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Purpose: This study aimed to develop and verify a multi-phase (MP) computed
tomography (CT)-based radiomics nomogram to differentiate pancreatic serous cystic
neoplasms (SCNs) from mucinous cystic neoplasms (MCNs), and to compare the
diagnostic efficacy of radiomics models for different phases of CT scans.

Materials and Methods: A total of 170 patients who underwent surgical resection
between January 2011 and December 2018, with pathologically confirmed pancreatic
cystic neoplasms (SCN=115, MCN=55) were included in this single-center retrospective
study. Radiomics features were extracted from plain scan (PS), arterial phase (AP), and
venous phase (VP) CT scans. Algorithms were performed to identify the optimal features
to build a radiomics signature (Radscore) for each phase. All features from these three
phases were analyzed to develop the MP-Radscore. A combined model comprised the
MP-Radscore and imaging features from which a nomogram was developed. The
accuracy of the nomogram was evaluated using receiver operating characteristic (ROC)
curves, calibration tests, and decision curve analysis.

Results: For each scan phase, 1218 features were extracted, and the optimal ones were
selected to construct the PS-Radscore (11 features), AP-Radscore (11 features), and VP-
Radscore (12 features). The MP-Radscore (14 features) achieved better performance
based on ROC curve analysis than any single phase did [area under the curve (AUC),
training cohort: MP-Radscore 0.89, PS-Radscore 0.78, AP-Radscore 0.83, VP-Radscore
0.85; validation cohort: MP-Radscore 0.88, PS-Radscore 0.77, AP-Radscore 0.83, VP-
Radscore 0.84]. The combination nomogram performance was excellent, surpassing those
of all other nomograms in both the training cohort (AUC, 0.91) and validation cohort (AUC,
0.90). The nomogram also performed well in the calibration and decision curve analyses.

Conclusions: Radiomics for arterial and venous single-phase models outperformed the
plain scan model. The combination nomogram that incorporated the MP-Radscore,
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tumor location, and cystic number had the best discriminatory performance and showed
excellent accuracy for differentiating SCN from MCN.
Keywords: pancreatic cystic neoplasm, radiomics, nomogram, contrast-enhanced computed tomography (CECT),
texture analysis
INTRODUCTION

Pancreatic cystic neoplasms (PCNs) have been increasingly
diagnosed in recent years as a direct result of the extensive use
of abdominal cross-sectional imaging. The prevalence of
incidentally discovered PCNs in the general population has
been reported to range from 2.6 to 19.6% (1, 2). Considerable
attention has been focused on serous cystic neoplasms (SCNs)
and mucinous cystic neoplasms (MCNs) because of the
significant difference in the probability of malignant
transformation between the two (3). SCNs have an extremely
low incidence of malignancy (4). The current management
strategy for SCN is conservative, based on regular surveillance
with rare interventions performed only because of symptoms
(5, 6). MCNs are diagnosed almost exclusively in middle-aged
women, but with a very definite potential for malignant
transformation (7–9). In contrast to SCN, surgical resection
has been advocated for many, if not most, MCN patients.
Recognizing the marked difference in the risk of malignancy
and the consequent nearly opposite clinical management
strategies between these cystic neoplasms, it is vital to correctly
discriminate between the two.

Currently, even the high-quality imaging modalities such as
computed tomography (CT) and ultrasound do not provide
adequate discrimination between SCN and MCN (10, 11).
Clearly, radiological imaging approaches, especially multi-
detector computed tomography (MDCT), play a pivotal role in
the preoperative diagnosis of PCNs. It has been reported that the
discrimination efficacy of CT for SCNs was ranged from 27 to
91% (12, 13). Compared with CT, MRI/magnetic resonance
cholangiopancreatography (MRCP) could further improve the
diagnostic accuracy of PCNs, with an accuracy of 40–95% (14,
15) providing a better view of the pancreatic duct system and
allowing to detect the presence of a solid component or mural
nodule. Endoscopic ultrasound with fine-needle aspiration
(EUS-FNA) has become a promising tool for classifying
specific subtypes of PCNs. Adding EUS-FNA to CT and MRI
has improved the diagnostic accuracy by 36% and 54%,
respectively (16). Balanced against these potential benefits is
the invasive nature of EUS and the variable risk of FNA-
associated complications (17). These limitations and the
significant cost curtail their application for the routine
evaluation of PCNs (18).

