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Drug repositioning is a new way of applying the existing therapeutics to new disease
indications. Due to the exorbitant cost and high failure rate in developing new drugs, the
continued use of existing drugs for treatment, especially anti-tumor drugs, has become a
widespread practice. With the assistance of high-throughput sequencing techniques, many
efficient methods have been proposed and applied in drug repositioning and individualized
tumor treatment. Current computational methods for repositioning drugs and chemical
compounds can be divided into four categories: (i) feature-based methods, (ii) matrix
decomposition-based methods, (iii) network-based methods, and (iv) reverse
transcriptome-based methods. In this article, we comprehensively review the widely used
methods in the above four categories. Finally, we summarize the advantages and
disadvantages of these methods and indicate future directions for more sensitive
computational drug repositioning methods and individualized tumor treatment, which are
critical for further experimental validation.

Keywords: drug repositioning, anti-tumor drug, gene expression, drug target, gene interaction network
INTRODUCTION

Drug repositioning is a new way of applying existing therapeutics to new disease indications.
Compared with traditional new drug development methods, the advantage of drug repositioning is
that it can reduce the time and cost of drug development, and the drug composition has been proven
to be safe in human body, so phase I clinical trials can be skipped (1, 2).

The failure probability of new drugs in the development process is about 90% (3), which leads to high
drug development costs. In addition, repurposed drugs can save most of the cost of early research and
significantly reduce the transition from laboratory research to clinical treatment. According to a research
report released by Deloitte & Touche in 2016, according to the tracking results of 12 large
pharmaceutical companies for 6 years, the return on investment of R&D giants dropped from 10.1%
in 2010 to 3.7% in 2016. It was also calculated that the average cost of developing a new drug has
increased from less than 1.2 billion US dollars to 1.54 billion US dollars, and it takes 14 years to launch a
new drug (4). Nosengo concluded that it currently takes more than 10 years to bring a drug to the
market, and the average research cost is between $2 billion to $3 billion. Although the number of
approved drugs for development remains the same or decreases over time, the cost of research continues
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to increase. In contrast, some studies suggest that repositioning a
known drug costs an average of $300 million, and it takes about six
to seven years (5). New solutions are needed to solve the above-
mentioned problems in the development of new drugs, including
drug repositioning.

Drug repositioning refers to the matching and identification of
existing drugs and new indications, and trying to apply newly
discovered drugs to the treatment of diseases other than expected
diseases (6). In addition, drug repositioning has promoted the
development of cancer research (7). Researchers are committed to
finding potential drug molecules that can block the exchange of
information between cancer cells, and prevent cancer cells from
receiving information that promotes their growth and proliferation.
At present, in silico and activity-based methods are mainly used to
determine the feasibility of drug repositioning. In silicomethods for
drug repositioning are affected by drug-to-disease relationships, or
the gene expression response of cell lines after treatment.
Combining multiple information levels, the relationship network
between target and drug can be identified by means of
bioinformatics tools and public databases (8, 9). Due to decades
of accumulation of structural information between proteins and
pharmacophores, the method has gradually become successful.
Compared with in silico drug repositioning, computerized drug
repositioning has become a promising technology with fast speed
and low cost (10).

Since the outbreak of Corona Virus Disease 2019 (COVID-
19), it spreads rapidly all over the world. There is an urgent need
for effective drugs to treat and alleviate the deterioration of this
novel Coronavirus (11, 12). Since the development of a new drug
is time-consuming and costly, drug reposition is a feasible way to
meet this need (13, 14). The treatment of COVID-19 relied on
the experience of clinicians (15, 16). So far, some drugs have been
proved effective in relieving and improving the symptoms of
novel coronavirus pneumonia (17–22). The drugs against the
Middle East respiratory syndrome coronavirus (MERS-CoV)
and severe acute respiratory syndrome coronavirus (SARS-
CoV), such as Lopinavir/ritonavir, have been proved to inhibit
many viruses (22, 23). As a nucleoside drug and RNA
polymerase (RdRp) inhibitor, remandsivir can inhibit SARS-
CoV-2 RdRp, subgenomic mRNA and subviral genomic RNA to
block the synthesis of negative chain RNA, thus inhibiting virus
replication and antiviral effect (24–26).

