling. In practice, this step can be
supported by statistical approaches and AI, including a
univariate analysis of variance, the least absolute shrinkage and
selection operator, decision trees, neural networks, and support
vector machines (9). The relationship among the algorithms is
presented in Supplementary Figure S1.

Although radiomics can be applied in a large number of
conditions, it is most well developed and widely used in oncology
due to initial support received from the National Cancer Institute
(9, 10) and Quantitative Imaging Biomarker Alliance (11). In
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1973, some researchers intended to use texture features to
classify images (12). In 1995, researchers started to use a
convolutional neural network (CNN) to identify lung nodes,
suggesting that it is possible to train computer algorithms to
identify medical images (13). In late 2000, researchers attempted
to identify the relationship between the imaging of tumors and
their genomic types (14, 15). At the time, most studies were
performed on relatively small datasets and lacked external
examination, meaning that the established radiomic models
were only based on small datasets from individual organizations
and could not be validated by data from external organizations.
With innovations made in the field of medical imaging, radiomics
in oncology has rapidly progressed (16–19). In around 2012,
radiomics was first proposed by Philippe Lambin; ever since,
thousands of researchers have been encouraged to conduct
radiomics-based research. In 2014, radiomics in oncology was
used to examine CT imaging features for diagnosis and prediction
(20). In 2016, researchers found for the first time that the
radiomics signature could predict lymph node metastasis in
patients with colorectal cancer (21). In 2018, researchers found
that radiomics features could predict the treatment responses and
prognosis of patients receiving immunotherapy (18). Some
researchers have developed models for the automated
identification of lesions from videos and images (3, 4). In
addition, some researchers have found a correlation between
radiomic features and tumor histology (22). At present, by
extracting various features from medical images and translating
these image features into high-throughput and quantitative data
for analysis, radiomics can be used for the classification and
differentiation of different lesions and subtypes of tumors (3–5)
and for survival prediction (23) and prognosis prediction for
patients undergoing radiation therapy (6, 24, 25). Even with
common limitations, such as a lack of outside validations, the
use of small datasets or the variabilities caused by medical imaging
protocols, radiomics research has offered a significant opportunity
for researchers to make clinical decisions from an entirely
new perspective.

Since radiomics studies mostly rely on medical data, which
are subject to approaches to data acquisition and analysis used,
creating a gold standard for medical models remains a great
challenge. When establishing a clinical model, the input and
processing of radiomic features can drastically influence the
model, as these features depend on the radiologists who record
the clinical characteristics, on AI and on statistical methods. For
example, inexperienced radiologists may fail to delineate a lesion
entirely or miss significant clinical features, and different AI and
statistical methods may create clinical diagnosis or prediction
models with inconsistent accuracy. For these reasons,
standardizing the procedures of radiomics studies and finding
robust features with which to establish models are essential in
achieving clinical goals of radiomics research.

Bibliometric analysis evaluates scientific activities in a certain
field (26). A simple quantitative technique provided by citation
analysis provides a means to estimate the impact of an article
(27), such as the influence of bridging articles between themes or
the influence of articles laying the foundation in certain fields.
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CiteSpace, developed by Chaomei Chen, is a Java-based
application for detecting and visualizing possible trends and
radical changes in scientific disciplines over time (28) and is a
valuable tool for bibliometric analysis. The program can assist
researchers in identifying influential and effective areas of
research, trends, and prospects in certain fields. CiteSpace has
been widely applied in many subjects for bibliometric analysis,
such as neuroscience, oncology, and cardiovascular science
(29–31).

In this article, we use data collected from the Web of Science
Core Collection (WoSCC) and CiteSpace to analyze 7,199
publications related to radiomics in oncology and generated
knowledge maps for the first time, to our knowledge. Since
radiomics provides a new means for clinicians to examine entire
tumors with rather minimally invasive methods, we sought to
provide a more comprehensive understanding of the ever-
changing field of radiomics. Furthermore, to encourage
researchers from various disciplines to actively and creatively
participate in practicing radiomics, we conducted our
bibliometric analysis based on relevant literature in this field to
outline the countries, authors, institutions, and journals that
have made significant contributions to this field. In applying this
method, we also identify areas of focus and future trends.
METHODS

Data Acquisition and Search Strategy
Relevant literature was collected from theWoSCC. The following
search terms were employed, the searching formula is also
presented in Supplementary Figure S2.