Radiomics is an emerging and rapidly developing method for
advanced image analysis. Relative to PCNs, radiomics has been
successfully applied to the entire spectrum of the disease process,
including differential diagnosis, malignant assessment, and
prognosis prediction (19–21). Most radiomics studies utilizing
MDCT pancreatic scans have been limited to the venous phase
(VP) for feature extraction. Clearly, the different phases reflect
2

unique vascular enhancement and texture information.
Logically, a radiomics model constructed from a plain scan
(PS) or arterial phase (AP) scan would augment diagnostic
efficiency. To the best of our knowledge, no prior studies have
reported feature extraction of all three phases of contrast-
enhanced CT to discriminate PCN subtypes.

Our aim was to compare the predictive efficacy of each single-
phase radiomics model, and then to construct a combination
nomogram, incorporating a multi-phase (MP) radiomics model
with clinical imaging factors that would noninvasively and
accurately discriminate SCNs from MCNs.
MATERIALS AND METHODS

Patient Population
The Institutional Review Board of Huashan Hospital of Fudan
University approved this retrospective study, and the
requirement for informed consent was waived. Patients who
were diagnosed with SCNs or MCNs for whom surgical resection
was performed in our hospital between January 2011 and
December were enrolled in this study. The inclusion criteria
were: (1) SCNs or MCNs with surgical pathologic confirmation;
(2) contrast-enhanced CT scans (slice thickness: 1.5 mm)
performed within one month prior to pancreatic surgery. The
exclusion criteria were: (1) CT images with serious artifacts and
(2) patients whose radiomics features could not be successfully
extracted from the CT images. The details of patient enrollment
are shown in Figure S1 in Supplementary Materials. The final
study group comprised 115 patients with SCNs and 55 with
MCNs. Patients were randomly grouped in a ratio of 7:3, with
120 and 50 patients in the training and validation
cohorts, respectively.

Patient demographic and clinical information was collected
from the hospital medical record system. Demographic
information (age and sex) and eight imaging factors known to
be valuable in distinguishing SCNs from MCNs from previous
studies were selected as the basis for constructing the clinical
model (22, 23). Two radiologists with considerable experience in
abdominal imaging (13 and 6 years, respectively) evaluated the
features in consensus including: (1) lesion size, (2) tumor
location (head, neck, body, and tail), (3) cyst number (single or
multiple), (4) calcification (absent or present), (5) septation
(absent or present), (6) lesion shape (oval or irregular
lobulation), (7) wall enhancement (absent or present), and (8)
mural nodules (absent or present). Both radiologists were
blinded to the correlative pathological details. Among these,
the lesion size was outlined and decided unanimously by two
doctors simultaneously, while the other features were assessed by
December 2021 | Volume 11 | Article 699812
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each doctor, and the results were derived separately. If the two
radiologists did not agree on a specific feature in the same
patient, a third expert with 23 years’ experience in abdominal
radiology reviewed the features and helped establish the final
decision. The inter-reader agreement of imaging factors was also
assessed, as shown in Supplementary Materials (Table S1). The
framework of the study is shown in Figure 1.

Image Acquisition
CT examinations of all patients were performed using the same
256-slice CT system (Brilliance iCT, Philips Medical Systems,
The Netherlands). All pancreatic CT images were acquired using
a standard dual-phase scanning protocol. The CT scan
parameters were as follows: 120 kV; 150–200 mAs; rotation
time, 0.5-0.75 s; collimation, 128×0.625 mm; matrix, 512×512;
and slice thickness, 1.5 mm. An anionic contrast agent (370 mgI/
mL, Iopamidol-370, GEhealthcare, Princeton, NJ) was
administered at a dose of 1.5 mL/kg, 3.0 mL/s. AP images were
obtained 30 s after the injection of contrast agent, and VP images
were obtained 45 s after the AP acquisition. All images were
downloaded from the hospital archives.

Tumor Segmentation and Single-Phase
Radiomics Feature Extraction
PS, AP, and VP CT images in each patient were used for feature
extraction. The window width and window level were 300 and 40
HU, respectively. For each phase, one radiologist (13 years’
Frontiers in Oncology | www.frontiersin.org 3
experience in abdominal imaging) segmented the lesion
contour on each slice using open-source software (3D Slicer
version 4.11.0; Boston, MA). With the technical support of a
radiomics software based on Python (Pyradiomics version 3.0.0;
https://github.com/Radiomics/pyradiomics) (24), radiomics
features were extracted in three-dimensional volume for each
phase. The extracted features were classified into six categories:
(1) shape features, (2) first order statistics, (3) gray level co-
occurrence matrix features, (4) gray-level run length matrix
features, (5) gray-level size zone matrix features, and (6) gray-
level dependence matrix features. Details of the features are
provided in Supplementary Materials I.

