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Objective: To develop a machine learning (ML)-based classifier for discriminating
between low-grade (ISUP I-1l) and high-grade (ISUP llI-IV) clear cell renal cell
carcinomas (ccRCCs) using MRI textures.

Materials and Methods: \We retrospectively evaluated a total of 99 patients (with 61 low-
grade and 38 high-grade ccRCCs), who were randomly divided into a training set (n = 70)
and a validation set (n = 29). Regions of interest (ROls) of all tumors were manually drawn
three times by a radiologist at the maximum lesion level of the cross-sectional CMP
sequence images. The quantitative texture analysis software, MaZda, was used to extract
texture features, including histograms, co-occurrence matrixes, run-length matrixes,
gradient models, and autoregressive models. Reproducibility of the texture features
was assessed with the intra-class correlation coefficient (ICC). Features were chosen
based on their importance coefficients in a random forest model, while the multi-layer
perceptron algorithm was used to build a classifier on the training set, which was later
evaluated with the validation set.

Results: The ICCs of 257 texture features were equal to or higher than 0.80 (0.828-
0.998. Six features, namely Kurtosis, 135dr_RLNonUni, Horzl_GLevNonU,
135dr_GLevNonU, S(4,4)Entropy, and S(0,5)SumEntrp, were chosen to develop the
multi-layer perceptron classifier. A three-layer perceptron model, which has 229 nodes
in the hidden layer, was trained on the training set. The accuracy of the model was 95.7%
with the training set and 86.2% with the validation set. The areas under the receiver
operating curves were 0.997 and 0.758 for the training and validation sets, respectively.

Conclusions: A machine learning-based grading model was developed that can aid in
the clinical diagnosis of clear cell renal cell carcinoma using MRI images.

Keywords: machine learning, magnetic resonance imaging, texture analysis, clear cell renal cell carcinoma, multi-
layer perceptron algorithm
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INTRODUCTION

Renal cell carcinoma (RCC) is the most common malignant
kidney tumor, and the most common pathological type,
accounting for 70-90%, is clear cell renal cell carcinoma
(ccRCC) (1). The latest World Health Organization (WHO)/
International Society of Urological Pathology (ISUP) grading
system divides ccRCC into four grades, in which grades I and II
are low-grade tumors with good prognosis while grades III and
IV are high-grade tumors with poor prognosis (2, 3). Current
studies have shown a relationship between the different nuclear
grades of RCCs and the choice of surgical methods and prognosis
(4, 5). Therefore, preoperative determination of the nuclear
grade of ccRCC is valuable.

The pathological features of renal masses are frequently
evaluated by preoperative percutaneous renal biopsy, but this
invasive technique still suffers from low accuracy. This has
prompted a search for non-invasive methods that can grade
the tumors and aid clinicians in selecting optimal therapeutic
regimens. Several studies have proposed the use of images
generated by computed tomography (CT) or magnetic
resonance imaging (MRI) for identification of potential
biomarkers for tumor grading (6, 7). MRI images have the
advantage of being free from ionizing radiation exposure and
are capable of evaluating both the tumor morphology and the
tumor microenvironment (8), but MRI itself is incapable of
providing sufficient information for differentiating the grades
of ccRCC by most radiologists. However, artificial intelligence
can play an important role in interpreting MRI information in
comprehensive ways by texture analysis. In this way, MRI images
can provide quantitative statistical parameters by identifying
subtle texture information not readily observable with the
human eye (8). These parameters, rather than the original
images, can be then used as the input features for machine
learning algorithms to improve the sensitivity of medical
imaging diagnosis, and they can also circumvent the
requirement for large sample sizes in image-based deep-
learning algorithms. At present, the use of magnetic resonance
texture analysis (MRTA) to predict ccRCC grades is seldom
reported (9-11). The purpose of this study was to explore the
value of using MRI textures and machine learning algorithms for
predicting the grade of ccRCCs before operations.

MATERIALS AND METHODS

Clinical Data

This retrospective study was approved by our Hospital Authority
Review Committee. The requirement for informed consent was
waived because of the study’s retrospective nature. The analysis
included patients who met the following standards hospitalized
from July 2016 to January 2020 at the First Affiliated Hospital of
Fujian Medical University.

