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Accurate automatic medical image segmentation technology plays an important role for
the diagnosis and treatment of brain tumor. However, simple deep learning models are
difficult to locate the tumor area and obtain accurate segmentation boundaries. In order to
solve the problems above, we propose a 2D end-to-end model of attention R2U-Net with
multi-task deep supervision (MTDS). MTDS can extract rich semantic information from
images, obtain accurate segmentation boundaries, and prevent overfitting problems in
deep learning. Furthermore, we propose the attention pre-activation residual module
(APR), which is an attention mechanism based on multi-scale fusion methods. APR is
suitable for a deep learning model to help the network locate the tumor area accurately.
Finally, we evaluate our proposed model on the public BraTS 2020 validation dataset
which consists of 125 cases, and got a competitive brain tumor segmentation result.
Compared with the state-of-the-art brain tumor segmentation methods, our method has
the characteristics of a small parameter and low computational cost.

Keywords: brain tumor segmentation, attentionmechanism,multi-task learning, semi-supervised learning,multi-scale
feature fusion, deep supervision
1. INTRODUCTION

Brain tumors are the most common primary malignant tumors of the brain caused by the
canceration of glial cells in the brain and spinal cord. Brain tumors have the characteristics of
high morbidity and mortality. Automatic segmentation technology of brain tumor can assist
professional doctors to diagnose brain lesions and provide imaging technical support for the
diagnosis and treatment of brain tumor patients. With the development of convolutional neural
networks, the brain tumor automatic segmentation technology based on deep learning had achieved
a high segmentation accuracy. However, the location of brain tumor regions and accurate
segmentation of tumor edges have always been the difficulties of deep learning methods. In order
to obtain accurate segmentation results, deep learning methods usually require a numerous
parameters and a long calculation time, which leads to extremely high demands on the
hardware. Therefore, it is of great significance to develop a simple and efficient network architecture.

Since 2015, a variety of Convolutional Neural Networks (CNN) architectures for brain tumor
segmentation have been proposed. Havaei et al. proposed the InputCascadeCNN model (1), which
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used cascaded CNN to segment brain tumor regions. After the
network obtained a small feature map, it used two CNN branches
with different convolution kernel sizes to further extract local
feature and global information, and fused multi-scale
information. Dvorak et al. proposed a 6-layer CNN, the brain
image was cropped into multiple patches, and these patches were
clustered using k-means to obtain N clustering results and
formed a dictionary as the input of network (2). Pereira et al.
used a 3X3 convolution kernel to extract the segmentation features
(3), like VGG (4). When the receptive field of the same size was
obtained, a smaller convolution kernel could effectively reduce the
amount of network parameters and enabled the network to be
designed deeper. At the same time, the author used intensity
normalization in the data preprocessing process. Kamnitsas et al.
proposed DeepMedic (5), using residual block (6) in the CNN
architecture. DeepMedic used images of different resolutions as
the input of two branch networks to obtain multi-scale
information and fused the multi-scale information. Randhawa
et al. (7) used a classification network to classify each input pixel.
Kamnitsas et al. proposed EMMA (8), which merged the outputs
of multiple independent networks through an average confidence.

Although a variety of network structures have been
proposed, the location of tumor regions and accurate
segmentation of tumor boundaries have always been the
difficulties of brain tumor segmentation. The traditional deep
learning method usually used the fully connected layer as the
last layer of the network, but one-dimensional probability
information will lose the spatial structure information of the
image, which is not suitable for image segmentation. Fully
convolutional neural networks (FCN) (9) and U-Net (10) used
a fully convolutional layer as the last layer of network, and used
an up-sampling operation that is symmetrical to down-
sampling to keep the size of the feature map consistent with
the input size of the network. This method effectively improves
the ability of neural network to locate the region of interest
(ROI). However, the shape and pixel intensity of brain tumor
data are affected by differences between patients and data
collection agencies, which makes it difficult for traditional
U-Net and FCN to obtain accurate location and segmentation
accuracy when the number of parameters is small.

