
Frontiers in Oncology | www.frontiersin.org

Edited by:
Kevin J. Ni,

St George Hospital, Australia

Reviewed by:
Xiaoxia Chen,

Shanghai Pulmonary Hospital, China
Tianqing Chu,

Shanghai Jiaotong University, China

*Correspondence:
Xiaofei Zhang

zhxf_1017@163.com
Weixin Zhao

zwx21@126.com

†These authors share first authorship

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 22 April 2021
Accepted: 28 May 2021
Published: 14 July 2021

Citation:
Luo L, Liu P, Zhao K, Zhao W and

Zhang X (2021) The Immune
Microenvironment in Brain Metastases

of Non-Small Cell Lung Cancer.
Front. Oncol. 11:698844.

doi: 10.3389/fonc.2021.698844

REVIEW
published: 14 July 2021

doi: 10.3389/fonc.2021.698844
The Immune Microenvironment
in Brain Metastases of Non-Small
Cell Lung Cancer
Lumeng Luo1,2†, Peiyi Liu3†, Kuaile Zhao1,2, Weixin Zhao1,2* and Xiaofei Zhang1,2*

1 Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 2 Department of Oncology,
Shanghai Medical College, Fudan University, Shanghai, China, 3 Department of Orthopedics, TongRen Hospital, School of
Medicine Shanghai Jiao Tong University, Shanghai, China

Brain metastasis of non-small cell lung cancer is associated with poor survival outcomes and
poses rough clinical challenges. At the era of immunotherapy, it is urgent to perform a
comprehensive study uncovering the specific immune microenvironment of brain
metastases of NSCLC. The immune microenvironment of brain is distinctly different from
microenvironments of extracranial lesions. In this review, we summarized the process of brain
metastases across the barrier and revealed that brain is not completely immune-privileged.We
comprehensively described the specific components of immune microenvironment for brain
metastases such as central nervous system-derived antigen-presenting cells, microglia and
astrocytes. Besides, the difference of immune microenvironment between brain metastases
and primary foci of lung was particularly demonstrated.

Keywords: immune microenvironment, brain metastases, non-small cell lung cancer, immune therapeutics,
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BACKGROUND

Brain metastases are the most common type intracranial tumors, which are commonly metastasized
from lung cancer (1). Approximately 50% of brainmetastases originate fromnon-small cell lung cancer
(NSCLC). During the progression of NSCLC, about one third of patientsmay develop brainmetastases
(1, 2). Current therapeutic strategies for brain metastases of NSCLC are largely limited, and the
prognosis is relatively poor because of the specific anatomic and physiologic features of the central
nervous system (CNS). Moreover, comprehensive researches on brain metastases of NSCLC are
significantly lacked. Immunotherapy has been rapidly adopted for the treatment of NSCLC (3, 4).
Recent small-scale clinical studies have shown that some of NSCLC patients can be benefited from
immune checkpoint inhibitors (5). However, due to genetic differences between brain metastases and
primary tumors, as well as the difference in tumor microenvironment, the response of intracranial and
extracranial lesions to systemic immunotherapy may differ a lot. In addition, the difficulty in collecting
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intracranial tissues increases the challenge in clarifying the
molecular mechanism of brain metastases (6). Therefore, it is
urgent to carry out an in-depth exploration on the immune
microenvironment of brain metastases, aiming to guide
clinical treatment.
THE PROCESS OF BRAIN METASTASES