To estimate both intra- and inter-observer reproducibility of
extracted features, 60 patients were randomly chosen for a repeat
region of interest (ROI) segmentation at 30 days following the
initial segmentation, performed by the same radiologist and an
additional one (with 6 years’ experience in abdominal imaging).
The radiologists were blinded to the associated clinical and
pathological information. The intra- and inter-class correlation
coefficients (ICCs) were used to evaluate feature reliability (25).

Feature Selection, Single-Phase
Radiomics Signature Construction, and
Performance Comparison
In the training cohort, a three-step procedure was developed to
select the radiomics features extracted in each phase. First,
features with both intra- and inter-ICC less than 0.75, were
FIGURE 1 | Radiomics workflow.
December 2021 | Volume 11 | Article 699812
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excluded from this process. The mRMR method and the least
absolute shrinkage and selection operator (LASSO) algorithm
were used to select the most robust and optimal features to
construct the single-phase radiomics model. The selected
optimal features were then combined with its coefficient in the
LASSO regression to construct the radiomics signature:
Radscores (including PS-Radscore, AP-Radscore, VP-
Radscore). The Mann-Whitney U test was used to evaluate the
discrimination capability of the each-phase Radscore. We also
used receiver operating characteristic (ROC) curve analysis and
area under the curve (AUC) values to compare the performance
of the single-phase radiomics signature. The detailed
performance of each of the radiomics signatures is shown in
Figure 2 and Supplementary Materials II. We also constructed
and evaluated the two-phase combined radiomics model
(Supplementary Materials III).

Combined Model Building and Nomogram
Development
A MP radiomics feature set was developed by integrating all 3654
(1218*3) features of the three phases. We then used the same
three-step feature extraction method to obtain an MP radiomics
signature, MP-Radscore. The discrimination capability of the MP
radiomics model was also evaluated using the Mann-Whitney U
test and ROC curve analysis. Univariate analysis was conducted to
estimate the differences between SCN and MCN patients for each
clinical and imaging feature. In the training cohort, variables with
P < 0.100, in the univariate regression, were then allocated to a
multivariable logistic regression. The clinical model was
constructed by incorporating factors with P < 0.100 in the
multivariate analysis (26). Finally, a combination multivariate
logistic model was constructed using MP-Radscores together
with selected clinical imaging factors. Variance inflation factor
(VIF) analysis was performed on the combination model to
Frontiers in Oncology | www.frontiersin.org 4
further reduce the probability of overfitting. The nomogram was
developed to visualize the optimal model, specifically to score each
patient and quantify the degree of disease tendency.

Model Validation and Clinical
Use Evaluation
The combination model was first evaluated in the training cohort
(n = 120) and subsequently confirmed in the validation cohort
(n = 50). ROC curves and AUC values were used to evaluate the
discriminatory performance of the combined models. Calibration
curves and the Hosmer-Lemeshow test were conducted to estimate
the consistency between the predictive results of the combination
model and expected probabilities. We also used the Delong test to
compare the predictive efficiency between the combination model
and the venous radiomics approach to confirm the advances of our
combination model.

Decision curve analysis (DCA) was performed to determine
the clinical value of the nomogram and calculate the net benefits
of the models at different threshold probabilities (27).

Statistical Analysis
Continuous variables are presented as means and standard
deviations. Student’s t-test and chi-square test were employed
to evaluate the statistical differences in continuous and discrete
variables, respectively. In the ROC test, accuracy, sensitivity, and
specificity at the cutoff value were calculated to evaluate the
efficiency of the radiomics model, clinical model, and the
combination model. The inter-reader agreement of imaging
factors was assessed using the kappa test, and the simple kappa
coefficient was used as an assessment criterion for consistency. A
two-tailed P value less than 0.05, was deemed as statistically
significant. All statistical analyses were performed using the R
software (version 3.6.3). The R packages and the main code used
are included in Supplementary Materials V.
A B

FIGURE 2 | Single-phase radiomics model performance in the training cohort (A) and validation cohort (B).
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RESULTS

Patients Characteristics
Patient characteristics are summarized in Table 1. There were
120 patients (SCN: 81, MCN: 39) in the training cohort and 50
(SCN: 34, MCN: 16) in the validation cohort. No significant
differences were found in the clinical and imaging features
between the two cohorts.