TS = (image�  OR picture�  OR photograph�  OR X − ray�  OR CT OR MRI OR panorama�  OR
Computer Tomography OR Magnetic Resonance Imaging OR tomography OR PET CT

AND

(TS =  (AI OR Artificial Intelligence OR deep learning OR machine learning OR computational

intellegen�  OR Convolutional Neural Network OR CNN) OR(TS = radiomic� )
AND

TS =   tumor�  OR cancer�  OR carcino�  OR onco�ð Þ

(1)

(TS = radiomic�Þ
AND

TS =   tumor�  OR cancer�  OR carcino�  OR onco�ð Þ
(2)

The time interval was set to 2011 to 2020. Only articles and
reviews were included, and no language restrictions were applied.
The search and download process was carried out on March 14,
2021 to eliminate substantial errors caused by daily database
updates. Given that data were directly downloaded from the
database, ethical approval was not required.

Data Analysis
CiteSpace V was used to remove duplicates and analyze the 7,199
unique records exported. Then, to visualize emerging trends and
areas of focus in tumor radiomics research, CiteSpace was applied to
generate knowledge mappings of countries, institutions, co-
occurrences of keywords, references, authors and co-cited authors,
and co-cited journals (28). With each year covered by a dataset
assigned a different color, CiteSpace uses colorful node edges or
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crosses to discriminate between different research objects, including
countries, institutions, words, references, etc. The size of rings on
nodes indicates the number of publications for each node. Purple
rings surrounding circles indicate the centrality of nodes. Moreover,
“Burst detection” is a function provided by the software to detect
current and prospective areas of focus. The detection objects of this
function can include noun phrases, keywords included in abstracts,
papers, and so on, revealing words, or papers undergoing citation
bursts in a given period. When the time period is set to the present,
this means that some keywords or papers are undergoing a citation
burst, which may indicate further prospects for a given field. The
impact factors (IFs) for all publications were documented based on
the Journal Citation Report (2019).

Generally, the productivity of individuals, journals, and
countries can be measured by the total number of papers,
whereas the total counts of citations of authors, journals, or
references measure the total impact. Defined as the maximum
value of h such that the given author/journal has published at least
h papers that have each been cited at least h times, the H index is
used to characterize a researcher’s output in scientific research.
The impact factor (IF), defined as a scientometric index, is also a
measurement of journals and articles (32). The value is calculated
as the average number of citations a publication receives in 2 or 5
years as indexed by the Web of Science. Furthermore, co-citation
is defined as the number of times two documents are cited together
(33); that is, when two publications or authors are cited at the same
time, they may focus on the same theme of research, which may
indicate their cooperation. A burst of an event refers to a surge in
the frequency of a certain event, such as the emergence of a keyword
or the citation of a specific article (34). These parameters allow us to
identify productive institutions and their countries and outstanding
individuals in the studied field. Figure 1 illustrates the research steps
of this study.
RESULTS

State of Publication Output
A total of 7,199 publications were examined in the present study
and include 6,417 (89.1%) original articles and 782 (10.9%)
reviews. Figure 2 shows the chronological distribution of the
publications for 2011 to 2020. With technological breakthroughs
in AI, an increasing number of researchers have been attracted to
radiomics in oncology. As depicted in the diagram, the number
of articles and reviews grew steadily in the first 4 years. From
2015 to 2020, the annual number of publications grew
exponentially and peaked in 2020.

Active Countries and Institutions
The included publications were published in 82 countries and
regions over the last decade. The top 10 contributors are
presented in Supplementary Table S1, and the cooperative
relationships among them are shown in Supplementary Figure
S3. When counting the number of publications, the USA (2,280)
ranks first, followed by China (2136), India (456), Germany (454),
and England (401).
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Overall, 715 institutions contributed to this field. Supplementary
Table S1 shows the 10 most productive institutions, and
Supplementary Figure S4 shows the cluster of institutions engaged
in radiomics research in oncology by keyword. The most productive
institution is the Chinese Academy of Sciences with 224 publications,
followed by Sun Yat-Sen University (168), Fudan University (155),
Harvard Medical School (145), and Stanford University (136). The
three most prolific institutions are Chinese universities.

