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Background: To establish a machine-learning-derived nomogram based on radiomic
features and clinical factors to predict post-surgical 2-year progression-free survival (PFS)
in patients with lung adenocarcinoma.

Methods: Patients with >2 years post-surgical prognosis results of lung adenocarcinoma
were included in Hospital-1 for model training (n = 100) and internal validation (n = 50), and
in Hospital-2 for external testing (n = 50). A total of 1,672 radiomic features were extracted
from 3D segmented CT images. The Rad-score was established using random survival
forest by accumulating and weighting the top-20 imaging features contributive to PFS. A
nomogram for predicting PFS was established, which comprised the Rad-score and
clinical factors highly relevant to PFS.

Results: In the training, internal validation, and external test groups, 69/100 (69%), 37/50
(74%) and 36/50 (72%) patients were progression-free at two years, respectively.
According to the Rad-score, the integral of area under the curve (iAUC) for
discriminating high and low risk of progression was 0.92 (95%CI: 0.77-1.0), 0.70 (0.41-
0.98) and 0.90 (0.65-1.0), respectively. The C-index of Rad-score was 0.781 and 0.860 in
the training and external test groups, higher than 0.707 and 0.606 for TNM stage,
respectively. The nomogram integrating Rad-score and clinical factors (lung nodule type,
cM stage and histological type) achieved a C-index of 0.845 and 0.837 to predict 2-year
PFS, respectively, significantly higher than by only radiomic features (all p < 0.01).

Conclusion: The nomogram comprising CT-derived radiomic features and risk factors
showed a high performance in predicting post-surgical 2-year PFS of patients with lung
adenocarcinoma, which may help personalize the treatment decisions.
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INTRODUCTION

Lung cancer is the most common malignant tumor worldwide,
accounting for 11.6% of all cancers, and 18.4% of all cancer
deaths (1). Population-based screening improved the detection
of early-stage lung cancer (2). TNM stage, as determined by
medical imaging, has been widely considered an important
predictor of prognosis and is used to guide therapeutic
decision-making (3). However, even patients with the same
TNM stage may have different prognoses due to tumor
heterogeneity (4). In lung adenocarcinoma, the primary
histological type of lung cancer, post-surgical outcomes vary
among patients, and post-surgical recurrence is frequent because
most cases have mixed subtypes (5), increasing the importance of
a personalized post-surgical follow-up theme.

Machine learning algorithms have been developed to analyze
the high-dimensional features of tumor images, which provide
better specificity than naked-eye observation (6). Radiomics is a
subfield of machine learning, in which interpretable quantitative
features are extracted from medical images to characterize tumor
heterogeneity. Tumor radiomics research has made some
progress, such as predicting survival rate after chemotherapy
(7) and immunotherapy (8) , analyz ing the tumor
microenvironment (9), and promoting individualized
treatment of patients by providing accurate and effective
decision support (10). Previous studies have associated
radiomic features with multiple clinical endpoints, such as
survival and drug response, in patients with non-small cell
lung cancer (NSCLC) (11–13). However, the concordance
index of the radiomic models for predicting the survival in
lung cancer was not optimal (11). There is no consensus
whether radiomics-based methods can effectively predict the
post-surgical prognosis of patients with lung adenocarcinoma.

Selection of appropriate follow-up plans after resection of
lung adenocarcinoma requires accurate prediction of post-
surgical progression-free survival (PFS) according to tumor
characteristics and histological subtypes. The purpose of this
study was to train and test a machine-learning-derived radiomics
approach to predict the PFS of post-surgical patients with lung
adenocarcinoma, and establish a nomogram based on radiomic
score and multiple clinical PFS-related factors.
MATERIALS AND METHODS

Study Sample
We searched the electronic health records of two medical centers.
In the first center (Hospital-1, Shanghai General Hospital –
North [city center]), 100 patients admitted from July 2017 to
June 2018 were randomly selected as the training cohort, and 50
patients from July 2018 to December 2018 were randomly
selected as the internal validation cohort. In the second center
(Hospital-2, Shanghai General Hospital – South [Songjiang new
city]), 50 patients from July 2016 to December 2018 were
randomly selected for external testing. The inclusion criteria
were: 1) patients whose lung tumor tissue was completely
Frontiers in Oncology | www.frontiersin.org 2
resected by surgical operation; 2) lung adenocarcinoma
diagnosed based on hematoxylin-eosin gross pathological
specimen and immunohistochemical staining; 3) ≥ 2-year
follow-up to obtain PFS results (or shorter in case of earlier
progression); 4) with pre-surgical thin-slice (<1mm) contrast-
enhanced CT scanning; 5) ≤ 2 months interval between CT scan
and surgical resection.