In this review, we present the recent progress on in silico
methods for repositioning drugs and chemical compounds. In
particular, we focus on feature-based methods, matrix
decomposition–based methods, network-based methods, and
reverse transcriptome–based methods. We review the in silico
popular methods in the four categories separately.
FEATURE-BASED METHODS

In silico methods of drug compounds and repositioning drugs
aims to identify the relationship network between target and
drug, which is achieved through bioinformatics tools and public
databases. Therefore, it needs to ensure high-resolution
Frontiers in Oncology | www.frontiersin.org 2
structural information, including drugs targets, gene expression
profiles, or disease/phenotype information, which usually
produce high-dimensional feature datasets. For instance, the
Cancer Cell Line Encyclopedia study (27) contains more than
50000 features, representing the mRNA expression and
mutational status of thousands of genes. However, the number
of available features is significantly greater than the number of
training samples. The use of high-dimensional features can lead
to overfitting of the model, in fact, only a few features play a key
role in the final prediction of drug sensitivity.

Therefore, a feature-based methods are proposed: (1) can
prevent over-fitting and improve model performance; (2) can
provide a more cost-effective and faster model; (3) can clearly
grasp the basic process of generating data. In Figure 1A, we
visualize the process of the feature-based method. These are
important for understanding the relationships between data in
the chemical, clinical domains, and biological fields. Therefore,
the research of feature-based drugs sensitivity prediction and
individualized treatment methods are very necessary. Table 1
summarizes the feature-based methods used in a large number
of studies.

Feature Extraction and Feature Selection
The purpose of feature extraction is to project features into new low-
dimensional feature space. The features after dimension reduction
are usually a combination of the original features, with the aim of
discovering more representative information through the new
feature sets. A common example of feature extraction technique is
principal component analysis (PCA) (28, 29), which maximizes the
variance of each component projection, thereby mapping the
original input data to an orthogonal coordinate system.

Feature selection aims to select a small part of the input
features without losing the information contained in the original
features. Our commonly used feature selection methods include:
filter, wrapper and embedded methods.

Filter methods are usually classified according to general
features, such as looking at the correlation between individual
features or independence and output response. For the prediction
of drug sensitivity, our commonly used filtering feature selection
methods include: (1) The correlation coefficients between genomic
features and output responses (30, 52); (2) ReliefF (31, 32) is general
and successful attribute estimators. They are able to detect
conditional dependencies between attributes, and provide a
unified view of attribute estimation in regression and
classification. They have the advantages of low computation cost,
robust model and noise tolerant, but cannot distinguish redundant
features; and (3) Minimum redundancy maximum relevance
(mRMR) (33–35), which reduces the redundancy between
features and considers a high degree of statistical dependence and
output the response. The advantage of filter methods lies in the low
computational cost, which usually leads to the problem of bias,
which makes it impossible to determine the multivariate
feature relationship.

The quality of the selected features in the wrapper methods is
affected by the prediction accuracy of the learning algorithm. The
wrapper methods usually use high model accuracy to capture
features, but the disadvantage of wrapper methods is that they
July 2021 | Volume 11 | Article 711225
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overfit the data. Some commonly used wrapper feature selection
methods in drug sensitivity prediction include: (1) Sequential
floating forward search (SFFS) (36, 37), where in the forward
iteration process, the most representative one will select features
from the remaining features. If the removed feature has an impact
on the improvement of the objective function, it is provided in the
floating part; and (2) Recursive feature elimination (38), which is
applicable to all feature models, first sorts the features and
eliminates the last feature in turn.