The inclusion criteria were: (i) patients surgically confirmed
with ccRCCs; (ii) patients who had undergone preoperative
contrast-enhanced MRI (corticomedullary phase, nephrographic
phase, and delayed phase) in our hospital within one week before

operations; and (iii) patients with single lesions with short diameters
of more than 1 centimeter measured on axial T2 weighted imaging.

The exclusion criteria were: (i) patients with MRI images
with artifacts, such as respiratory movement or magnetic
sensitivity; (ii) patients with long lesion diameters < lcm; (iii)
patients with tumors presenting as obvious cystic degeneration
(cystic degeneration portion >75%); and (iv) patients with
preoperative puncture biopsy, interventions, or other treatments.

We enrolled 99 patients with histologically verified ccRCC.
These patients included 61 cases with low-grade disease (4 grade I
cases and 57 grade II cases) and 38 cases with high-grade disease
(32 grade III cases and 6 grade IV cases). The low-grade group
included 42 males and 19 females, while the high-grade group
included 25 males and 13 females. All MRI images were exported
from the Picture Archiving and Communication System (PACS) of
our hospital.

MRI Examination

All patients underwent a preoperative 3.0 Tesla MR
(MAGNETOM Verio, Siemens, Germany) examination with
the standard protocol using a phased-array body coil. Image
acquisition sequences and parameters were as follows:
(a) coronal half-Fourier acquisition single-shot turbo spin-echo
(HAST) sequences (repetition time msec/echo time msec, 1400/
91; field of view, 340x340 mm; matrix, 224x320; section
thickness, 5mm; intersection gap, Imm); (b) transverse T2-
weighted single-shot fast spin-echo sequences (repetition time
msec/echo time msec, 2000/91; field of view, 340x340 mm;
matrix 224x320; section thickness, 3 mm; intersection gap,
0.8mm); (c) axial diffusion weighted imaging sequences
(repetition time msec/echo time msec, 6000/73; field of view,
340x340; section thickness, 4 mm; intersection gap, 0.8mm; and
two sets of b values: 50 and 800 sec/mm?); (d) transverse three-
dimensional fat suppressed T1-weighted interpolated spoiled
gradient echo (volumetric interpolated breath-hold
examination, VIBE) sequences (repetition time msec/echo time
msec, 3.92/1.39; field of view, 250380 mm; matrix, 224x320;
section thickness, 3mm; intersection gap, 0.6 mm). The VIBE
sequences were performed prior to and three times after
intravenous injection of gadopentetate dimeglumine
(MultiHance, Bracco Sine, Shanghai, China; 0.1 mmol per
kilogram of body weight) at a rate of 2 mL/sec with a power
injector (Medrad, Warrendale, USA), followed by a 20 mL saline
flush. Corticomedullary phase images were obtained
approximately 40-50 seconds after administration of the
contrast material using timing, nephrographic phase images
were obtained at 80-100 seconds, and excretory phase images
were obtained 3 minutes later.

Placement of ROIs

All data were stored anonymously in the Digital Imaging and
Communications in Medicine (DICOM) format. The largest
cross-section of the tumor on the axial CMP images was first
determined, and then images of the selected layer were imported
into MaZda (version 4.6, http://www.eletel.p.lodz.pl/mazda/).
The two-dimensional region of interest (ROI) was then
delineated manually by an experienced radiologist (Zigiang
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Huang), who was engaged in urogenital system imaging
diagnosis and blinded to the nuclear grade of the ccRCCs.
Note that the edge of the lesion segmentation had shrunk
inward by 1-2 mm.

Feature Extraction

The differences in image brightness and contrast were reduced by
standardizing the gray scale of the images before texture
extraction, so that the image gray scale was within the range of
[u—30, u+30], where p and © represent the mean gray value and
the standard deviation, respectively. The MaZda quantitative
texture analysis software package was used to extract texture
features, including the gray-scale histogram, co-occurrence
matrix, run-length matrix, and gradient and autoregressive
models. All 257 radiomics features were extracted from each
ROI for each patient. Three feature data sets (Data 1, Data 2, and
Data 3) were obtained from the same tumor images by
segmenting the data three times.

Reproducibility of Texture Features

The reproducibility of the texture features was evaluated by
calculating the intra-class correlation coefficients (ICCs) of 257
texture features among the three feature datasets. Only features
with an ICC value equal to or higher than 0.80, indicating
excellent reproducibility, were included in further feature
selection processes.