The collected baseline data were age, gender, smoking status
(non-smoker or smoker), 8th edition cTNM stage, lung nodule type
(solid or subsolid), histological subtype, and post-surgical treatment.
The cTNM stage was determined by whole-body positron emission
tomography (PET)-CT or whole-body CT for the head, neck, chest
and abdomen, except the lower extremities. The histological subtype
of adenocarcinoma was defined by the 2015 World Health
Organization classification of lung cancer (14). The 150 patients
in Hospital-1 underwent molecular testing for EGFR mutations
(expression of exon-18, -19, -20, and -21) using the human gene
mutation detection kit (Aide Biomedical Technology).

The study endpoint was PFS, defined as the period from
tumor resection to tumor recurrence observed by PET-CT or
whole-body CT, or death for any reason. The PFS results were
obtained from patient medical records, including chest CT scans,
clinical outcomes, or death records.

The institutional review boards approved this retrospective
study and waived the requirement for patient informed consent
in the two hospitals. Figure 1 shows the patient selection flow
diagram. Figure 2 shows the study workflow.

CT Acquisition
Various CT scanners of different type were used in clinical
practice, including three CT systems (Somatom Force, Siemens
Healthineers; Revolution and HD750, GE Healthcare) in
Hospital-1, and two CT systems (Somatom Flash, Siemens
Healthineers; Revolution, GE Healthcare) in Hospital-2. All
study patients underwent contrast-enhanced chest CT
scanning after injection of 60-80 mL contrast-media (Iopamiro
300, Bracco) into the antecubital vein at 3-4 mL/sec. The image
slice thickness was 0.6 mm or 0.625 mm. Supplementary Table 1
details the acquisition protocol and reconstruction parameters.

Tumor Segmentation and Radiomic
Feature Extraction
A dedicated software package (Radiomics v1.2.3, Siemens
Healthineers) running on a research platform (SyngoVia VB10,
Research Frontier, Siemens Healthineers) was used to perform
three-dimensional tumor segmentation and feature extraction.
This package was developed based on the PyRadiomics library
(http://www.radiomics.io) and subjected to the Image Biomarker
Standardization Initiative (15). One radiologist with 6 years of
experience in thoracic imaging semi-automatically segmented
the tumor lesions on CT images by finding the lesion and
clicking on it, blinded to the prognostic results. Then the
software automatically extracted a total of 1,672 radiomic
features for each lesion, including first-order, size and shape,
and texture features. Supplementary Table 2 describes
these features.
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Feature Selection
Radiomic features with good stability and repeatability can be
selected as candidates for further feature selection. To select these
candidate features, 50 patients were randomly chosen from the
training cohort. Two radiologists with 20 and 6 years of
experience independently segmented the tumor lesions of these
50 patients. Spearman’s rank correlation coefficients between the
1,672 features measured by the two radiologists were calculated
to filter unstable features (16). The radiomic features with a
Spearman’s r > 0.8 were considered stable and reproducible, and
were chosen to build the predictive model (17).

Model Establishment
A machine-learning method, the random survival forest was
used to establish the R-model and generate a Rad-score. Random
survival forest provides high predictive accuracy with nonlinear
regression. It is a robust algorithm with an automated feature
screening process suitable for right-censored correlated complex
Frontiers in Oncology | www.frontiersin.org 3
survival datasets compared with the commonly used least-absolute
shrinkage and selection operator (LASSO)-Cox regression (18).
Random survival forest is suitable for integrating high-
dimensional features like radiomics features for survival analysis
and risk stratification. The random survival forest model was
recently used to identify risk factors and generate radiomic
signatures for different diseases (19). The robustness of the R-
model was validated by a five-fold cross-validation approach for
tuning the optimal hyperparameters. Feature importance was
evaluated by the magnitude of the log-rank test statistic by
permutation (20). Accordingly, the Rad-score (range from 0 to 1)
was computed and generated by the random survival forest model
to represent the average of expected number of events across all
trees in the established forest (21). A higher Rad-score represented a
higher risk of progression or shorter PFS.