The embedded methods select relevant features through the
specific structure of the model, which requires the learning process
and feature selection to be interrelated. we usually use embedded
methods include: Regularization, which penalizes the norm of
feature weights, such as ridge regression (39, 40) penalizing the
Frontiers in Oncology | www.frontiersin.org 3
L-2 norm, LASSO (41, 42, 53) penalize the L-1 norm, and elastic
network regularization (43) penalizes the mixture of L-1/2 norm.

In practice, A hybrid methods that combines the most
optimal properties of filters and wrappers is usually used. First,
the dimension of feature space is reduced by filter methods, and
multiple feature subsets can be obtained (44). Then, a wrapper is
used to select the optimal feature subset. Several better feature
selection methods have been proposed, such as: feature selection
based on fuzzy random forest (45), hybrid genetic algorithms
(46), hybrid ant colony optimization (47), or hybrid gravity
search algorithms (48).

When using hybrid methods, prior knowledge of biological is
usually included in the feature section in the process of
predicting drug sensitivity. An example is path-based elastic
FIGURE 1 | Methods of drug repositioning. (A) Feature-based methods, (B) matrix decomposition–based methods, (C) network-based methods, (D) reverse
transcriptome change–based methods.
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net regularization (49), which incorporates path knowledge in
data-driven feature selection. Feature selection based on
biological pathways can select the most important features
with minimally redundancy, and combine gene expression data
with signaling and regulatory pathways (50) or use the activation
state of signaling pathways as features (51).
MATRIX DECOMPOSITION-BASED
METHODS

Previously molecular synthesis experiments for drug targets were
expensive and time-consuming. Therefore, research on drug
repositioning requires effective calculation methods, which
have proven to be a viable strategy in the field of in silico drug
discovery. The basic requirement of calculating drug
repositioning is to accurately predict the drug and target
(DTIs) interaction. Therefore, researchers have proposed some
potential methods for predicting DTI in recent years (Table 2).

We usually use binary labeling matrix Y to represent drug-target
interactions (Figure 1). If the drug and the target are in an interaction
relationship, it is represented by element 1; If it is not an interactive
Frontiers in Oncology | www.frontiersin.org 4
relationship, it is represented by 0. The difficulty of predicting DTI
lies in whether the known elements in y can accurately predict the
labels of unknown elements. To solve these problems, assuming
similar drugs tend to similar targets, the similarity betweendrugs and
targets can be used to predict DTI, and vice versa.

Liu et al. proposed a neighborhood regularized logic matrix
factorization (NRLMF) method (54). This method uses logical
matrix decomposition to simulate the interaction probability of
each drug target. We further improve the prediction accuracy by
neighborhood regularization. The NRLMF model is the most
advanced algorithm and has achieved good results on the basis of
five 10-fold cross-validation tests. However, TheNRLMFmodel also
has some shortcomings, that is, the drug target interaction
information is not considered when the model is established. In
response to the above problems, Hao et al. proposed a dual-network
integrated logic matrix factorization (DNILMF) (55) and integrated
drug target profile information into themodel. Based on theNRLMF
model, Ban et al. used Gaussian process mutual information to
acceleratemodel parameter search (56). Comparedwith the previous
grid searchmethods, the method based on Gaussian process mutual
information saves about 8.94 times of calculation time. When the
area under the curve (AUC) is used for evaluation, the prediction
accuracy of the two methods is almost the same.
TABLE 1 | Feature-based methods.

Study Feature
extraction

Feature selection Description Ref

Filter
methods

Wrapper
methods

Embedded
methods

Pearson √ An effective algorithm for extracting main feature components of data (28)
Goswami et al. √ Use principal components analysis (PCA) to identify and remove abnormal

samples
(29)

Costello et al. √ Bayesian multi-task multiple-kernel learning (MKL) method for drug sensitivity
prediction and identification

(30)

Robnik-Sikonja
et al.