Feature Standardization

Before model development, various features were first
standardized to make them comparable using the ‘robustscale’
method in the Python package of scikit-learn (ver. 0.23.2, https://
scikit-learn.org/) (12). The specific formula is as follows:

A
‘T IQR

where V; is the original feature value, M is the median of the
feature, and IQR is the interquartile range (the difference
between the third quartile and the first quartile). The following
logistic transformation was then performed to minimize the
adverse effects of outliers on the stability of the classifier:

y; = 1/(1 +ei4z‘) .

Feature Selection

A random forest model was used to select features for model
development using the Random Forest Classifier function
provided by scikit-learn. A grid search algorithm was then
executed to determine a set of hyperparameters using the
“GridSearchCV” function provided by scikit-learn. The
random forest parameters were the following: ‘class_weight’ =
‘balanced’; ‘max_features’ = Tog2’; and the rest were default
values. A random forest model was then fitted to the training set,
and the model then assigned each feature an importance
coefficient that represents the information gain for the specific
feature, where a larger value indicates a greater importance of the
feature. The number of features was determined by repeated

iterations based on the accuracy of the model on the validation
set, while keeping the number of features as small as possible.
Finally, 6 features, namely Kurtosis, 135dr_RLNonUni,
Horzl_GLevNonU, 135dr_GLevNonU, S(4,4)Entropy, and S
(0,5)SumEntrp, with the largest importance coefficients
were selected.

Model Development

We used a multilayer perceptron algorithm (the MLP Classifier
function in scikit-learn) to develop the classification model. The
model parameters were the following: ‘activation” = ‘relu’, and
‘solver’ = ‘lbfgs’, ‘learning_rate’ = ‘constant’ and
‘hidden_layer_sizes’ = ‘(229),. The most important parameter
was ‘hidden_layer_sizes’, which determines the number of
hidden layers and the number of nodes in each hidden layer.
In this work, we included only one hidden layer, which consisted
of 229 nodes. The number of nodes was optimized by repeated
iterations to achieve optimal accuracy on the validation set.

Statistical Analysis

Univariate analyses were performed with SPSS version 22 (SPSS
Inc.). In the training set, the continuous variables (age, tumor
size) between low-grade and high-grade groups were analyzed
with the Student’s ¢ test or the Mann-Whitney U test. The Chi-
squared test was used to analyze the categorical variables
(gender) between the two groups. A p value less than 0.05 was
considered statistically significant.

RESULTS

Demographic Analysis

The baseline characteristics of the training and validation sets are
presented in Table 1. The training set consisted of 70 patients
with pathologically proven ccRCC lesions (low-grade ccRCCs: 3
grade I lesions and 40 grade II lesions; high-grade ccRCCs: 23
grade III lesions and 4 grade IV lesions). The validation set
consisted of 1 grade I lesion, 17 grade II lesions, 9 grade III
lesions, and 2 grade IV lesions. In the training set, the mean
ages + standard deviations of the low-grade and high-grade
subgroups were 53.5 £ 11.5 years and 57.1 + 10.9 years,
respectively. No statistically significant differences were found
for gender and age distribution between the low-grade and high-
grade ccRCC groups (p = 0.751 and 0.124, respectively). The
average tumor sizes were 4.0 cm and 6.1 cm, respectively, in the
low-grade and high-grade subgroups, and the difference was
statistically significant (p<0.001).

MRI Texture Analysis and Feature
Selection
The MRI images of 99 ccRCC tumors were used to extract 257
texture features with the MaZda software package. The features
included 7 histogram features, 220 gray co-occurrence matrix
features, 20 run-length matrix features, 5 gradient features, and 5
autoregressive model features.

The ICC ranges of the histogram features, gray level co-
occurrence matrix features, run-length matrix features, gradient
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TABLE 1 | Analysis of baseline data from patients with ccRCCs.

Characteristic Low-grade group High-grade group Statistics P value
Patients (n) 61 38 - -
Age (mean + SD, years) 535+ 115 57.1+£10.9 -1.622 0.124
Gender 0.1 0.751
Male (n) 42 25

Female (n) 19 13

Tumor size (mean + SD, cm) 40+21 6.1+29 -3.869 <0.001

features, and autoregressive model features were (0.968, 0.998),
(0.828, 0.996), (0.880, 0.997), (0.934, 0.986), and (0.863,
0.984), respectively.