A Kaplan-Meier curve with log-rank test and univariate Cox
proportional-hazards model was applied to select candidate
influential factors (clinical factors and EGFR mutation status)
A

B

FIGURE 1 | Patient inclusion flowcharts in two hospitals. (A) Hospital-1 (training and internal validation). (B) Hospital-2 (external testing).
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and establish a C-model. Factors with a p-value < 0.1 were
included in the multivariate Cox proportional-hazards
regression to establish the C-model. Prognosis prediction based
on TNM staging was evaluated.

To establish the Combi-model and avoid multicollinearity and
potential correlation between the Rad-score and clinical factors, a
multivariate Cox proportional-hazards model with stepwise selection
using minimum Akaike information criterion was implemented to
integrate the Rad-score and high-relevance clinical risk factors.

Solid Tumor vs. Subsolid Tumor
Subgroup stratified analysis was implemented to verify that the
radiomics model can independently predict prognosis in patients
with solid and subsolid tumors. The patients in each group were
classified by Rad-score as high or low risk of disease progression.
The prognosis difference between risk levels was assessed in each
group by Kaplan-Meier survival analysis with the log-rank test.

Statistical Analysis
Clinical characteristics between datasets were compared using
independent sample t-test or Wilcoxon test for continuous
variables depending on the normality test, whereas Chi-square
or Fisher’s exact test was used for categorical variables.

The R-score’s predictive ability was evaluated by Harrell’s
concordance index (C-index) in the training, internal validation,
and external test cohorts. The risk stratification capability was
assessed by using the Kaplan-Meier survival curve and log-rank
test. The optimal R-score cut-off values were determined by X-tile
software (version 3.6.1, Yale University) (22) in the training cohort
and applied to the internal validation and external test cohorts.

The proportional-hazards assumption was first verified by the
Schoenfeld residuals test to evaluate model performance. Time-
Frontiers in Oncology | www.frontiersin.org 4
dependent receiver operating characteristic (ROC) curves, the
integral of the area under the curves (iAUC) at various
timepoints and C-index were generated and calculated in the
training and internal validation cohorts to compare the
prognosis discriminative ability of the three models (R-, C-
and Combi-). The goodness-fit of all the three models was
illustrated by the calibration curve by calculating the actual
and predicted probabilities of PFS at 2 year. Decision curve
analysis (DCA) was used to evaluate and compare the three
models incorporating clinical net benefits. Finally, a nomogram
of the Combi-model was built to visually represent the final
predictive model making it convenient for clinicians to identify
new patients.

Statistical analysis was performed with Python Scikit-survival
v0.13.2 (https://scikit-survival.readthedocs.io), Lifelines library
v0.25.5 (https://lifelines.readthedocs.io), and R package v3.6.0
(http://www.r-project.org). Detailed descriptions of the software
packages and functions are listed in the Supplementary Methods.
All statistical tests were two-sided, and statistical significance was
set at p<0.05.
RESULTS