Cancer metastasis is one of the most significant characteristics of
malignant tumors, which is a multistep cell-biological process,
called the invasion-metastasis cascade (7). During metastatic
progression, tumor cells detach from their primary lesions
(locally invasive and intravasate), translocate systemically
(survive in the circulation, arrest at a distant tissue and
extravasate), and finally form the metastases in the foreign
microenvironment of distant organs (Figure 1) (7). Although
the circulating tumor cells (CTCs) in the hematogenous
circulation could disseminate to a variety of secondary loci, it is
noticed that the metastases of a certain type of carcinoma could
only form in particular target organs (7). In 1889, Stephen Paget
proposed the well-known “seed-and-soil” hypothesis of metastases
that metastases only develop at those organ sites (“soils”), in which
the newly “seeded”metastatic tumor cells are suitably growing (8).
The nervous system is one of the most preferential and frequent
metastatic sites of NSCLC (9). CTCs infiltrate through the blood
circulation at brain capillaries with a slower flow rate, where they
interact with microvascular endothelial cells and secrete cytokines.
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Then, tumor cells with a strong invasiveness ability circulate
through the bloodstream, the brain lymphatics or the CSF, and
survive and thrive in the parenchymal, leptomeningeal, or epidural
areas, thus leading to brain metastases.
THE MOLECULAR MECHANISM OF
BRAIN METASTASES OF NSCLC

The molecular mechanisms underlying brain metastases
of NSCLC remain largely unknown due to the lack of
in vitro models that simulate the complex structure and
microenvironment of CNS. A previous study established a
multi-organ microfluidic bionic chip platform to recapitulate
the process of brain metastases. It is found that AKR1B10 can
promote the extravasation of lung cancer cells through the
blood–brain barrier (BBB) and then induce brain metastases
(10). Through comparing genomic sequencing data of a large
number of brain metastases and primary lung adenocarcinomas,
three novel metastatic drivers with significantly higher
amplification frequencies are identified, including MYC, YAP1,
and MMP13. Overexpression of them increases the incidence of
brain metastases (11, 12). Besides, in vitro and in vivo
experiments demonstrated that cell adhesion molecule 2
(CADMA2), long noncoding RNA MALAT1, and microRNA-
330-3p promote the development of brain metastases by
inducing epithelial-mesenchymal transition (EMT) in NSCLC
(13–15). The transmembrane cell adhesion protein ADAM9 is
FIGURE 1 | Steps involved in brain metastasis. Brain metastasis cascade involves four major steps: 1) Detachment of the metastatic cell from the primary cancer,
2) Survival in systemic circulation, 3) Invasion in the brain parenchyma and 4) Survival in the CNS microenvironment.
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able to promote lung cancer metastases to the brain by a
plasminogen activator-based pathway (16). Moreover, activated
leukocyte cell adhesion molecule (ALCAM), the tubulin-
detyrosinating activity of VASH1, lysophosphatidylcholine
acyltransferase 1 (LPCAT1), and the TAZ-AXL-ABL2 feed-
forward signaling axis are also essential for the formation of
brain metastases from NSCLC (17–20). As for immune-related
mechanism, tumor-induced peripheral immunosuppression
might promote brain metastases in patients with NSCLC (21).
Patients with brain metastatic lung carcinoma exhibit a profound
systemic immunosuppression with increased myeloid-derived
suppressor cells, regulatory T cell populations, peripheral
monocyte PD-L1, myeloid-derived suppressor cells (MDSCs),
and regulatory T cells compared to early stage pre-metastatic
patients and healthy controls, accompanied by less reactive T
cells and worse survival (21).
INCOMPLETELY IMMUNE
PRIVILEGED CNS

There are three main barriers in CNS, including the blood–brain
barrier (BBB), blood–cerebrospinal fluid (BCSFB) barrier, and
the blood– tumor barrier (BTB) (22). In the normal brain, BBB
and BCSFB are the initial gatekeepers of CNS, which are formed
by the tight junctions of the endothelial cells of capillaries and
connective tissues and responsible for protecting CNS from
a massive inflammation (brain edema) (23). CTCs could cross
the barrier by the transendothelial migration. When the
micrometastases (<1 mm) are formed, the BBB still functions
normally to protect the micrometastases escaping from the
effective anti-cancer drugs, such as water-soluble agents and
macromolecules (23, 24). The formation of metastatic tumor in
the brain leads to neo-angiogenesis, vascular remodeling, and
changes of surface molecules, such as overexpression of the
pericyte protein desmin and deficiency of physiological TJ protein
(25–27). The changed neurovascular-tumor unit is known as BTB,
which is featured by increased permeability, promoting tumor
growth, and changing the delivery of anti-cancer agents.
Meanwhile, dynamic angiogenesis differs from lesions and
regions of the same lesion during metastatic progression (24). As
a result, there is a significant heterogeneous permeability in brain
metastases, leading to a non-uniform and suboptimal drug
distribution and thus promotes drug resistance (28).