In order to further improve the performance of the U-Net
architecture, a variety of improved U-Net architectures have
been proposed. DCSNN (11) extends the architecture of U-Net
with a residual module by adding a symmetric mask in multiple
layers. Isensee et al. proposed an improved U-Net architecture
(12), which used the pre-activation residual block (13) as the
basic unit of network. At the same time, the leaky rectified linear
unit (leaky ReLU) was used to prevent the gradient from
disappearing, and batch normalization (14) was replaced with
instance normalization (15), which improved the stability of the
network for a feature extraction of small batches. nnU-Net (16)
used 2D U-Net, 3D U-Net, and cascaded 3D U-Net to adaptively
segment inputs of different resolutions. Although most of the
improved u-net methods improve the segmentation accuracy,
they also increase the depth, parameters, and computing time of
deep learning network.
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The depth of the network and the size of the parameters will
directly affect the ability of feature extraction, usually a deeper
network structure and larger parameters will improve the
segmentation accuracy. However, the increase of parameters
will lead to an over fitting problem and reduce the robustness
of the network. Too deep network structure will lead to the
problem of vanishing gradient and exploding gradient in
network training. In order to solve the vanishing gradient
problem and exploding gradient problem of the deep network,
deep supervision methods were introduced (17–19). In theory,
when the size of convolution kernel remains the same, as the
number of network layers becomes deeper, the network gained a
stronger nonlinear expression capability. However, with the
deepening of the network, backpropagation becomes difficult,
resulting in a decrease in network performance. Chen et al.
proposed VoxResNet, which was used in brain segmentation. In
order to solve the problem of automatic segmentation caused by
the difference in the shape of 3D image slices, the author merged
the deep supervision results containing multi-level context
information as the final output of network (20). Zeng et al.
used a multi-level deep supervision of 3D U-Net to alleviate the
potential gradient vanishing problem in a Proximal femur
segmentation (21). Zhang et al. used deep supervision in a
retinal vessel segmentation to learn a better semantically
representation and help convergence (22). Zeng et al. proposed
a multi-scale deep supervision method in infant brain MR image
segmentation, which addresses that the final loss cannot
supervise a shallow fracture extraction (23).

Similarly, a deep supervision method was also used in the
brain tumor segmentation (12). Deep supervision usually used
the same label to perform a single task, mainly focusing on
solving the problem of gradient vanishing. When Resnet was
proposed, the problem of gradient vanishing was effectively
improved. Andriy Myronenko proposed a multi-task learning
method (24), which used U-Net to perform brain tumor
segmentation tasks and used another decoder branch for image
reconstruction. This method was similar to a deep supervision,
replacing the label of a decoder branch with a reconstruction
label, thereby preventing the problem of network overfitting.
Similarly, Chen et al. proposed the Multi-task Attention-based
Semi-Supervised Learning (MASSL) framework, which used soft
segmentation to obtain pseudo-labels of tumor and non-tumor
regions, and used pseudo-labels to supervise the reconstruction
branch (25). They proposed that multi-task learning could
improve the capture of segmentation features in the encoder
part. Jiang et al. used two decoder branches with different up-
sampling structures to help the encoder part to collect more
abundant brain tumor regional features (26). Weninger et al.
used the three tasks of segmentation, classification, and
reconstruction to jointly train the shared encoder part (27).
The methods above used other related tasks as labels for deep
supervision, and obtained accurate brain tumor segmentation
results. It showed that the deep supervision method could not
only improve the vanishing gradient problem of deep network,
but also enabled the network to learn a richer visual
representation and prevented overfitting.
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In the brain MRI image of the patient, the brain tumor area is
small, so the brain tumor segmentation has a problem of class
imbalance. In order to focus on the brain tumor area, the visual
attention mechanism was introduced into the medical image
segmentation network. Hu et al. used the global max-pooling
layer to adaptively calculate the weight of each channel, and feed
the weight back to the feature channel (28). On this basis, Li et al.
designed a dynamic selection mechanism for the convolution
kernel based on the working principle of visual neuron, and
adaptively adjusted the receptive field size obtained by the
convolution kernel through multi-scale information, and used
softmax to Features of different sizes are merged (29). Woo et al.
used the channel attention module and spatial attention module
to adaptively select the beneficial channel features and spatial
features, and used element-wise summation and sigmoid
activation function to fuse the two features (30).

In this paper, we proposed a new end-to-end brain tumor
segmentation network. We made partial modifications to the
Attention U-Net (31) framework and design MTDS and
APR module. Our work aims to enhance the ability of
network to capture the features of brain tumor and reduce the
impact of class imbalance, and improve the accuracy of brain
tumor segmentation.
2. METHODS

The detailed description of our proposed automatic brain tumor
segmentation method will be given in this section. The proposed
deep learning model architecture is presented, including the
UNet-like basic network, APR module, and MTDS.
2.1 Basic Network
The design of the model needs to consider the distribution
characteristics of the dataset. Compared with natural images,
medical images are symmetrical and have a simpler semantic
information and a more fixed image structure. However, medical
images often contain noise and artifacts, and the boundary
information is blurred. In the view of a single structure and
the fuzzy boundary of medical images, the autoencoder structure
with skip connection has become the benchmark for brain tumor
segmentation. The structure of convolutional autoencoder can
reduce the amount of network parameters while obtaining high-
level semantic features, saving computing resources. Skip
connection combines low-level and high-level features to help
the network reconstruct the detailed information of ROI. Our
basic network is similar to Attention U-Net. In order to obtain a
higher tumor segmentation accuracy, we adjusted the structure
of the network.