Patient Characteristics
The training, internal validation and external test groups comprised
150 (61.8 ± 8.6 years old), 50 (60.8 ± 9.7), and 50 (59.9 ± 10.3)
patients, respectively. All patients had histologically proven lung
adenocarcinoma. Whole-body PET-CT was performed for 51/100
(51%) training, 23/50 (46%) internal validation, and 35/50 (70%)
external test patients. The remaining patients underwent whole-
body CT except for the lower extremities. At two years, 69/100
FIGURE 2 | Study workflow diagram. (I) Tumor segmentation: 3D semi-automatic segmentation of tumors on chest CT images. (II) Feature extraction: 1,672
radiomic features were automatically extracted from the segmented tumor volume. (III) Feature selection and Rad-score calculation: Spearman’s rank correlation was
used to select reproductive and stable radiomic features, and random survival forest model was implemented to calculate Rad-score. (IV) Nomogram development:
the model was trained and tested to determine its predictive performance.
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(69%) training, 37/50 (74%) internal validation, and 36/50 (72%)
external test patients were progression-free. PFS was 409.1 ± 202.1
days, 413.8 ± 188.8 days and 541.8 ± 364.7 days, respectively. Table
1 shows the association between patient characteristics and PFS.
Establishment and Assessment of
the Radiomics Model
The feature stability analysis yielded 597 radiomic features out of
1,672 with a Spearman’s r > 0.8 (Supplementary Table 2), that
were considered stable features indicating good interobserver
consistency. From these stable features, the 20 features highly
contributive to PFS were selected to create an R-score using a
random survival forest algorithm (Supplementary Figure 3).
The optimal R-score cut-off value to discriminate high and low
progression risk was set to 3.684 based on the training cohort
determined by X-tile (22), and the patients were subsequently
stratified as high or low risk for disease progression
(Supplementary Figure 4). Kaplan-Meier analysis showed that
this cut-off value could discriminate high- and low-risk patients
in the training (p<0.001), internal validationt (p=0.0014), and
external test (p=0.045) cohorts.

In the training cohort, the R-model reached an average AUC
of 0.82 for discriminating patients with high- and low-risk for
disease progression (Figure 3A), and an iAUC of 0.78 (95%CI:
0.67 to 0.87) and 0.92 (0.77 to 1.0) at one and two years,
respectively (Figure 3B). In the internal validation cohort, R-
model reached an average AUC of 0.77, and iAUC of 0.86 (0.74
to 0.99) and 0.70 (0.41 to 0.98) at one and two years, respectively
(Figure 3C). In the external test cohort, the R-model showed an
iAUC of 0.92 (0.70 to 0.98) and 0.90 (0.69 to 1.0) at one and two
years, respectively (Figure 3D).

For the training and external test cohorts, the C-index was
0.781 and 0.778, respectively. All the C-indexes were higher than
0.7, indicating good predictive performance. The calibration
curves showed visually good agreement between the predicted
and actual labels in the training, internal validation and external
test cohorts (Supplementary Figure 5).
Establishment and Assessment of Clinical
Factor Model
Kaplan-Meier survival analysis showed that lung nodule type
and cM stage were significantly associated with PFS. The PFS was
significantly shorter for patients with solid tumors than those
with subsolid tumors (p=0.002), and patients with distant
metastasis than those without (p=0.011). Supplementary
Figure 1 shows the corresponding Kaplan-Meier curves.

The univariate Cox regression analysis showed that sex, lung
nodule type (subsolid or solid), cT, cN, and cM stage were
significantly associated with PFS (all p<0.1) (Supplementary
Table 3), so they were included for multivariate regression
analysis to establish the C-model. The C-index based on TNM
stage was 0.707 and 0.606 for the training and external test
cohorts, respectively (Supplementary Figure 6).

The global Schoenfeld test (p=0.645) showed that the C-
model met the proportional hazard assumption requirement
Frontiers in Oncology | www.frontiersin.org 5
(Supplementary Figure 7). Figure 4A shows the forest plots
of the C-model. The calibration curves showed visually good
agreement between the predicted and actual labels in the training
and validation cohorts (Supplementary Figure 8). The C-
indexes were 0.755 and 0.739 for the training and internal
validation cohorts, respectively. In the multivariate regression
analysis, lung nodule type (HR=4.23, p=0.009) and cM stage
(HR=4.57, p<0.001) were significantly correlated with PFS, thus
were included in the Combi-model.