Productive Journals
A total of 1,247 journals published articles or reviews in this field.
We list the 10 most productive journals with their IFs in this field
in Supplementary Table S2 and provide an overdual map of
citing and cited journals in Figure 3. According to statistics from
Frontiers in Oncology | www.frontiersin.org 4
the WoSCC, Scientific Reports published 253 publications over
the last decade and thus ranks first.Medical Physics ranks second
(244 publications), followed by IEEE Access (241 publications),
European Radiology (213 publications), and Frontiers in
Oncology (180 publications).

The 10 most co-cited journals are given in Supplementary
Table S2. Among co-cited journals, Radiology was cited the most
(3258 times), followed by IEEE Transactions on Medical Imaging
(2800 times), Scientific Reports (2410 times), PLoS One (2407
times), and Medical Physics (2320 times).

Productive Authors
More than 2,000 authors have contributed to this field of research.
Supplementary Table S3 shows the 10 most prolific authors, and
FIGURE 1 | Workflows of this study.
FIGURE 2 | Chronological distribution of publications in radiomics for oncology from 2011 to 2020.
September 2021 | Volume 11 | Article 689802
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Figure 4 presents a timeline of authors’ contributions to this field.
Jie Tian is identified as the most productive author with 121
publications, and Anant Madabushi (56 publications) ranks
second, followed by Dong Di (52 publications), Philippe Lambin
(49 publications), and Zhenyu Liu (45 publications).

Supplementary Table S3 shows the leading 10 authors in terms
of numbers of citations. The author with the most citations is
Philippe Lambin (1,171 times), followed by Alex Krizhevsky (1,090
times), Robert J. Gillies (1,066 times), Hugo J. W. L Aerts (1,052
times), and Yann Lecun (1,020 times). Supplementary Figure S5
presents the authors’ potential cooperative relationships, as links
between nodes indicate instances where authors are cited together.
Since the authors on the left mainly focus on applications of
radiomics while authors on the right have most laid the
foundations of this field, Robert M. Haralick, shown in the
middle of the network, has contributed in connecting applications
and algorithms of radiomics in oncology (12).
Frontiers in Oncology | www.frontiersin.org 5
With more than 2,000 author contributions, the knowledge map
of cited authors provides information regarding the most influential
authors and the collaborative relationships among them.

Popular References
CiteSpace provides a mixed map of terms and co-cited
references, as shown in Figure 5. We present the 10 most cited
references in Table 1. Of the 6,218 publications shown, an article
published by Robert J. Gillies et al. in 2016 ranks first with 1,036
citations (9). This report describes the processes, challenges, and
opportunities of radiomics in detail, particularly in reference to
the field of oncology.

The burst detection results show articles that have attracted the
attention of peer scientists. Citation bursts note the duration and
strength of each burst, or the duration and intensity of burst status,
respectively (34). Figure 6 shows the 100 references with the
strongest citation bursts. The citation burst analysis shows that a
FIGURE 3 | The dual map overlay of journals. This figure can be divided into two sections. Each dot represents one journal, and this knowledge map uses different
colors to symbolize journals from different subjects. On the left, there are the citing journals of this field, and on the right, lays the cited journals in this field. The
waves link to two sides means the publications on the journals of the left side may cite publications from the journals on the other side. For example, publications on
journals in the field of medicine medical and clinical (labeled 2 on the left), may refer to the publications on the journal of systems, computing, and computer.
FIGURE 4 | The timeline view listed authors by clustering through keywords. Each node represents one author. The position of the node here represents the time
of an author’s first publication. There were 15 clusters of keywords. In each cluster, the size of each node shows the contribution of the author. It seems that the
keywords “prostate” and “breast cancer MRI” occur most recently, which suggest the active participations of researchers in practicing radiomics for oncology related
to them, and it also shows that researchers have been practicing radiomics research related to dental artifacts since it lasts the longest duration.
September 2021 | Volume 11 | Article 689802
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publication by Hugo J. W. L Aerts et al. earned the highest burst
value (95.69) from 2015 to 2020 (35). This result indicates that this
publication underwent a citation burst of the highest intensity
from 2015 to 2020. The article reports that the radiomics data of
cancer patients contain prognostic information and are associated
with underlying gene expression patterns.