The model structure is shown in Figure 1, similar to LinkNet
(32), we combined the U-Net structure and the ResNet structure.
According to the statement in (33), the skip connection of U-Net
cannot eliminate the vanishing gradient problem, but the shortcut
of ResNet can prevent the vanishing gradient problem. In
addition, the skip connection of U-Net helps to increase the
Frontiers in Oncology | www.frontiersin.org 3
convergence speed the same as the shortcut of ResNet. The
main structure includes encoder, decoder, and deep supervision.
Encoder consists of 3 down-sampling, 4 APR module, and 4
Squeeze-and-excitation (SE) modules. For the first Residual Units
of the encoder part, the number of convolution kernel is 32, and
doubles with each next residual unit. Decoder includes 3 up-
sampling, 3 pre-activation convolution blocks, 3 SE modules, 1
convolutional layer (1x1), and 1 sigmoid. In the SE module, some
channels are considered to have no important contribution to the
segmentation task, and their weights are very small, which leads to
overfitting and vanishing gradients problem. Therefore, we added
the dropout layer to prevent the network from overfitting and
improve the robustness of the deep learning network. The random
change of channel weight helps the network learn the visual
expression of different channel features in brain tumor
segmentation. The experimental results also prove this
conclusion. The SE module is shown in Figure 2, and Table 1
reports the results of comparative experiments with or without
dropout in the SE module.
2.2 Multi-Task Deep Supervision
In the brain tumor automatic segmentation model, we use the
MTDS method to optimize the training process of deep learning
network and extract richer visual features. In the process of back
propagation, the deep network converges slowly or even hard to
converge due to the problem of vanishing gradient. Deep
supervision techniques are used to alleviate the training difficulty
of deep networks. However, unreasonable network design affects
the hierarchical feature expression ability of the network, and even
disrupt the network optimization goal. Usually, the shallow layers
of the network extract low-level features in the image, such as
boundary information. The deep layers of the network can extract
high-level features, in other words, the semantic information of an
image. When deep supervision is designed in the front of the
network, it forces the network to change the normal learning
process, resulting in an inconsistent loss of optimization goals and
affecting the segmentation accuracy. This impact became more
serious in many deep networks (34).

Based on the problems above, we use the ground truth of
multiple segmentation tasks as the label for deep supervision, and
optimize the training process through multiple associated sub-
segmentation tasks. While solving the vanishing gradient
problem, the ability of the network to extract segmentation
features of a sub-tumor region is improved. The comparison
between our proposed deep supervision method and other
methods is shown in Figure 3. The sub-segmentation task is used
as the regularization item of the network to improve the
generalization ability of the model and prevent overfitting.
Normally, whole tumors consist of the peritumoral edema,
enhancing tumor, and the necrotic and the non-enhancing
tumor. The area of enhancing tumor is smaller than the area of
peritumoral edema and the necrotic and the non-enhancing tumor.
High-level semantic information is not conducive to capturing the
features of the enhancing tumor area, while low-level boundary
information can better express the detailed features of the enhancing
tumor. In our method, the enhancing tumor ground truth is used as
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the label of first deep supervision, and the shallow layers of network
can better capture the boundary details of the enhancing tumor
area. Segmentation of the necrotic area and segmentation of the
peritumoral edema area are respectively used as the other two deep
Frontiers in Oncology | www.frontiersin.org 4
supervision tasks, and the final output of the network is the
segmentation of the whole tumor area. The optimization objective
of whole brain tumor segmentation and multi-task auxiliary
segmentation can be expressed as follows:
FIGURE 1 | The basic 2D convolutional neural network for brain tumor segmentation. It consists of encoding, decoding, and deep supervision. Our approach is an
end-to-end network, the input of the network is a 2D image composed of four modes, and the output is the whole brain tumor prediction result of each 2D image.
Output1, output2, and output3 are the subregions of the brain tumors, which are the peritumoral edema, enhancing tumor, and the necrotic and the non-enhancing
tumor, respectively. Multi-task deep supervision with progressive relationships can help our method accurately extract the visual features of each stage.
September 2021 | Volume 11 | Article 704850
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arg max
wm ,wa

 Lm(wm;D) + La (wa ;D) (1)

where D is the brain tumor datasets with annotation, wm is the
learnable weight matrices of whole brain tumor segmentation
network, and wa correspond to the learnable weight matrices of
multi-task auxiliary segmentation network. Lm denotes the total
loss function of whole brain tumor segmentation, and La is the
loss function of multi-task auxiliary segmentation.