Schoenfeld individual tests also showed the genetic factors model
adhered to the proportional hazard assumption requirement
(Supplementary Figure 9). The C-indexes of EGFR mutations
were 0.612 and 0.528 for the training and validation cohorts,
respectively. Because of these insignificant results, the genetic
factor was not integrated into the Combi-model.
Establishment and Assessment
of the Combined Model
The Combi-model and nomogram (Figure 5A) were established
based on Rad-score and the clinically relevant factors (cM stage,
lung nodule type and histological type). A multivariate Cox
regression model was used to evaluate the significance of Rad-
score and these clinical factors in predicting PFS. Forest plots
(Figure 4B) of the Combi-model illustrated that Rad-score
(HR=0.034, p=0.001), cM stage (HR=3.822, p=0.002) and
histological type (HR=0.191, p=0.002) were independent
factors for PFS. Schoenfeld individual tests showed that the
Combi-model fitted the proportional hazard assumption
requirement (Supplementary Figure 10). The calibration curve
showed that the calibration effect of the training and validation
cohorts was very good (Supplementary Figure 11). The C-
indexes of the Combi-model for predicting PFS in the training
and external test cohorts were 0.845 and 0.837, respectively.

Finally, a nomogram combining Rad-score and clinical
factors (cM stage, lung nodule type and histological type) was
established (Figure 5A). The calibration curves showed good
consistency between the predicted PFS probability and the actual
result at one and two years after surgery (Figures 5B, C).
Comparison among the R-, C-,
and Combi-models
The pairwise comparison of C-indexes among the R-, C-, and
Combi-model is shown in Supplementary Table 4. The Combi-
model performed better than the R- and C-models. In the training
cohort, the C-index of the Combi-model was 0.845, higher than the
R- (0.781) and C-models (0.755). In the external test cohort, the C-
index for the Combi-model was 0.837, significantly higher than the
R- (0.778) and C-models (0.739) (all p<0.01). DCA was used to
compare and visualize the clinical net benefits of the three models
(Figure 5D) and showed that the Combi-model gained more
clinical net benefits than the other two models.

Solid Tumor vs. Subsolid Tumor
In the solid and subsolid tumor groups, Kaplan-Meier survival
analysis showed that the Rad-score significantly discriminated
June 2021 | Volume 11 | Article 692329
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TABLE 1 | Association between patient characteristics and progression-free survival.

Characteristics Hospital-1 P1 value Hospital-2 P2 value

Training (n=100) Internal validation (n=50) External test (n=50)

Age (mean ± SD) 61.8 ± 8.6 60.8 ± 9.7 1.000 59.9 ± 10.3 0.389
Sex 0.863 0.602
Male 52 (52%) 27 (54%) 29 (58%)
Female 48 (48%) 23 (46%) 21 (42%)

Smoking Status 1.000 0.090
Yes 11 (11%) 6 (12%) 11 (22%)
No 89 (89%) 44 (88%) 39 (78%)

Lung nodule type 0.489 0.002*
Solid 45 (45%) 26 (52%) 39 (78%)
Progression 6 (6%) 1 (2%) 13 (26%)
Progression-free 39 (39%) 25 (50%) 26 (52%)
Subsolid 55 (55%) 24 (48%) 11 (22%)
Progression 25 (25%) 12 (24%) 0 (0%)
Progression-free 30 (30%) 12 (24%) 11 (22%)

Lesion location 0.140 0.624
Right upper lobe 40 (40%) 14 (28%) 14 (28%)
Right middle lobe 7 (7%) 4 (8%) 7 (14%)
Right lower lobe 13 (13%) 10 (20%) 10 (20%)
Left upper lobe 20 (20%) 17 (34%) 10 (20%)
Left lower lobe 20 (20%) 5 (10%) 9 (18%)

Histological type 0.493 0.100
Invasive adenocarcinoma 75 (75%) 40 (80%) 30 (60%)
Microinvasive adenocarcinoma 17 (17%) 5 (10%) 0

Other subtypes 8 (8%) 5 (10%) 20 (40%)
cT category 0.160 0.460
T1 47 (47%) 29 (58%) 26 (52%)
T2 15 (15%) 2 (4%) 11 (22%)
T3 13 (13%) 8 (16%) 4 (8%)
T4 25 (25%) 11 (22%) 9 (18%)

cN category 0.486 0.175
N0 57 (57%) 24 (48%) 38 (76%)
N1 19 (19%) 14 (28%) 6 (12%)
N2 19 (19%) 11 (22%) 5 (10%)
N3 5 (5%) 1 (2%) 1 (2%)

cM category 0.477 0.011*
M0 66 (66%) 30 (60%) 43 (86%)
M1 34 (34%) 20 (40%) 7 (14%)