Keyword Research
Over 800 keywords were extracted from publications. Figure 7
shows the keywords mentioned most frequently in
Frontiers in Oncology | www.frontiersin.org 6
publications. In terms of frequency, the term “artificial
intelligence” ranks first (2,931 times), followed by “oncology”
(1,972 times), “radiomics” (1,437 times), “classification” (1,436
times), “diagnosis” (1,020 times), and “segmentation”
(995 times).

We identify the top 60 keywords with citation bursts, as
shown in Figure 8, and we provide five keywords with the
strongest recent citation bursts in Table 2. Of the 60 keywords
with the strongest citation bursts, “radiation therapy” shows the
highest burst strength level of 16.81. “Test retest”, “sarcoma”,
FIGURE 5 | The mixed science map consists of the most cited noun phrases in publications and co-cited references in this field. By doing so, we illustrate the most
co-cited references and the noun phrases in this field and uncover the relationship between them. There are two types of shapes in this picture. Each cross
symbolizes a noun phrase, and each node represents a piece of co-cited references. There are links between the crosses and the circles. The links between two
circles or noun phrases indicate there are some relationships between two pieces of articles or two phrases since they can be cited together. Also, the links between
circles and crosses indicate that a piece of paper can be cited with certain noun phrases. Generally, there are three domains of this map. On the right and the left
sides lay the most co-cited articles in the field. The ones on the left are mainly related to the definition and application of radiomics while the references on the right
are mostly related to the AI algorithms involved in this field. In the middle are the most-cited noun phrases in the articles in this field. As indicated in the picture, the
publications that contain these phrases are the bridges to relate publications from both sides. It illustrated that the most-cited articles from both sides may focus on
conducting researches related to the noun phrases in the middle.
TABLE 1 | The top 10 co-cited references.

Rank Title Author NOC

1 Radiomics: Images Are More than Pictures, They Are Data Robert J. Gillies et al. 1,036
2 Deep Residual Learning for Image Recognition Kaiming He et al. 831
3 Deep Learning Yann LeCun et al. 741
4 U-Net: Convolutional Networks for Biomedical Image Segmentation Olaf Ronneberger et al. 707
5 Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach Hugo J.W.L.Aerts et al. 638
6 Dermatologist-Level Classification of Skin Cancer With Deep Neural Networks Andre Esteva et al. 583
7 A Survey on Deep Learning in Medical Image Analysis Geert Litjens et al. 470
8 Radiomics: The Bridge between Medical Imaging and Personalized Medicine Phillipe Lambin et al. 429
9 ImageNet Classification With Deep Convolutional Neural Networks Alex Krizhevsky et al. 386
10 Fully Convolutional Networks for Semantic Segmentation Jonathan Long et al. 377
Septe
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“statistics”, “intensity-modulated radiotherapy,” and “genomics”
are keywords with recent citation bursts, and the term “test
retest” achieves the highest burst strength and the longest
duration for 2016 to 2020. These keywords indicate that the
Frontiers in Oncology | www.frontiersin.org 7
reproducibility and statistical methods of radiomics, the
relationship between radiomics and genomic types, and
applications of radiomics to sarcomas and intensity-modulated
radiotherapy are major focuses of research in this field.
FIGURE 6 | Detection of top 100 references with the strongest citation bursts.
FIGURE 7 | This is the knowledge map of the most cited keywords in this field. Each node represents a keyword, and the sizes of rings on the node denote the
number of publications related to the keyword in a certain year. This map suggests the hotspots in this research field.
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DISCUSSION

To our knowledge, this is the first bibliometric analysis of
radiomics in oncology. This article provides an in-depth and
visualized analysis of publications of this field, which may help
researchers gain a basic understanding, develop areas of focus
and trends and pursue further practice in this field.