2.3 Attention Pre-Activation
Residual Module
In addition to the function of identity mapping, residual module
is a simple multi-scale feature fusion method (36). Multi scale
feature representation is very important for image segmentation.
Except to the pixel intensity, the morphological features of the
tumor region are of great importance for brain tumor segmentation.
Learning the difference between the morphological features of brain
tumor and the surrounding normal brain tissue by deep
convolution network is helpful to the accurate segmentation of
the brain tumor region. The combination of the boundary
information of the tumor region and its high-level semantic
information can make the deep convolution network accurately
locate ROI (31). Based on the residual module, the improved multi-
scale information fusion of deep convolution network is beneficial
to the classification, segmentation, and detection of visual tasks.

Therefore, Res2Net (37) and other network structures are
proposed. Res2Net designed a residual structure, which can
significantly increase the multi-scale information of the residual
module. However, the feature fusion of Res2Net is simple, so that it
is difficult to make full use of the multi-scale information. On this
basis, we propose an APR module, which is used to improve the
attention of the deep network to ROI. This structure combines the
pre-activation residual units (13) and attention gates (AGs) (31).
The APR module can be seen in Figure 4. Thanks to the excellent
performance of the pre-activation residual units in the field of
Frontiers in Oncology | www.frontiersin.org 5
medical image segmentation (24, 26, 33, 38), we use the pre-
activation residual units as the basic module of the segmentation
network. Pre-activation residual units can help information
propagation, which include 2 batch normalization, 2 rectified
linear unit (ReLU), and 2 weight layers. The output xl+1 of the
pre-activation residual units can be expressed as follows:

xl+1 = xl + F(xl ,wl) (2)

F(xl ,wl) = Fr(Fr(xl ,wl)) (3)

Fr(xl ,wl) = Wx(s1(Wb(xl ,wl))) (4)

where xl is the input of the pre-activation residual units, wl is the
learnable weight matrices. F(xl,w1) denotes the pre-activation
residual function, F(xl,w1) consists of two cascaded subunits Fr
(xl,w1). An element-wise addition is used to combine the
feature map of xl and F(xl,w1). Each Fr(xl,w1) includes a batch
normalization wb, a ReLU s1, and a 3X3 convolutional layerWx.
The 3X3 convolution layer enables the pre-activation residual
function to obtain a larger receptive field than the input, which
provides multi-scale visual information for the feature fusion of
the attention gates.

Attention gates, which is like the shortcut-only gating and 1x1
convolutional shortcut (13), have a stronger visual representational
ability. Attention gates consists of a ReLU, 1x1 convolutional layer,
and a sigmoid activation function. ROI is selected by analyzing both
the activations and contextual information. The output yl+1 of
attention gates can be expressed as follows:

yl+1 = yl o ̇ Fa (yl) (5)

Fa(yl) = s2(Wy(s1(yl))) (6)

where yl is the input of attention gates, which is the output of the
pre-activation residual units (yl = xl+1). ȯ is the element-wise
FIGURE 2 | Our proposed SE module with the dropout layer. Adding the dropout layer can prevent overfitting and improve the robustness of the deep learning
network. The SE module assigns different weights to the feature channels to help the network obtain the most effective features of the brain tumor regions.
TABLE 1 | The results of comparative experiments with or without dropout in the SE module on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without
dropout

88.59 88.52 99.86 7.74

with dropout 89.18 89.24 99.91 5.77
September 2021 | Volume 11 |
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multiplication. Fa(y1) denotes the attention gates function.Wy is
a 1x1 convolutional layer used to compute linear transformation.
s2 =

1
(1+exp(−yl)) is a sigmoid activation function. ReLU and

sigmoid can improve the nonlinear expression ability of the
attention gates. In addition, sigmoid can make attention gates
parameters have a better convergence.

We combine the pre-activation residual unit and attention
gates, and obtain the APR module as follows:

yl+1 = (xl + Fr(Fr(xl ,wl))) ȯs2(Wy(s1(xl + Fr(Fr(xl ,wl))))) (7)

APR module is a multi-scale feature fusion method based on the
residual unit. This method obtains multi-scale information from
the residual units and generates a gating signal to control the
importance of features in different spatial regions, to suppress the
feature response of irrelevant background regions.
Frontiers in Oncology | www.frontiersin.org 6
3 EXPERIMENTS AND RESULTS

In this section, the brain tumor datasets and the pre-processing
methods are introduced. And then, we provide the training
details of network, including the loss function and optimizer.
Post-processing methods for brain tumor segmentation are also
introduced. Finally, we introduce the evaluation criteria for the
brain tumor segmentation task, and report the results consisting
of the ablation experiment and comparison with the state-of-the-
art methods.