Upon obtaining stable texture features, we applied the
RobustScale method to standardize the feature values in the
training set, and we then carried out a logistic transformation on
them to minimize the negative impact of outliers on the model
development (see Materials and Methods for details). The
same formulas were archived and later applied to the
validation set. The 257 processed features were input into a
random forest model and fitted on the training dataset, while the
hyperparameters of the random forest model were optimized
with the grid search method.

The model assigned an importance coefficient to each feature.
The value of the coefficient represents the importance of the
feature. A set of top-ranked probes was selected to develop the
MLP model and to optimize the hyperparameters to achieve
the highest accuracy in the validation set. With the optimized
hyperparameters, the number of features was updated with the
new fitting model. This iteration was repeated manually to obtain
a minimal set of features without appreciably sacrificing the
accuracy. In the final model, 6 texture features were selected for
modeling. The heatmap of the 6 selected features is shown in

Figure 1 for the training set. Figure 1 also shows that the low-
grade and high-grade ccRCCs are approximately clustered into
two separate groups, demonstrating the rationality of the
selected features.

Model Development

A multi-layer perceptron algorithm was used for developing the
prediction classifier. The final model has a three-layer structure:
an input layer, a hidden layer, and an output layer (see Figure 2).
The input layer consists of 6 nodes, corresponding to the 6
texture features, and the output layer consists of 2 nodes,
corresponding to the low-grade and high-grade groups. The
hidden layer has 229 nodes in the final model.

Model Validation

The optimized model was evaluated in the validation set. The
predictive indicators of the model in the training set and the
validation set are shown in Table 2. The accuracy was 95.7% and
86.2%, respectively, in the training set and the validation set. The
AUC values were 0.997 and 0.758, respectively, in the two sets
(Figure 3). In the training set, two low-grade tumors were
predicted as high-grade, and one high-grade tumor was
incorrectly classified (Figure 1). In the validation set, only one

FIGURE 1 | Prediction result and the heatmap of the selected 6 features in the training set along the clustering results of the samples and the features.
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Input layer

Hidden layer

Output layer

l feature 6 =

FIGURE 2 | The topological structure of the 3-layer perceptron classifier.

229 nodes

TABLE 2 | Performance of the MLP classifier in the training and validation sets.

AUC ACC SEN SPE PPV NPV
Training set 0.997 0.957 96.30% 95.30% 92.90% 97.60%
Validation set 0.758 0.862 72.70% 94.40% 88.90% 85.00%

low-grade and three high-grade tumors were misclassified
(Figure 4). Figure 5 shows that the misclassified low-grade
tumors show higher similarities with the high-grade tumors
and that, similarly, the misclassified high-grade tumors also
show a higher similarity with the low-grade tumors. This result
suggests that the selected texture features might be inadequate
for discriminating these samples.

Figure 5 shows the distribution of the probabilities predicted
by the MLP model in the validation set. The prediction
probability of the model’s prediction results for the 24/29
samples of the validation set is greater than 0.9, which
indicates that the model is highly confident in the prediction
result and is relatively robust.

DISCUSSION

In this study, we evaluated the applicability of a machine learning
method based on MRI textures for the grade classification of
ccRCCs. A three-layer MLP classifier using 6 features from MRI
texture analysis exhibited satisfactory, reproducible, and reliable

performance in discriminating the high-grade ccRCCs from the
low-grade ones, and it outperformed classifiers presented in
previous studies (8, 10, 13).

We adopted the latest WHO/ISUP grading system for renal
cell carcinoma as the classifying criterion. However, most of the
previous studies on the prediction of nuclear grading of ccRCC
by texture analysis have been based on the Fuhrman
classification system, which has some inevitable inadequacies,
such as interpretation difficulties and poor reproducibility in
clinical applications (10, 14). Besides the high application value
for ccRCC, the WHO/ISUP nuclear grading is also a reliable
prognosis indicator of patients with ccRCC (15).