The 10 leading countries include four Asian countries, two
American countries, and four European countries. The USA has
contributed a great volume of publications (2,280) and has
collaborated frequently with other countries. Publications from
the USA and China comprise >40% of all publications. Among
the 10 leading institutional contributors, the Chinese Academy
of Sciences ranks highest in terms of volume. Furthermore, six of
the 10 leading institutional contributors are Chinese universities.
However, even with the country’s large volume of publications
and despite including three of the five most prolific institutions,
collaboration in China has been rare and limited, suggesting that
although China has been carrying out radiomics research in
oncology for the last decade, extensive collaborative work
is needed.
Frontiers in Oncology | www.frontiersin.org 8
Scientific Reports has been the leading contributions in this field
with an IF of 3.998. Radiology has published fewer publications but
is the most cited and hence may be viewed as an influential journal
in this field with a high IF of 7.931; several ground-breaking
articles have been published in Radiology (8, 9, 35).

We list the 10 leading contributing authors and the 10 most
frequently cited authors. These authors have devoted themselves to
conducting research in oncology radiomics and laid the foundation
of basic knowledge in this field. Supplementary Figure S5 shows
the corelationships of authors, which may indicate collaboration.
With more than 100 publications, Jie Tian is the most prolific
author with an H-index of 65. In 2016, to assist researchers in
evaluating malignancy uncertainty, Jie Tian and his team developed
a multicrop convolutional neural network to effectively characterize
nodules instead of carefully segmenting using imaging and time-
consuming feature extraction procedures (36). With the most
citations of the 10 leading co-cited authors, Philippe Lambin is
considered a pioneering and influential researcher in this field. He
was the first to define radiomics and has made substantial efforts to
standardize radiomics research (2, 8).

Among the 10most cited references, an article by Robert J. Gilles
et al. has been cited most, as this work provides basic information
for researchers seeking to participate in radiomics research on work
procedures, applications, challenges, and potential uses (9). In
addition, three of the five most influential references focus on
algorithms or basic knowledge of this field (37–39).

Keywords can represent areas of focus in a given field as
shown in Figure 7, and we identified “artificial intelligence,”
“tumors,” “classification,” “segmentation,” and “diagnosis” as
areas of focus in this field. We summarize these areas as follows:
FIGURE 8 | Detection of top 60 keywords with the strongest citation bursts.
TABLE 2 | Top 5 keywords in the network burst recently.

Rank Keywords Strength Begin End

1 Test retest 5.97 2016 2020
2 Genomics 3.82 2018 2020
3 Sarcoma 4.7 2019 2020
4 Statistics 4.1 2019 2020
5 Intensity-modulated radiotherapy 3.91 2019 2020
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1. AI: Much of the development of radiomics relies on AI
algorithms, as they can mimic human performance. To date,
AI algorithms have been most widely used in radiomics in
oncology. In fact, the development of AI can directly influence
this field. In the past, radiomics studies most rely on traditional
machine learning methods: the random forest, decision tree,
and regression algorithms. These algorithms mostly rely on
manual segmentation, require a huge amount of matrix
manipulations, and can only perform well in small given
datasets. These time-consuming processes hindered the
applications of radiomics studies. Unlike the traditional
machine learning methods, deep learning is a subset of AI
that can acquire discriminative features from data. Instead of
requiring experienced radiologists to evaluate medical images,
deep learning algorithms excel at delineating and monitoring
cancerous lesions and can translate medical images into
quantitative data to be automatically analyzed. This approach
has been most frequently applied in radiomics in oncology (40,
41). Moreover, radiomic models integrated by AI algorithms
andclinical features can increase the capacity to judge individual
treatment.With effortsmade to developAI technology, ground-
breaking AI algorithms may enable computers to act more
similar to human beings in the future.