3.1 Brain Tumor Dataset and
Pre-Processing
In this section, we present the details of experimental data, it
includes brain tumor datasets, data preprocessing and
data augmentation.
A B

DC

FIGURE 3 | The comparison between our proposed deep supervision method and other methods. (A) The U-Net model; (B) Use of multiple shortcuts and skip
connections: this method adds a deep supervision method to each level of sub network, which affect the hierarchical feature expression ability of network (35);
(C) Use of image reconstruction task as deep supervision to prevent the network from overfitting (24). (D) Our method with deep supervision.
September 2021 | Volume 11 | Article 704850
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FIGURE 4 | Our proposed APR module, which consists of the Pre-activation Residual Units and Attention Gates. Pre-activation Residual Units obtain feature maps
of low-level and high-level scales. Attention Gates obtains the weighted feature map of the 2D image by performing nonlinear processing on the output result of the
Pre-activation Residual Units.
Frontiers in Oncology | www.frontiersin.org September 2021 | Volume 11 | Article 7048507
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3.1.1 Brain Tumor Datasets
The brain image dataset is provided by MICCAI Multimodal
Brain Tumor Segmentation Challenge (BraTS) (39, 40). Each
sample of the patient includes four modalities. The brain tumor
datasets were collected from 19 institutions with the same
resolution of 1 mm3, and were unified to the same anatomical
template. The size of each modality was 240x240x155. All BraTS
multimodal datasets include four modals, which are native (T1),
post-contrast T1 weighted (T1Gd), T2 weighted (T2), and T2
fluid attenuation inversion recovery (T2-FLAIR). Table 2
summarizes the dataset of BraTS 2017-2020. The training
datasets of BraTS 2018-2020 are used to train our network.

3.1.2 Pre-Processing
Due to different data collection agencies, there are differences in
the pixel intensity. In order to make the deep learning network
learn more uniform and the segmentation features more
accurate, it is necessary to use image pre-processing methods
to standardize the data.

In the dataset provided by BraTS 2020, the brain area occupies
less than 50% of the total area. A large background area increases
the proportion of negative samples, making it difficult for deep
learning networks to effectively learn brain tumor features (16). In
addition, more tumor pixels are incorrectly classified as background.
Different from (41, 42), which crops images into small patches, we
crop each image to a size of 144x176 to preserve as much brain
region information as possible and reduce the interference of
background regions. Specifically, we keep the center area of each
image and cropped the edge area. Maximizing the preservation of
brain information in non-tumor areas is beneficial for the network
to better learn to distinguish the difference between tumor and
normal brain tissue. After cropping the image, we use min-max
normalization (43) to process the image to reduce the difference
between the data collected by different institutions. Specifically, we
calculated the maximum and minimum pixel intensity of the 3D
brain data of each brain tumor patient in a single modality, and
normalized the value range of each pixel to 0 and 1 through min-
max normalization between. Performing min-max normalization
on a single modality of each sample can not only reduce the
difference between scans from various institutions, but also avoid
the difference of various scans from the same institution. In
addition, normalizing the pixel value between 0 and 1 facilitates
the back propagation of gradient during the training process.

3.1.3. Data Augmentation
In order to solve the problem of less training data, we also carried
out data augmentation operations. Data augmentation can
effectively increase the sample size and prevent the model from
Frontiers in Oncology | www.frontiersin.org 8
overfitting. Commonly used data augmentation methods include
flipping (44), transposing, and rotating (45). In order to ensure
that the pixel intensity of data does not change significantly and to
make the network robust to the shape of tumor, we use the data
augmentation strategy of flipping. This strategy can enable the
deep learning network to learn the shape characteristics of brain
tumors, and use the shape information of brain tumors and non-
tumor regions to help the network distinguish tumor regions with
similar pixel intensity from normal brain tissue regions.

3.2 Loss Function
In the brain tumor images, the proportion of the lesion area is
small, in other words, the foreground area is much smaller than
the background area. Class imbalance makes it difficult for some
commonly used segmentation loss functions to train network
parameters effectively. In order to reduce the impact of class
imbalance on network training, the network is trained with a
combination of dice loss (42) and cross-entropy loss. The joint
loss combining dice loss and cross-entropy loss is proven to have
an excellent performance in medical image segmentation
tasks (46).

Dice loss is a similarity measure method, which is widely used
in medical image segmentation, and its value range is [0, 1]. Dice
loss can be expressed as follows:

Ldice =
2SZ

i=1piqi
SZ
i=1p

2
i + SZ

i=1 q21
, (8)

where Z denotes the sums of voxels, pi∈P is the predicted binary
segmentation volume, and qi∈Q is the ground truth of
segmentation volume.

Dice loss focuses on the segmentation results of the
foreground regions, so it can improve the impact of class
imbalance. But when the foreground area in the image is too
small, the predicted segmentation result has a greater impact on
the calculation result of loss function, making the training
unstable. Therefore, we combine dice loss and cross-entropy to
improve the training stability. The loss function of brain tumor
segmentation network without deep supervision can be
expressed as follows:

Lm(wm;D) = 1 −
1
N
SN
i=1 log  fm(wm; xi)

(yi)

−
2SN

i=1yiby i
SN
i=1y

2
i + SN

i=1by 2i , (9)

where the brain tumor datasetD including N examples, xi is the i
th

image of brain MRI scans, and yi is the ground truth
TABLE 2 | Summary of the BraTS challenge dataset from 2017 to 2020.