CNS is not completely immune-privileged. In the last century,
the CNS has been considered as the immune-privileged organ
because of the existence of BBB and BCSFB, where immune cells
in the blood circulation system are blocked. However, along with
the explorations on lymphatic system in the brain and lymphatic
ducts of meninges, this conception has been overthrown (29).
Experimental data also showed that tumor-infiltrating T
lymphocytes and other blood-borne immune cells are observed
in the brain metastases (30). Besides, a connection between the
blood-borne immune cells and immune components in the brain
exists. The specific immune cells of the CNS are able to pass
through the endolymphatic system into the cerebrospinal fluid,
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which further infiltrate to the olfactory bulb, olfactory nerve,
cribriform plate, nasal mucosa, and finally reach the deep
cervical lymph nodes. Although the BBB limits the penetration
of immune cells, they can pass through the tapetum lucidum and
lymphatic channels of cerebrospinal fluid (Figure 2) (31).
Besides, macrophages and CD4-positive memory T cells are
residents in the ventricle, pia mater, and perivascular space,
which are important for immune monitoring of the CNS (31).
SPECIFIC COMPONENTS OF IMMUNE
MICROENVIRONMENT FOR
BRAIN METASTASES

CNS-Derived Antigen-Presenting Cells
According to previous studies, CD11c-expressing cells are found as
the residents in the juxta vascular parenchyma (32). They are not
only recruited from the blood to parenchyma but also derived from
an intraneural precursor in situ (32). Apart from the CD11c-
expressing cells, perivascular and ventricular macrophages, as
well as epiplexus cells of the choroid plexus and meninges
constitute a main population of antigen-presenting cells (APCs)
(CNS-derived APCs) (31). Although they are located outside the
parenchyma, they can sample the contents of tumor cells in the
parenchyma through the circulating CSF. They express MHC-II
molecules, co-stimulatory molecules, and can present antigens to
elicit priming and proliferation of CD4+ T cells to activate the
adaptive immune response (32).

Microglia
Microglia is another main population of APCs in CNS, playing a
vital role in the immune response of CNS. It is the only one type
of immune cells existed in healthy CNS parenchyma and unique
in CNS. Microglial cells can respond rapidly. As the main resident
immune cells in the CNS, microglia is extremely heterogeneous.
Microglia can lyse tumor cells by secreting NO and sheltering the
brain from the metastatic cell colonization (33). Despite their anti-
tumor ability, microglial have shown their tumor-promoting effect.
A previous study showed that in brain metastases initiated from
lung cancer, a dense accumulation of activated microglia tightly
“encapsulate” brain metastases. Microglia can respond rapidly to
the metastatic lung cancer cells in the brain and lead to migration
and proliferation (34). Since the morphology and molecular
markers of activated microglia like MHC-II molecules, CD40 and
other co-stimulatory molecules are similar to those of blood-borne
macrophages, it is difficult to distinguish the two types of cells (35).
Thus, they are classified into themononuclear-macrophage system,
namedasmicroglia-macrophages.Comparedwith the blood-borne
macrophages, microglia accounts for the minority. They express
low levels of the accessory molecules required for efficient antigen
presentation and present a weak antigen-presenting activity (31,
36–38). According to their functional differences, microglia can be
divided into M1-like and M2-like phenotypes based on the
polarization (39). As is known, M1 macrophages can either
engulf tumor cells or function as APCs to provoke activate CD8+
T cells and the adaptive immune response, thus killing tumor cells.
July 2021 | Volume 11 | Article 698844
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On the contrary, M2 macrophages are immunosuppressive that
promote tumor growth by secreting growth factors or facilitating
angiogenesis (39). A large population of microglia-macrophages in
intracranial tumors are usually similar to M2 macrophages, called
M2-like phenotypes. They induce tumor invasion and angiogenesis
by interacting with tumor cells (28). At present, microglia in brain
metastases of NSCLC have been rarely reported (34, 39). Thus,
targeting microglia with M2 macrophages or inhibiting signaling
pathways that activate astrocytes might provide novel ideas for
immunotherapy of brain metastases of NSCLC.