2. Oncology, radiomics, diagnosis, and classification: When
analyzing a medical image, clinicians usually depend on their
personal experience, which is subjective, and results therefore
vary among different radiologists (41). By applying quantitative
data extracted from medical images for analysis, radiomics
provides a new objective means using AI algorithms to detect
lesions. Radiomics research today mainly focuses on diagnosis
and classification (42, 43). For example, a computer-assisted
diagnosis system can automatedly identify cancerous lesions
with images and videos (44), and researchers have made
considerable efforts to build radiomics models to classify
identical cancerous lesions and lymph node status (5, 45).

3. Segmentation: To achieve reliable radiomic models in
oncology, robustly and precisely delineating lesions is
essential. However, traditional manual segmentation usually
takes a very long time to perform, generates interobserver
variability, and requires the involvement of experienced
radiologists for analysis. To address these problems, automated
segmentation methods have been established in radiomic
research in oncology (46, 47).

Our burst detection results of references reveal articles that
have attracted the attention of peer scientists (34). It seems that
the ground-breaking articles and reviews with the highest
citation burst strength and longest durations were published in
2015 (35). Since citation bursts may help researchers obtain a
quick review of research focuses and perspectives, below we list
some recent radiomic studies identified by citation burst
detection that may be defined as ground-breaking works in
this field in leading prospective research:

1. Some radiomic signatures have prognostic power, and there
is a prognostic radiomic signature associated with underlying
gene expression patterns (35);
Frontiers in Oncology | www.frontiersin.org 9
2. Researchers have built a prostate cancer MRI computer-aided
detection system evaluated on a per-patient basis and compared
with the prospective performance of radiologists (48);

3. Multiparametric MRI has been used to accurately locate and
segment rectal cancer (49);

4. Researchers have found that the preprocessing of CT images
may influence featurevolumedependenceand its significance in
univariate analysis models (50);

5. Using simple linear regression, a subset of radiomic features
extracted from CT and cone-beam CT images can be
interchangeable, and cone-beam CT radiomics can be used
as a prognostic imaging biomarker (51).

We also found that radiomics research in oncology may focus
on the following five keywords: test-retest, sarcoma, statistics,
intensity-modulated radiotherapy, and genomics. These terms
may reflect prospective areas of focus in radiomics for oncology
and are summarized as follows:

1. Test-retest and statistics: Test-retest methods involve repeating
the process of acquiring medical images to test the stability of
radiomic features that they may generate. As there are many
radiomics models based on various imaging parameter settings
and algorithms, test-retest studies of these radiomics features
have become essential for future applications. Researchers in this
field have engaged in examining the reproducibility of radiomic
features (52–54). However, according to a systematic review by
Alberto Traverso et al., under different settings, there is no
consensus on the most reproducible features (55). Moreover, the
statistical method used in radiomics is of great significance. To
conduct radiomic research of high quality, standardized
statistical methods are essential (56, 57). Likewise, different
facilities or radiologists involved during the acquisition of
medical images and various analysis algorithms used may lead
to bias in radiomics models. Sometimes, owing to the
nonstandardized procedure of medical imaging, pictures are
too distorted or of low resolution to be read by an AI algorithm.
Inexperienced doctors may also fail to identify lesions. Such bias
may lead to the conversion of the output result when
establishing a radiomic model. Thus, future research may
focus on the reproducibility of radiomics models.

2. Sarcoma: To date, radiomics has been used in the classification
(58) and prediction of metastasis for sarcomas (59); additionally,
nomograms have been used in survival prediction (60) for
sarcomas. There have been relatively few radiomic analyses of
sarcomas, since the prevalence of this disease is relatively low.
However, this result implies that more radiomic studies should
focus on sarcomas.

3. Intensity-modulated radiotherapy: Researchers have used
radiomic models to predict patients’ responses to intensity-
modulated radiotherapy (25, 61). As datasets expand, further
applications of radiomics in predicting prognosis for patients
undergoing radiotherapy may be identified.

4. Genomics: Radiogenomics involves the use of data generated
by radiomic analysis to correlate with genomic patterns.
Evidence has shown that radiomics features are correlated
with gene patterns (35, 62, 63). Radiomic features that do not
September 2021 | Volume 11 | Article 689802
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relate to gene types may supply independent information,
which may enable precision medicine (9).