Overall stage 0.12
Stage I 28 (28%) 15 (30%) 28 (56%)
Stage II 13 (13%) 6 (12%) 8 (16%)
Stage III 25 (25%) 9 (18%) 7 (14%)
Stage IV 34 (34%) 20 (40%) 7 (14%)

EGFR mutation 0.492 \
Exon19del expression 24 (24%) 12 (24%) \
Exon21L expression 38 (38%) 22 (44%) \
Exon18 expression 2 (2%) 1 (2%) \
Exon20 expression 1 (1%) 2 (4%) \
Wild type 35 (35%) 13 (26%)

Post-surgical treatment 0.291 0.101
Yes 44 (44%) 17 (34%) 32 (64%)
No 56 (56%) 33 (66%) 18 (36%)
Frontiers in Oncology | www.frontiersin.or
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Data are represented as mean ± standard deviation or number (percentage). P1-value represents the significance between the training and internal validation cohorts. P2-value represents
the significance between the training and external test cohorts. * indicates p < 0.05. Other histological subtypes of lung adenocarcinoma: in the training cohort, 3 patients had
adenocarcinoma in situ, 4 had unclassified adenocarcinoma, and 1 had solid adenocarcinoma with mucus secretion; in the internal validation cohort, 2 patients had adenocarcinoma in situ
and 3 had unclassified adenocarcinoma; in the external test cohort, 1 patient had poorly differentiated adenocarcinoma, 2 had adenocarcinoma in situ, 15 had unclassified
adenocarcinoma, 1 had poorly differentiated adenocarcinoma and 1 had pleomorphic carcinoma with adenocarcinoma. Disease progression: in the training cohort, 30 patients
recurred and 1 case died; in the internal validation cohort, 12 patients recurred and 1 case died; in the external test cohort, 13 patients recurred and 1 case died. Post-surgical treatment:
postoperative radiotherapy, chemotherapy and targeted therapy. EGFR, epidermal growth factor receptor; SD, standard deviation.
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the patients into high and low risk of progression (p=0.0045 and
p<0.001, respectively) (Supplementary Figure 12).
DISCUSSION

In this study, we established machine-learning-derived radiomics
models to predict PFS in patients with lung adenocarcinoma. The
C-index of the radiomics model (Rad-score) reached 0.781 and
0.860 in the training and external test cohorts, respectively, higher
than the TNM staging C-indexes of 0.707 and 0.606. The
established nomogram combined Rad-score, cM stage, lung
nodule type and histological subtype, and achieved a high C-
index of 0.845 and 0.837 in the training and external test cohorts,
respectively. According to several previous reports, the C-index of
radiomic models for predicting post-surgical prognosis of lung
cancer was between 0.60 and 0.67, and increased to 0.72 when
combined with clinical and genomic characteristics (12, 23, 24).
Frontiers in Oncology | www.frontiersin.org 7
The predictive value of radiomics for the prognosis of lung
cancer is controversial. Some studies showed that radiomics had
great potential in evaluating the prognosis of lung cancer (25,
26). Choe et al. reported that the radiomic features of contrast-
enhanced CT had a similar ability to assess prognosis in a
clinicopathological model of patients with adenocarcinoma
after pneumonectomy (27). Wang et al. showed that radiomic
features could successfully stratify patients into low- and high-
risk groups of post-surgical recurrence (28). In contrast, Li et al.
showed no significant correlation between radiomic features and
PFS (29), and no additional benefit for adding clinical factors to
the prediction model. Botta et al. found that the combined
radiomic and clinical factor model did not improve the
performance when compared with a stand-alone radiomic or
clinical factor model (30). Although researchers have extracted
many radiomic features in oncology imaging (27, 29, 31), the
clinical relevance of radiomic features to predict lung cancer
survival remains a major question. This study confirmed the
A

B D

C

FIGURE 3 | Area under the receiver operating characteristic curves (AUCs) of R-model. (A) AUCs of Rad-score over time in the training and internal validation cohorts.
(B) Time-dependent ROCs in the training cohort. (C) Time-dependent ROCs in the internal test cohort. (D) Time-dependent ROCs in the external test cohort.
June 2021 | Volume 11 | Article 692329
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predictive value and achieved a high C-index of 0.860 in the
external test cohort.