Astrocytes
Astrocytes are another glial type in CNS besides microglia,
accounting for 30% of cells in CNS (40). Responding to
Frontiers in Oncology | www.frontiersin.org 4
injuries or tumors, astrocytes are activated into a reactive state
that are responsible for the repair and the formation of glial scars
(41). Astrocytes limit metastases without entering in the lesions
in the early stage, and in turn, the inflammatory environment
caused by brain metastases can activate astrocytes that further
promotes tumor growth (42). Lung cancer cells employ
protocadherin 7 (PCDH7) to engage astrocytes and promote
the establishment of carcinoma-astrocyte gap (43). These
channels allow the transfer of cGAMP from cancer cells to
astrocytes, thus activating the STING pathway and promoting
inflammatory cytokines released by astrocytes, including
interferon-a (IFNa) and tumor necrosis factor (TNF), which
is an innate immune response pathway to support tumor
growth and chemoresistance (43). Besides, latest evidences
A

C

B

FIGURE 2 | CSF-mediated drainage of interstitial fluid and CNS antigens to deep cervical lymph nodes. (A) A human head in midline sagittal section, showing
revelant anatomical structures [namely the ventricle, choroid plexus, central nervous system (CNS) parenchyma, lymphatics and deep cervical lymph nodes (DCLNs)]
in schematic form. (B) Arachnoid granulations in relation to the subarachnoid space and brain parenchyma. (C) Subpial vasculature in relation to subarachnoid space
and brain parenchyma, indicating the anatomy discussed in the main text. The inset shows the cellular components of cerebral capillaries, the glia limitans and the
basement membranes in relation to the perivascular space. CSF, cerebrospinal fluid.
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have shown that activated astrocytes infiltrating to surrounding
tissues are capable of triggering metastasis, in which the STAT3
signaling pathway is a key link for inhibiting intracranial
metastases (44).
Other Immune Cells
There exist a small proportion of monocytes in the CSF
that comprise about 5% of cells in CSF. They derive from a
minority population of CCR1+/CCR5+ monocytes in the blood
circulation and are activated and retained in the CNS. For further
activation, myeloid monocytes down-regulate CCR1, whereas
microglia up-regulate CCR5 (40, 45).

An early study demonstrated that cerebrospinal fluid (CSF)
from healthy individuals contains 1,000 to 3,000 leukocytes/ml,
which predominantly consist of activated central memory T
cells, suggesting that they might be involved in CNS immune
surveillance (46). Moreover, it is noticed that CD8+ tissue-
resident memory T (Trm) cells have been discovered in the
CNS after brain viral infection (46, 47). Although the role of Trm
cells in brain immune surveillance as emerged, it is not clear
whether they are infiltrated during the brain metastases. To
depict the components in immune microenvironment in brain
metastases, the overview of immune cells and tumor cells
interaction were depicted in Figure 3.
Frontiers in Oncology | www.frontiersin.org 5
TUMOR-INFILTRATING LYMPHOCYTES
(TILS) IN BRAIN METASTASES

As is known, TILs are the main component of tumor immune
microenvironment and the key subtype of cells involved in the
immune response. TILs are subtyped into two categories based on
surface molecules, showing anti-cancer function and cancer-
promoting effect on the immune escape, respectively (48). During
the process of tumormetastasis to the brain, the damaged BBBwith
increased permeability allows the peripheral lymphatic system
passing through the CNS. As a result, TILs can be detected
around brain metastases. There are three infiltrating models of
TILs, including matrix infiltration, peritumoral infiltration, and
diffuse infiltration. Brain metastases of NSCLC are mainly
infiltrated as the former two models (49).
TILS FOR BRAIN METASTASES PROGNOSIS