Dataset Training Validation Testing

BraTS 2017 285 46 146
BraTS 2018 285 66 191
BraTS 2019 335 125 166
BraTS 2020 369 125 166
September 2021 | Volume 11 | Article
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corresponding to xi. ŷ i denotes the predicted binary segmentation
result corresponding to xi.

3.3 Implementation Details
Our framework was constructed using the TensorFlow2 (47)
libraries. The GPU used in the experiment is a virtualized
NVIDIA Tesla V100 with only 16 GB of memory. Its
computing performance is a quarter of that of a physical GPU.
For the training of our method, the total number of epochs is set
to 50 and the batch size is set to 32. Adam optimizer (48) is used
to optimize the training for all experiments. Adam optimizer,
combining the advantages of the AdaGrad and RMSProp
optimization algorithms, comprehensively considers the first
moment estimation (First Moment Estimation, the mean value
of gradient) and the second moment estimation (Second
Moment Estimation, the uncentered variance of gradient), and
calculate the update step size. The update of parameters of the
Adam optimizer is not affected by the scaling transformation of
the gradient. It is suitable for the unstable objective function and
problems with sparse gradients or very noisy gradients. In our
method, the initial learning rate of the Adam optimizer is 1e–4,
the algorithm of learning rate decay is like as (24).

3.4 Post-Processing
In order to further improve the accuracy of the brain tumor
segmentation results, we performed post-processing operations
on the output of the network. Commonly used post-processing
methods for image segmentation include thresholding, erosion,
dilation, open operations, close operations, and CRF. For brain
tumor segmentation tasks, the pixel intensity and the
morphology features of some brain tissues in the brain image
are similar to the tumor area, it is easy to interfere with the
segmentation of the tumor area, resulting in false positives
segmentation results. Through observation, the normal area
that is misclassified as a tumor is usually small. In order to
reduce the influence of false positives on the segmentation
accuracy, we concatenate all the 2D segmentation results of
each patient into 3D voxels. And then, we calculate the volume
of each independent predicted brain tumor area in each 3D voxel
and eliminate the smaller predicted tumor. We keep the largest
predicted tumor in each patient and use its volume as the
baseline. Then, we compare the volume of other predicted
tumors with the baseline. When the volume of other predicted
tumors is less than one-tenth of the baseline, we determine that
these predicted tumors are false positives.

3.5 Evaluation Metrics
In order to evaluate the segmentation performance of brain
tumors more comprehensively, dice similarity coefficient (DSC),
sensitivity, specificity, and hausdorff distance (HD) are used as
evaluation metrics. All evaluation metrics can be expressed as
follows:

Sensitivity =
TP

TP + FN
, (10)
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Specificity =
TN

TN + FP
, (11)

DSC =
2 U ∩ Vj j
Uj j ∪ Vj j , (12)

Hausdorff = max max
u∈U

min
v∈V

(u, v), max
v∈V

min
u∈U

(u, v)

� �
, (13)

where true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) are usually used to calculate the
evaluation metrics in the segmentation methods. Higher values
of sensitivity indicate that the larger tumor area is segmented
correctly. Higher values of specificity indicate that the larger
non-tumor area is segmented correctly. U and V indicate the
ground truth of the lesion area and the prediction of network,
respectively. Higher values of DSC indicate that the
segmentation of the lesion area is more accurate. u and v
indicate the set of points on the boundary of ground truth U
and the set of points on the boundary of prediction V,
respectively. Lower values of Hausdorff distance indicate that
the segmentation of the lesion area is more accurate. In this
paper, we use Hausdorff95, which is based on the calculation of
the 95th percentile of distances between the boundary points in
the ground truth and prediction. Due to the presence of outliers
in the boundary area, hausdorff95 can avoid the interference of
outliers on the segmentation performance.

3.6 Evaluation on Model Architecture
We present a detailed study of the proposed network on the
MICCAI Multimodal Brain Tumor Segmentation Challenge
2020 in this section. The training dataset provided by BraTS
2020 is used to train the network. In order to evaluate the
segmentation performance of our method more objectively, we
upload the predicted results of the validation dataset to the Image
Processing Portal (IPP) of CBICA’s.

Similar to the training dataset, the validation dataset also
includes four modal brain MRI scans. The validation dataset
consists of a total of 125 brain data of patients, and for the axial
axis, each brain MRI scans of the patient consisted of 155 images
with a size of 240x240. The validation dataset contains mixed
glioblastoma (GBM/HGG) and lower grade glioma (LGG). In
order to match the trained network input, we use the same
cropping method as the training dataset to reduce the image size
of each validation dataset to 144x176. After obtaining the
prediction results, we restore each image to its original size
and submit it to the online evaluation system.