Feature Selection, Single-Phase
Radiomics Signature Construction, and
Performance Comparison
From each phase of contrast-enhanced CT scans, 1218 features
were extracted. After ICC assessment applying the minimum
criteria for intra- or inter-ICC values, 0.75, 765, 922, and 840
features remained from the PS, AP, and VP CT images,
respectively. Of these, 30 features from each phase were retained
using the mRMR algorithm for LASSO regression. Finally, 11,11,
and 12 radiomics features were selected to construct the radiomics
signature for the radiomics model of PS, AP, and VP CT scans,
respectively. Features were identified using multivariate logistic
regression analysis to construct single-phase radiomics signatures
(PS-Radscore, VP-Radscore, and AP-Radscore). The formulas for
calculating the Radscores and features selected for the single-phase
radiomics model are presented in Supplementary Materials II.

In all three single-phase Radscores, there was a significant
difference between SCN and MCN patients in the training cohort
(P < 0.010), and importantly, this was confirmed in the
Frontiers in Oncology | www.frontiersin.org 5
independent validation cohort (P < 0.010). The PS, AP, and
VP radiomics models yielded AUC values of 0.78, 0.83, and 0.85,
respectively, for the training cohort, and 0.77, 0.83, and 0.84,
respectively, for the validation cohort. The AUC values in the
radiomics model in AP and VP were similar and higher than
those in the radiomics model of the plain scan. The performance
of the single-phase radiomics model is shown in Figure 2.

Combined Model Building and Nomogram
Development
Using the three-step selection process described above for single-
phase radiomics model construction, 14 features (including 2 in
PS, 4 in AP, and 8 in VP) were similarly selected from the MP
radiomics feature set (Figure 3). The MP-Radscore was built to
improve the discrimination efficacy of the MP radiomics model.
ROC curves showed that the MP radiomics model performed
better than the models based on single CT phase (AUC: 0.89 and
0.88 in the training and validation cohorts, respectively). The
performance of the MP radiomics model in the Mann-Whitney
U test and ROC curves are shown in Figure 4. The detailed
calculation formulas of the MP-Radscore and combined
nomogram are included in Supplementary Materials IV.

In the univariate analysis of the clinical model building, only
tumor location and cyst number were significantly correlated with
pathologic results (P < 0.100). Tumor location and cyst number
were statistically significant (P < 0.100) in the multivariate logistic
regression analysis, therefore comprising the clinical model. The
results of the univariate and multivariate logistic regression
December 2021 | Volume 11 | Article 699812
TABLE 1 | Characteristics of Patients in the Training and Validation Cohorts.

Characteristics Training Cohort (n = 120) Validation Cohort (n = 50)

SCN (n = 81) MCN (n=39) P SCN (n = 34) MCN (n = 16) P

Age, mean ± SD 51.2 ± 11.5 50.8 ± 14.9 .890 56.4 ± 14 53.9 ± 11.1 .523
Sex, No (%)
Male 15 (18.5) 3 (7.7) .199 11 (36.7) 2 (12.5) .251
Female 66 (81.5) 36 (92.3) 23 (63.3) 14 (87.5)

Lesion size (cm) 4.0 ± 2.5 4.7 ± 2.1 .113 4.3 ± 2.4 5.5 ± 2.7 .105
Tumor location
Head and neck 37 (45.7) 9 (23.1) .029 13 (38.2) 13 (81.2) .011
Body and tail 44 (54.3) 30 (76.9) 21 (61.8) 3 (18.8)

Cyst number
Single 50 (61.7) 33 (93.9) .019 16 (47.1) 12 (75.0) .120
Multiple 31 (38.3) 6 (6.1) 18 (52.9) 4 (25.0)

Calcification
Absent 53 (65.4) 25 (64.1) 1.00 20 (58.8) 12 (75.0) .426
Present 28 (34.6) 14 (35.9) 14 (41.2) 4 (25.0)

Septation
Absent 40 (49.4) 14 (35.9) .232 11 (32.4) 8 (50.0) .375
Present 41 (50.6) 25 (64.1) 23 (67.6) 8 (50.0)

Lesion shape
Oval 50 (61.7) 27 (69.2) .548 20 (58.8) 12 (75.0) .426
Irregular lobulation 31 (38.3) 12 (30.8) 14 (41.2) 4 (25.0)

Wall enhancement
Absent 57 (70.4) 26 (64.1) 1.00 23 (67.6) 11 (68.8) 1.00
Present 24 (29.6) 13 (35.9) 11 (32.4) 5 (31.2)

Mural nodules
Absent 64 (79.0) 35 (89.7) .233 23 (67.6) 15 (93.8) .096
Present 17 (21.0) 4 (10.3) 11 (32.4) 1 (6.2)
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analyses are shown in Table 2. The combination model was
constructed by incorporating the MP-Radscore, tumor location,
and cyst number. A nomogram was established to visualize the
combined model (Figure 5A).