TILs in brain metastases are positively correlated to the
prognosis (12). An immunohistochemical analysis involving 61
specimens of brain metastases of lung cancer showed better
overall survival in patients with higher ratios of CD3+ T cells,
CD8+ T cells, and CD45+ T cells (memory T cells) than those
with lower ratios of the three subtypes of T cells (30).
FIGURE 3 | Immnue microenvirment of brain metastases of NSCLC. Tumor cells interact with tumor-infiltrating lymphocytes (TILS), antigen-presenting cells (APCs),
astrocytes, microglia, myeloid derived suppressor cells (MDSCs), and macrophages.
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Consistently, another study analyzing 25 pairs of primary
NSCLC specimens and brain metastases of NSCLC found that
the overall density of CD8+ T cells in the parenchyma of brain
metastases is higher than that in primary foci, and patients with a
lower number of CD8+ TILs in the matrix present a worse
prognosis (50).

Comparison Of TILs in Metastases From
in Primary FOCI
TILs in brain metastases differ from those in primary foci of lung,
and those in the former present a stronger immunosuppressive
phenotype in the tumor microenvironment (12). In an analysis
of immune gene expression profile involving 78 pairs of primary
NSCLC specimens and brain metastases, a total of 161
differentially expressed genes are detected (51). Compared with
primary NSCLC specimens, an attenuated antigen presentation
function of dendritic cells, reduced lymphocyte extravasation
and down-regulated vascular cell adhesion molecule 1 (VCAM1)
are examined in brain metastases, indicating that the
immunosuppressive microenvironment is more pronounced in
brain metastases than that of primary foci (51). Moreover, they
estimated the infiltrating level of immune cell subpopulations
and lower infiltrating levels of dendritic cells, Th1 cells, and
CD8+T cells are examined in brain metastases than those of
primary foci. In addition, the overall ratio of infiltrating
lymphocytes in brain metastases is lower than that of the
primary foci, but that of macrophages is higher, especially M2
macrophages (51).

Comparison of T Cell Receptor
Characteristics in Primary Foci
and Brain Metastases
It is found that both primary foci and brain metastases share the
majority of tumor-associated antigens. However, the density of T
cells and T-cell richness in brain metastases are significantly lower
than those of primary foci (51). To further investigate T cell
phenotypes, T cell clones are assessed by T cell receptor (TCR)-b
sequence. In the process of TCR rearrangement, a highly variable
region that recognizes antigenic peptides is formed, called
complementarity determining region 3 (CDR3). TCR-b-CDR3
sequence contributes to recognize the diversity of TCR, and
determines T cell clonality and abundance (52). To compare
characteristics of TCR in primary foci and brain metastases, the
TCR-b sequencing analysis is performed in 39 pairs of NSCLC
specimens and brain metastases (51). No significant difference in
the clonality among brain metastases, pulmonary primary tumors,
and normal tissues is found. However, the density of T cells and
clonal abundance of T cells are significantly lower in brain
metastases than those of primary foci (51). Furthermore, the
dominant T cell colonies are analyzed, which are shared in most
brain metastases and paired primary foci, and the median ratio of
shared colonies in brain metastases reaches 100%. Subsequently,
the clonal proliferation of T cells in brain metastases is analyzed.
Effective clonal proliferation of T cells is found in 64% of brain
metastases, with a median frequency of 11.2%. In most cases, for
brain metastases and primary tumors, there are tumor-associated
Frontiers in Oncology | www.frontiersin.org 6
antigens. T cell clone amplification can be detected in brain
metastases, but insufficient T cell infiltrations and the diversity
of TCR in metastases indicate less abundance of T cells in brain
metastases (51). An analysis involving 20 cases of brain metastases
of lung adenocarcinoma and primary foci consistently identified
that T cell colonies and the diversity of T cells are fewer in brain
metastases compared with those of primary foci (53).