3.6.1 Study of Attention Pre-Activation
Residual Module
APR module is modular so that it can be easily added to the
segmentation structures. In our proposed model, the APR
module is used in the encoder part to improve the ability of
extracting tumor features. Three structures are designed to
compare with the APR module. The first structure does not
use the shortcut and attention gates. The second structure adds
September 2021 | Volume 11 | Article 704850
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the shortcut, but there are no attention gates. The third structure
uses the shortcut, and the use of the attention gates is consistent
with (31), in other words, combine attention gates with the
skip connections.

In Table 3, we report the results of the comparative
experiment. The results on whole brain tumor predictions
demonstrate that the APR module has achieved the first place
in three evaluation metrics of dice similarity coefficient,
sensitivity, and Hausdorff distance. Due to the large
proportion of negative samples, the specificity scores of the
four structures are very similar. In addition, the structure of the
Attention U-Net has a better segmentation performance for
brain tumors, which also proves that the attention gates are
helpful for the fusion of multi-scale features. However, for brain
tumor segmentation tasks, too large feature scale differences
cannot make attention gates accurately weight ROI. This result
proves that the APR module contributes to brain tumor
segmentation tasks.

3.6.2 Study of Multi-Task Deep Supervision
MTDS is used to extract richer visual features. It can be applied
to multi-label segmentation tasks similar to brain tumor
segmentation. We design three comparative structures. The
first structure does not use deep supervision. The second
structure adds deep supervision, but only uses the whole brain
tumor mask as the label for all branches. The third structure uses
MTDS, and uses enhancing tumor, the necrotic and the non-
enhancing tumor, and peritumoral edema as the labels of the
three branches, respectively.

Table 4 shows the comparison experiment results of MTDS
and the other two structures. The structure with the MTDS
strategy has achieved the top rank in all evaluation metrics.
Through the comparative experiments, we can find an
interesting phenomenon. The segmentation results of
structure without deep supervision are better than the
structure with single-task deep supervision in the evaluation
metrics of DSC, Sensitivity, and Hausdorff95. Although deep
supervision techniques can alleviate the difficulty of
optimization arising from gradient flow, it interferes with the
Frontiers in Oncology | www.frontiersin.org 10
hierarchical representation generation process. Due to the
inconsistency of optimization objectives, the positive
optimization effect on the shared shallow parameters is small,
which reduces the accuracy of brain tumor segmentation.

3.7 Comparison with State-of-the-Art Methods
Our proposed model is evaluated on the public BraTS 2020
validation dataset to compare its performance with the state-
of-the-art methods which are on the BraTS2017, BraTS2018,
and BraTS2019 leader board. The results of our method
comparison with the state-of-the-art methods are reported
in Table 5.

Most state-of-the-art methods ensemble the segmentation
results of multiple models, and the segmentation results of
ensemble of multiple models is usually better than a single one.
In order to show the performance of our proposed method more
visual, we did not use the ensemble of multiple models, but only
used the proposed single model to compare with other methods.
For the whole brain tumor segmentation task, the Dice score of
whole tumors reached 0.86-0.90, the Sensitivity score of whole
tumors reached 0.85-0.92. Specificity scores of all methods are
very high, almost over 0.99. The Hausdorff distance is basically
between 4 and 7. The experimental results show that our method
has a strong competitiveness.

In order to make the comparison result more objective, we
retrain several state-of-the-art segmentation models to the brain
tumor dataset and evaluated them on the BraTS2020 dataset. It
can be seen from Table 6 that our method has achieved the first
place in the DSC, Sensitivity, Specificity, and Hausdorff distance.
At the same time, our method has the least number of
parameters. Figure 5 shows a more intuitive comparison
between the segmentation results of our method and state-of-
the-art methods.
4. DISCUSSION AND CONCLUSION

Brain tumor is a disease that threatens human health. Manual
segmentation is time-consuming and subjective. The difficulties
TABLE 3 | Ablation experiment of the APR module without multi-task deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without shortcut & AGs 88.57 88.56 99.89 7.03
without AGs 88.69 88.01 99.90 6.99
Attention UNet 88.89 89.25 99.88 6.78
APR module 88.95 89.56 99.89 6.51
September 2021 | Volume 11 | A
The bold values indicate the best results.
TABLE 4 | Ablation experiment of deep supervision on the BraTS 2020.