One strength of this study is the availability of an external test
cohort. An independent and external test cohort contributes to
evaluate the generalizability of predictive models. Some
methodological issues have been raised in prior studies on
radiomics, including the heterogeneity in quantitative data
dependent on di fferent acquis i t ion protoco l s and
reconstruction parameters (32). It has been widely accepted
that a comprehensive evaluation is necessary for a clinical
biomarker, i.e., internal and external validation (33). Many
researchers, such as Choe et al., believed that their risk
prediction model needed further external verification to
Frontiers in Oncology | www.frontiersin.org 8
confirm its value for survival stratification (27). Another
strength is the 3D lesion segmentation with 1,672 radiomic
features. Most previous radiomics-based studies only
performed 2D lesion segmentation. In our study, 3D lesion
segmentation was the basis for numerous high-dimensional
radiomic features, that maximize the potential information
underlying the images and thus improved model performance.

The 2-year PFS used in this study is a relevant and widely-
applied survival threshold for patients with lung adenocarcinoma
(34, 35). Hosny et al. evaluated the application of deep learning in
predicting 2-year overall survival rate of NSCLC patients based on
CT data (36), and suggested the prognosis-predicting advantage
for post-surgical patients. There were other studies investigating 2-
A

B

FIGURE 4 | (A) Forest plots of C-model. The forest plots of hazard ratio of each selected clinical factor in C-model, established from the training cohort. The
likelihood ratio test was used to calculate P-value. (B) Forest plots of Combi-model. The forest plots showed each selected clinical factor’s hazard ratio in the
combined model, established from the training cohort.
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to 3-year survival rate of lung cancer. For example, Wang et al.
retrospectively analyzed the clinical data of 173 patients with
NSCLC (37), and predicted the prognosis and survival time
range of patients with clinically significant 3-year survival period
as the prediction standard. Khorrami et al. studied 350 patients
with NSCLC with an average follow-up time of 35.5 months
(range: 1.6-107.5 months) (38). They reported the median time to
recurrence was 17.5 months (range: 1.3-75.3 months). Thus, the
investigation of 2-year PFS is clinically suitable for determining
tumor recurrence, or progression-free survival for resected
lung cancer.

The prediction of patient survival based on CT images is
commonly used in clinical trials and medical practice. A well-
established and -validated prognostic model based on radiomics
can make the prediction more objective and accurate than
traditional qualitative and quantitative methods (12). Some
studies have shown that the radiomics method was more
predictive than conventional clinical measurements to
noninvasively describe tumor phenotypes (11, 39). Thus, the
clinical usage of imaging biomarkers may benefit the clinical
Frontiers in Oncology | www.frontiersin.org 9
practice because they are noninvasive, reproducible, low-cost,
and do not require human input (40). At present, there is no
consensus on the strategy for post-surgical follow-up interval or
follow-up examination method. For example, the National
Comprehensive Cancer Network guideline recommends that
for patients with stage I-II NSCLC, a medical history
collection, chest CT and physical examination should be
conducted every 6 months for 2 to 3 years after surgery, and
then once a year for history collection, chest CT and physical
examination (41). However, the phase III randomized controlled
clinical trial (IFCT-0302) was different (42). In the first two years,
the patients were followed up every six months, then yearly until
the fifth year. In each follow-up examination, patients underwent
clinical examination, chest and abdominal CT scanning and
bronchoscopy examination. Watanabe et al. studied the post-
surgical recurrence pattern of NSCLC (18), and found that the
peak of risk curve was at 6-8 months after surgery. The next
significant peak occurred at the end of the second year. For
women, the peak occurred at 22-24 months after surgery, which
was about 16 months later than that for men. Their results
A