Combination Model Validation and Clinical
Use Evaluation
The combination nomogram exhibited best predictive
performance (AUC: 0.91 and 0.90 in the training and validation
cohorts, respectively) for the discrimination between SCNs and
MCNs (Figures 5B, C and Table 3). The Delong test
demonstrated statistical differences in AUC values between the
combination nomogram and the clinical model (P < 0.010).
Significant differences were also found in the ROC curves
between the combination nomogram and VP model (Z = 1.962,
P = 0.0497 < 0.0500) in the validation cohort. Calibration curves
(Figure S6) revealed good agreement between the predictive and
observation probabilities of our combination nomogram (P = 0.480
and 0.582 for the training and validation cohorts, respectively).

The decision curve analysis indicated that the combination
nomogram provided a net benefit over either a “treat-all” or
“treat-none” strategy, and the clinical model at a threshold
probability over 10% (Figure 6). The combination nomogram
demonstrated excellent clinical practicality.
DISCUSSION

In this retrospective study, we constructed and validated an MP
CT-based radiomics nomogram to differentiate SCN fromMCN.
Frontiers in Oncology | www.frontiersin.org 6
The combination model, incorporating the MP radiomics model
plus clinical imaging factors, exhibited better diagnostic
performance than any of the single-phase radiomics models or
a clinical model alone did. The decision curve analysis also
confirmed that the combination model achieved better
discriminatory accuracy than the clinical model did. Relating
specifically to the single-phase performance comparison, the
radiomics model of the AP and the VP performed better than
the PS model in terms of AUC values.

The exact morphologic details of MDCT are crucial to
exclude tumor invasion of PCNs. Key imaging morphologic
factors (tumor size, location, lesion shape, calcification,
segmentation, etc.) derived from pathologic characteristics
form the basis for radiologic differentiation of PCN subtypes
(28, 29). Nevertheless, the diagnostic accuracy of cross-sectional
imaging, such as MDCT, still falls short of ideal discrimination
(30). Therefore, intrusive methods, such as EUS-FNA, have been
developed to add diagnostic precision for preoperative PCN
subtyping. Clearly, achieving this degree of accuracy requires
highly skilled endoscopists and cytologists (31, 32).

Apart from the invasive techniques described above,
radiomics offers a promising noninvasive technology intended
to achieve similar results. We successfully established a
combination radiomics model and achieved superior capacity
to differentiate SCNs from MCNs. Among numerous clinical
imaging factors, only cyst number and tumor location were
statistically essential to be included in the combination model.
Considering that the clinical and imaging features of PCNs
pathologically diagnosed as SCN in the study were not
consistent with typical SCN manifestations, we also analyzed
FIGURE 3 | Features selected for multi-phase radiomics model construction.
December 2021 | Volume 11 | Article 699812
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and modeled these features. These results are consistent with a
number of previous CT imaging studies. The differences in
morphology that discriminate between SCNs and MCNs are
limited to tumor location, lobular contour, and a large number of
cysts (30, 33). The prediction accuracy of the clinical model alone
was poor, with AUC values of only 0.69 and 0.63 in the training
group and validation group, respectively. Even with high-quality
CT scans interpreted by skilled radiologists, the accuracy of PCN
subclassification remains disappointing.
Frontiers in Oncology | www.frontiersin.org 7
A recent study assessed the discriminatory efficacy of
conventional CT imaging features in distinguishing SCN from
MCN and presented it by building a nomogram based on
multivariate logistic regression (34). In contrast, our study not
only considered conventional clinic-radiological features, but also
incorporated radiomics features that reflected the deeper
dimensional information of the images to construct a
comprehensive model. The results showed that the combined
model demonstrated better predictive ability than the clinical
TABLE 2 | Variables Elected for Combined Model and Clinical Model.