Method DSC (%) Sensitivity (%) Specificity (%) Hausdroff95

without deep supervision 88.95 89.56 99.89 6.51
single-task deep supervision 88.74 87.95 99.90 6.84
multi-task deep supervision 89.18 89.24 99.91 5.77
The bold values indicate the best results.
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of the automatic brain tumor segmentation technology include
the sensitivity of the algorithm to tumor regions and the
suppression of response to non-tumor regions. In order to
improve the ability of the convolutional neural networks to
locate ROI, we propose the APR module. This module uses the
residual units and attention gates to construct a multi-scale feature
fusion method. The simple fusion of low-level feature and the
high-level feature of residual unit pass the features of non-interest
region to the deeper layers of network. It interferes with the
extraction of important information about brain tumors from the
encoder part. The attention gate added in the residual unit focus
attention on the tumor area, reduced the response of non-interest
areas, thereby improving the ability of the convolutional neural
network to locate the area of interest. This method has proved its
superiority in brain tumor segmentation experiments.

In order to improve the utilization of multi-modal information
in brain tumor segmentation tasks, we propose a MTDS method.
Different modalities have different sensitivities to the tumor area.
In order to fully explore the potential information of multimodal
data, we have designed multiple branches in the network, and each
branch is used to complete a specific task. In order to avoid the
Frontiers in Oncology | www.frontiersin.org 11
chaotic design from interfering with the ability of the network to
extract tumor features, we designed a MTDS method for the
characteristics of different tumor regions. In addition, MTDS helps
the network to extract richer semantic features and alleviate the
problem of network overfitting. We also tested its performance on
the brain tumor segmentation task, and the results of experiment
proved our hypothesis. The experimental results show that our
model has a generalization ability and extension possibilities.

In this paper, we focus on the segmentation accuracy and
robustness of a single network to the target region. We hope to
design a simple and easy-to-use 2D segmentation method to reduce
the dependence of network training on the hardware and reduce
training time. Due to the few network parameters, our proposed
method is not as good as some segmentation results that integrate
multiple 3D networks. In future work, we will continue to focus on
the improvement of the current method to make it smaller and
more flexible, and at the same time have a higher segmentation
accuracy. In order to achieve this goal, we will improve the currently
proposed attentionmechanism to enable it to integrate richer multi-
scale features. In addition, we will make the architecture muchmore
general to other medical image segmentation datasets.
TABLE 5 | The results of comparison between our proposed method and state-of-the-art methods.

Method Dataset DSC
(%)

Sensitivity
(%)

Specificity
(%)

Hausdroff95

BCVUniandes (49) 2017 86.8 84.2 99.5 18.456
BRATZZ27 (50) 2017 88.0 85.6 99.6 5.72
CISA (50) 2017 87.3 85.4 99.4 5.18
CMR (50) 2017 85.6 81.1 99.6 5.87
MIC_DKFZ (50) 2017 90.2 90.1 99.5 6.77
Zhouch (50) 2017 90.3 90.3 99.5 4.74
RadCNN (51) 2017 89.0 89.1 99.5 6.53
Radiomics-miu (52) 2018 87.6 86.2 99.5 4.90
GBMNet (50) 2018 88.3 93.4 98.9 5.46
Mmonteiro2 (50) 2018 87.0 87.4 99.3 5.79
UNetImage (50) 2018 89.9 91.0 99.4 5.10
RA-UNet (50) 2018 89.1 89.4 99.3 5.87
Voxel-GAN (53) 2018 84.0 86.0 99.0 6.41
S3D-Unet (41) 2018 88.7 90.1 99.4 5.51
3D Dense U-Nets (54) 2018 88.9 88.0 98.0 7.27
3D Attention UNet (55) 2019 89.8 90.0 99.4 6.29
MECU-Net (56) 2019 90.2 90.8 99.5 5.41
Multi-step cascaded network (57) 2019 88.6 92.1 99.2 6.23
3D U-Net (58) 2019 89.4 89.7 99.5 5.68
Our method 2020 89.2 89.2 99.9 5.77
Sep
tember 2021 | Volume 11 |
The bold values indicate the best results.
TABLE 6 | The results of comparison between our proposed method and state-of-the-art methods on the BraTS 2020.

Method DSC (%) Sensitivity
(%)

Specificity
(%)

Hausdroff95 Parameter

U-Net (10) 87.59 87.04 99.89 8.97 34.5M
ResU-Net (59) 87.06 86.63 99.80 9.16 8.2M
ResU-Net++ (60) 88.48 87.98 99.90 7.42 42.2M
DeepLabV3+ (61) 82.99 84.16 99.82 11.05 39.4M
PSPNet (62) 83.74 82.27 99.87 5.99 35.0M
Attention UNet
(31)

87.58 87.26 99.82 8.55 9.3M

Our method 89.18 89.24 99.91 5.77 3.3M
A

The bold values indicate the best results.
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FIGURE 5 | Comparison of brain tumor segmentation results between our method and DeepLabV3+. The differences between the segmentation results of the two
methods are marked by the red boxes.
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