B D

C

FIGURE 5 | Nomogram to evaluate post-surgical progression-free survival (PFS) of patients with lung adenocarcinoma, and model calibration. (A) A nomogram
to predict 1- and 2-year PFS probability. The Rad-score was located on the Rad-score axis, where a line was drawn to indicate the PFS probability point scale.
After repeating this process for each variable and accumulating all the probability points, the final PFS probability can be established and indicated on the axis line.
(B) Calibration curve for the estimation of 1-year overall survival predicted by the nomogram. The estimated progress-free rate was plotted on the x-axis; the
observed progress-free rate was plotted on the y-axis. The Diagonal dotted line = a perfect estimation by an ideal model; solid line = the performance of the
nomogram. (C) Calibration curve for the estimation of 2-year overall survival predicted by the nomogram. The estimated progress-free was plotted on x-axis; the
observed progress-free rate was plotted on y-axis. (D) Decision curve analysis (DCA) of R-, C-, and Combi-models indicated their clinical net benefits. The blue,
red, and yellow lines represented R-, C-, and Combi-models, respectively. DCA showed that the Combi-model gained more clinical net benefit than the other
two models.
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suggested that post-surgical recurrence time of lung cancer is
variable. Therefore, developing an individualized follow-up
strategy for the patients with lung adenocarcinoma is essential
in clinical practice. A more frequent follow-up schedule is
necessary for patients with high post-surgical progression risk.

We investigated the prognosis of solid and subsolid tumors
(pure ground glass or part-solid attenuation), and found that
subsolid tumors were associated with high PFS. Wang et al.
reported that the overall 5-year survival of patients with stage I
lung cancer was 83%, most of which were subsolid tumors (28).
Although the image features differ between solid and subsolid
tumors, in this study, regardless of tumor density type, the
radiomics model demonstrated its ability to discriminate
patients into high and low progression risk group (p<0.01).
One reason for the model’s success is that the model selected
the most relevant image features to predict PFS for both kinds of
tumors, thus improving its generalizability.

We did not observe a correlation between EGFR mutations and
PFS, so the genetic factor was not included in the Combi-model.
Song et al. used radiomics to predict PFS in patients with stage IV
EGFR mutant NSCLC, who received tyrosine kinase inhibitors
therapy (7). The predictive value of EGFR mutation for survival
prediction remains controversial (43). Some authors have found
that EGFRmutation is a significant predictor of overall survival and
relapse-free survival in surgically resected adenocarcinoma (44, 45),
while others showed that EGFRmutation was insignificant for post-
surgical survival (46). The differences between these studies may be
due to the heterogeneous nature of lung cancer and the differences
between study populations.

There were several limitations to this study. First, although
the clinical data were from two large medical centers, more
external test cohorts from different hospitals and regions are
necessary to improve the robustness of these models. Second, the
sample size of this study is not large. Although an external test
helps to enhance the generalizability of the conclusions of this
study, increasing the sample size would strengthen the
robustness of models. Third, we only investigated patients with
adenocarcinoma. Other types of lung cancer, such as squamous
cell carcinoma, would show different tumor behaviors, which
needs further investigation. Fourth, the study samples of this
study were collected from the real-world clinical practice, in
which a variety of postoperative radiotherapy, chemotherapy and
targeted therapy were used. In order to evaluate the value of
radiomics in predicting the prognosis of different treatment
regimens, it is necessary to conduct well-controlled studies on
specific treatment methods.
CONCLUSION

The machine-learning-derived radiomics model surpassed only
TNM stage in predicting post-surgical PFS in patients with lung
adenocarcinoma. The established nomogram comprising CT-
derived radiomic features and clinical risk factors demonstrated
high performance in predicting post-surgical PFS, which was
Frontiers in Oncology | www.frontiersin.org 10
verified in the external test cohort. Our study shows that the
high-dimensional information underlying CT images can be
used to evaluate the post-surgical prognosis of lung
adenocarcinoma, which may help clinicians to identify high-
risk patients, make individualized treatment decisions, plan
appropriate adjuvant therapeutic strategies, and personalize the
follow-up scheme.
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