Intercept & Variable Combined Model (95%CI) Clinical Model (95%CI)

Odds Ratio P Value Odds Ratio P Value

Intercept 0.74 (0.05,10.13) <0.01 0.45 (0.06, 3.11) <0.01
Tumor location 1.69 (0.54, 5.42) 0.05 2.65 (1.62, 2.70) 0.03
Cyst number 0.76 (0.23, 2.48) 0.01 0.30 (0.11, 0.75) <0.01
MP-Radscore 4.25 (2.58, 7.96) <0.01 NA NA
December 2021 | Volume 11 | Article
NA, not available.
A B

C D

FIGURE 4 | The box-dot plots of the multi-phase radiomics model in the training cohort (A) and the validation cohort (B). The orange markers indicate patients with
MCN while the blue markers indicate patients with SCN. The ROC curves for the multi-phase radiomics model in the training cohort (C) and the validation cohort (D).
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model alone. Several previous studies have applied radiomics to
the differentiation of PCNs and have achieved good results (35,
36). However, further validation is required because of the limited
amount of data (N < 80) and the high risk of overfitting.
Moreover, a nomogram has not yet been established to visualize
the radiomics model. Finally, they performed feature extraction
almost uniquely on VP CT images. In the present study, in
addition to VP CT scans, we also investigated the radiomics
signatures on plain and AP CT images. The VP-Radscore AUC
value was the best among the three single-phase radiomics
models; similarly, the radiomics models of both the VP and AP
had superior AUC values compared to those of the PS model.
These results require verification, because they rely heavily on the
Frontiers in Oncology | www.frontiersin.org 8
experience of the radiologist performing manual segmentation
(22). Interestingly, several radiomics studies have constructed
radiomics models from only PS and have achieved good results
in disease prediction (37, 38). The feature composition of the MP
radiomics model included 8 features (57.1%) in the VP, 4 in the
AP (28.6%), and only 2 (14.3%) in the PS. Our highest
quantitative ranking of the VP is consistent with most
previously published pancreatic radiomics research, while the
PS was used less frequently. Therefore, this study is also
significant in that it provides preliminary insight into the effect
of contrast-enhanced CT scan phase on the predictive efficacy of
imaging histology models and establishes a more comprehensive
model to summarize various types of risk factors for prediction.
TABLE 3 | Diagnostic performance of models in the training and validation cohorts.

Models Training Cohort (n = 120) Validation Cohort (n = 50)

Sensitivity Specifity Accuracy (95%CI) AUC (95%CI) Sensitivity Specifity Accuracy (95%CI) AUC (95%CI)

Clinical model 0.67 0.69 0.68
(0.59, 0.76)

0.69
(0.59, 0.79)

0.50 0.79 0.70
(0.55, 0.82)

0.72
(0.57, 0.87)

MP-Radscore 0.91 0.80 0.84
(0.76, 0.90)

0.89
(0.82, 0.95)

0.81 0.88 0.82
(0.73, 0.89)

0.88
(0.77, 0.98)

Combined
nomogram

0.92 0.81 0.85
(0.77, 0.91)

0.91
(0.84, 0.97)

0.71 0.90 0.78
(0.64, 0.88)

0.90
(0.81, 1.00)
Decem
ber 2021 | Volume 11 |
A

B C

FIGURE 5 | (A) The nomogram established for the combined model. ROC curves comparison between the nomogram and clinical model in the training (B) and
validation cohorts (C).
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Our study has some limitations. First, this was a retrospective
study that was conducted in a single center with a relatively small
sample size. Large-scale external validation is needed to further
demonstrate the clinical efficacy of the nomogram constructed
here. Second, while our method of manual segmentation set the
basis for excellent results, this was possible because of our
relatively small number of cases. For widespread application of
this technique, more research employing automatic or semi-
automatic image segmentation is likely to be necessary. Third,
the patients included in this study all had SCN orMCN confirmed
using surgical pathology, and there may have been a selection bias.
IPMN or other pancreatic cystic diseases need to be further
studied to broaden the clinical application of this algorithm.

In conclusion, our study has established a novel multi-phase
CT-based radiomics nomogram for a noninvasive preoperative
differentiation of SCNs from MCNs. The nomogram could
provide a reference basis for an accurate diagnosis, thereby
avoiding unnecessary surgical resection in clinical practice. We
also preliminarily explored the influence of specific feature
extraction phases on the predictive efficacy of the radiomics
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model; the results may be enlightening to subsequent
radiomics studies.
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