In this study, we attempted to predict the nuclear
classification of ccRCCs by quantitative analysis based on the
texture features of MRI images. However, in current clinical
practice, radiologists estimate the degree of aggressiveness of
renal carcinoma based mainly on radiological findings (16, 17).
For example, Pedrosa et al. found that some MRI features, which
include both qualitative and semiquantitative parameters, can
differentiate low-grade and high-grade ccRCCs (18). However,
the classification is subjective and depends on the radiologist’s
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FIGURE 3 | The receiver operating characteristics curves of the classifier applied to the training set and validation set. The area under curve is 0.997 in the training
dataset and 0.758 in the validation set.
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FIGURE 4 | Prediction result and the heatmap of the selected 6 features in the validation set along the clustering results of the samples and the features.
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FIGURE 5 | The prediction probabilities assigned by the classifier in the validation set. The top annotation labels show the ground truth and the predicted result.
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experience. Quantitative MRI texture analysis is now playing an
increasingly important role in the clinical diagnosis and
treatment of tumors, and it can be used to distinguish the
pathological types and grades of tumors, to evaluate prognosis,
and to predict the therapeutic response of tumors (19-21).
Compared with CT examinations, MRI has multiple
advantages, including multi-parameter imaging, high soft tissue
resolution, high signal-to-noise ratio, and freedom from ionizing
radiation. The texture features of multiple sequence images can
be obtained with MRI, and this provides more feature space for
developing imaging markers for tumors. Therefore, MRI texture
analysis is a useful and promising method for non-invasive
prediction of the ISUP nuclear grade of ccRCCs.

Multiple machine learning models have been successfully
constructed to classify low-grade and high-grade ccRCCs (10,
13, 22). After comparing the performance of different models, we
obtained an optimal prediction result with MLP. The AUC value
of the classifier is 0.997 in the training set, indicating a good
performance of the MLP model. Bektas et al. developed machine
learning models to predict the Fuhrman nuclear grade of ccRCC
based on quantitative CT texture analysis (22). They achieved the
best prediction result using an MLP model with an AUC of 0.86.
We further validated the application value of our model by
creating a validation set to assess the accuracy and stability of the
model. Satisfactory results were obtained, with an AUC of 0.758
in the validation set.

Most studies on machine learning-based CT or MRI texture
analysis have not validated the developed models for predicting
the nuclear grade of ccRCC. A comprehensive review of the
radiomics literature on renal mass characterization in terms of
validation strategies did not reveal any validation performed in
19 (46%) of the 41 papers reviewed (23). In other words, only
slightly more than half of the studies described at least one
validation method, and these were predominantly internal
validation techniques. The wide clinical use of radiomics will
require proper validation strategies for developing machine
learning models. Compared with previous studies (24, 25), an
independent and prospective test set is needed for further
validation of our model in the future.

The current study has some inevitable limitations. One is that it
is a single-center and retrospective study, so selectivity bias may
exist. Another is the small sample size, which may lead to overfitting
and low repeatability of the prediction results. Therefore, further
expansion of the sample size and cross-verification of the model at
multiple centers are needed. There is a slight imbalance in our
dataset where the number of low-grade patients is larger than the
number of high-grade patients. This issue could be addressed by the
SMOTE algorithm (26). However, due the limited sample size we
did not employ the method. Furthermore, the ratio between the
sample size of the low-grade and that of the high-grade is
approximately 3:2 where the class imbalance problem is not
critical to the model performance. A third limitation is that the
texture features extracted in this study are based on the two-
dimensional ROI of MR images at the maximum level of the
tumor, which may be biased by layer selection. Ideally, three-
dimensional radiomic features of the whole lesion should be

extracted to obtain comprehensive tumor features. A fourth
limitation is that manual segmentation of MR images may be
affected by the consistency between observers; however, this
method is still widely used in texture analysis and remains the
“gold standard” (27). Here, the stability of the texture features was
evaluated by segmenting the lesions of all patients three times.
Tumor size is generally associated with the tumor grade and
therefore an important factor in tumor grading system. This
information has been encoded in the feature “dr135RLNonUni”
(Spearman’s p = 0.945 between the tumor diameter and
dr135RLNonUni) and therefore it was implicitly used in the final
model. The value of clinical factors other than radiomics signatures
will also be investigated in predicting the grades in future study.

CONCLUSIONS

An MLP model was successfully developed to classify the grades
of clear-cell renal cell carcinomas, thereby demonstrating that
ML-based MRI texture classifiers can be used preoperatively as a
complementary tool to predict the ISUP grade of ccRCCs. This
model can make a potential contribution to personalized
treatment for patients with ccRCCs.
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