Comparison of Tumor Mutational
Burden Between Primary Foci and
Brain Metastases
Although tumor mutational burden (TMB) level is higher in
brain metastases, the novel antigen levels do not increase and are
similar to those of primary foci. Therefore, using TMB as a single
immunotherapy biomarker is not reliable. Mansfield et al. further
detected TMB in brain metastases of lung adenocarcinoma and
primary foci (53). The average TMB of 13 cases of brain
metastases of lung adenocarcinoma and primary foci is 24.9
and 12.5, respectively, indicating more non-identical mutations
in intracranial lesions, which are favorable to the immune
response. Later, peptides with a strong affinity to MHC are
selected from the mutated sequence as new tumor antigen
candidates. However, it is found that the number of new
tumor antigens does not increase, which may be attributed to
the limitation of current methods for predicting new antigens or
short mutations generated by non-identical mutations that only a
small part of them can be recognized by the immune system.
Therefore, some lung adenocarcinoma patients with a relatively
high TMB do not respond to immunotherapy. Moreover, it is
also suggested that the use of TMB as a single immunotherapy
biomarker in either primary foci or brain metastases is
not reliable.
EXPRESSION LEVELS OF PD-1
AND PD-L1 IN BRAIN METASTASES

PD-1 is mainly expressed in immune cells, including activated T
cells, monocytes, and dendritic cells. After binding to PD-L1,
PD-1 inactivates the cytotoxic T cells that recognize tumor cells,
thus leading to the immune escape. PD-L1 is mainly expressed in
tumor cells and immune cells, including T cells, B cells,
macrophages, and dendritic cells (54).

PD-1 and PD-L1 are differentially expressed between brain
metastases and primary foci of lung. Mansfield et al. (55) analyzed
pathological samples of 73 cases of brain metastases of lung
adenocarcinoma and primary foci. The positive expression of
PD-L1 is detected in 39% of brain metastasis samples, while the
inconsistency rate of positive expression of PD-L1 in paired cancer
samples reaches 14%, and that in immune cells is 26%. It is
suggested that the spatial heterogeneity of PD-L1 expression in
intracranial and extracranial lesions should be taken into
consideration. Notably, down-regulation of PD-L1 or loss of
PD-L1 can be detected in a considerable number of intracranial
lesions compared with that of primary foci. A large number of
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brain metastases are non-immune responded (both PD-L1 and
TILs are negative).

Therapeutic strategies do not influence expression levels of
PD-1/PD-L1 in brain metastases and primary foci. Preoperative
radiotherapy, chemotherapy, and hormone therapy generally do
not alter expression level of PD-L1 in tumor cells and immune
cells of primary foci and brain metastases (56). Up-regulation of
PD-1 in immune cells of brain metastases is only detected in 2/61
patients who receive preoperative radiotherapy prior to primary
foci resection. Nevertheless, the small sample size limits the
reliability of the conclusion that requires to be validated in
large-sample studies (56).

Influences of PD-1/PD-L1 levels on therapeutic efficacy of ICI
medication in brain metastases need to be further explored as
well (12). Currently, a phase III clinical trial of PD-1 inhibitor in
the treatment of brain metastases showed that patients with PD-
L1 expression ≥ 1% in stromal/immune cells have a longer
overall survival than those with PD-L1 <1% (5). Median OS is
numerically higher in those with PD-L1 expression ≥ 1% in
tumor cells, although no significant difference is obtainable (5).
At present, there are multiple studies on immunotherapy for
patients with brain metastases, and the therapeutic functions of
PD-L1 are waiting to be revealed (12).
Frontiers in Oncology | www.frontiersin.org 7
CONCLUSIONS

As one of the most protected organs in the body, the brain is still
prone to be the distant metastatic organ of NSCLC. Compared
with extracranial tumors, the immune microenvironment of
intracranial tumors is unique and highly specific. Specific
immune cells in the immune microenvironment of intracranial
tumors mainly include microglia and astrocytes, showing
heterogeneous properties. Compared to the primary foci of
lung, the immune microenvironment of brain metastases
is overall immunosuppressed. More comprehensive and
detailed studies are required to pave the way for developing
new immunotherapeutic strategies by targeting their
immunosuppressive properties, thus controlling brain metastases
of NSCLC.
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