Our study has some limitations. First, we only focus on
literature included in the WoSCC; thus, not all publications are
considered and citation counts may be underestimated. Second,
CiteSpace only analyses the main conclusions of publications
instead of reviewing full texts; thus, some information may have
been overlooked. Finally, our results only reflect the current state
of radiomics research in oncology, as data are typically prone to
frequent changes.

To our knowledge, this is the first analysis of radiomics in
oncology conducted from the perspective of bibliometrics. The
presented results may help researchers gain a basic understanding
and detect areas of focus and trends and may encourage further
practice in this field.
CONCLUSION

Due to advances in technology, radiomics in oncology has
significantly evolved over the past decade. According to results
found through CiteSpace, we can conclude that current studies in
this field focus on AI algorithms and on using radiomics to realize
automated segmentation and classify and diagnose lesions.

Such a trend may be attributed to the rapid growth of AI
algorithms, which can identify medical images. Researchers have
used this new tool to train machines to identify lesions. Many
articles on such issues have emerged in the last decade. This may
explain why in recent decades the number of papers in this field has
sharply increased. However, even with AI algorithms surpassing the
performance of physicians, we must carefully validate them.

Since CNN is the most widely used AI algorithm in this field,
the terms “test-retest” and “statistics” were identified during our
burst detection of keywords. This finding is attributed to the
characteristics of CNN itself. Unlike other algorithms, CNN
requires magnitude data to train models. When such data are
available, CNN can establish a robust model with high precision
for clinical decision-making. However, the accessibility of medical
data is always limited, and many studies mainly establish their
models based on relatively small datasets. Such models may
perform well only for the studied datasets. Meanwhile, a given
CNN network can only perform a single defined task based on the
given labels and dataset. In regard to combining several radiomic
models in identifying the same oncolesions, relabeling images and
retraining models may be needed due to the limitations of CNN.
Therefore, model test-retest and statistical methods are likely to be
widely used in future work in this field. The identification of
robust features and use of standardized statistical methods may
offer opportunities for the combination of various CNNmodels. If
this can be eventually achieved, robust CNN models may be
developed and may surpass the capacities of human beings. Thus,
with the application of CNN models, researchers can realize their
limitations. The field will thus develop with the use of a new kind
of algorithm that may overcome the limitations of the CNN
network (1, 64).
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Fromourfindings,wemustnote thatnot all kindsof lesionshave
received equal attention. According to the provided evidence, lung,
breast, and prostate cancer have been the most frequently studied
malignancies. According to 2020 cancer statistics (65), some of the
most prevalent cancers have not been widely studied, including
colon and rectum tumors, bladder cancer, kidney cancer, etc.
Additionally, some region-related cancers, including liver, gastric,
and oral cancer (66), which are major forms ofmalignancy in Asia,
have been less widely reported on. This may relate to barriers of
radiomics technology and poor cross-country collaboration.
“Sarcoma” was highlighted in the burst detection analysis,
indicating that research has focused on this field; however, only a
few studies have specifically investigated this type of malignancy.
This trendmaybedue to the relatively lowdisease incidence and fast
progression of the disease, rendering the availability of imaging
datasets more constrained. An increased use of radiomics to
diagnose the above less-reported malignancies may accompany
the development of AI algorithms and the sharing of databases
across regions and countries.

Intensity-modulated radiotherapy and genomics may be more
heavily integrated with radiomics in the future, potentially because
it usually takes a long time to establish a radiomic model that can
predict the survival rate of intensity-modulated radiotherapy.
With the establishment of a large dataset, the use of radiomics
to predict the prognoses of patients undergoing such therapy may
increase in the future. Additionally, studies have found
relationships between cancerous lesions and their gene patterns.
Since radiomics is a risk-free means to examine the gene patterns
of oncology, it may become the next area of focus of this field.

In conclusion, with active participation and regulated
practices, radiomics may be applied in every phase of oncology
treatment, which could further advance the development of
oncology and will likely change the state of oncology imaging.
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