√ Theory and application of ReliefF and RReliefF (31)

Haider et al. √ Multivariate ensemble learning regression tree extension ensemble learning
method

(32)

De Jay et al. √ An extended integration method based on mRMR (mRMRe) (33)
Peng et al. √ √ A two-stage feature selection algorithm combining mRMR and other feature

selection algorithms
(34)

Liu et al. √ Minimal redundancy and maximal correlation were used to analyze and
predict drug interactions

(35)

Pudil et al. √ Theory and application of floating search method (36)
Berlow et al. √ A sensitivity prediction method based on function perturbation data (37)
Dong et al. √ Support vector machine recursive feature elimination (38)
Tikhonov A √ Ridge regression penalty L-2 norm (39)
Neto et al. √ A Bayesian inference method based on ridge regression (40)
Tibshirani R √ LASSO penalizes L-1 norm (41)
Park et al. √ RRLASSO method of targeted anticancer drugs (42)
Zou et al. √ Regularization of elastic networks based on Mixed Penalties of L-1 and L-2

norms
(43)

Das S √ √ Mixing of filter and wrapper (44)
Cadenas et al. √ √ Feature selection based on fuzzy random forest (45)
I.S. et al. √ Hybrid genetic algorithms (46)
Ali et al. √ √ Hybrid ant colony optimization (47)
Sarafrazi et al. √ Hybrid Gravity Search Algorithm (48)
Sokolov et al. √ Path-based elastic network regularization (49)
Bandyopadhyay
et al.

√ A feature selection method combining gene expression data with signals and
regulatory pathways

(50)

Amadoz et al. √ Use the activation state of the signal pathway as a feature (51)
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Bolgár et al. proposed an extended Bayesian matrix factorization
method (57), which was combined with a new missing not at
random (MNAR) data sub-model. Bolgár et al. later proposed
variational Bayesian multiple kernel logistic matrix factorization
(VB-MK-LMF) (58), which combines multiple kernel learning,
weighted observations and graph Laplacian regularization, and it
has explicit modeling probability advantage. Gonen proposed a new
Bayesian formula that combines matrix factorization and
dimensionality reduction (59). This method uses the chemical
similarity of drug components and the genomic similarity of
target proteins to predict DTI network. Based on Bayesian
personalized ranking (BPR) matrix factorization, Peska et al.
proposed a method to predict DTIs (60). They extended BPR by
including target deviations, developed a technique for analyzing new
drugs, and adjusted the content to take into account the structural
similarity between the drug and the target.

Cobanoglu et al. used probabilistic matrix factorization (PMF) to
analyze large interaction networks (61). They clustered DrugBank
drugs based on PMF latent variables. Cobanoglu et al. later built an
online tool for evaluating DTIs (62). They use the PMFmethod and
DrugBank v3, and use the GraphLab collaborative filtering toolkit to
train potential variable models.

Zheng et al. proposed a method of multiple similarities
collaborative matrix factorization (MSCMF) (63). This method
allows the collaborative prediction of DTIs through two low-rank
matrices and detects similarities that are important for predicting
DTIs. Wang et al. proposed a method to replace the regular term of
the drug pathway association matrix (L1 norm) with L2-1 norm
(64). Compared with the previous iPad method, this method
solves the problem of excessively scattered sparsity, and can
obtain more optimized performance by identifying effective drug
pathway associations.
Frontiers in Oncology | www.frontiersin.org 5
Ezzat et al. proposed two matrix factorization methods that use
graph regularization and consist of two steps (65). First, convert the
binary value in the drug-target matrix Y into an interaction
likelihood value. Then use matrix factorization to predict DTI. In
cross-validation, it is found that the performance of this method is
better than the other three other state-of-the-art methods in most
cases. They found that their method reasonably predicted missed
interactions with “new drugs” and “new target” simulated cases.

Peng et al. proposed a unified model framework (34), which
integrates non-negative matrix factorization, low-rank
representation, neighbor interaction profile and sparse
representation classification. Dai et al. proposed a matrix
factorization model (66), which integrates drugs, diseases and
genes with feature vectors of the same dimension. Experiments
showed that the integration of genomic space is indeed effective.
NETWORK-BASED METHODS

In the past decade, network-based approaches (Figure 1) have
been commonly used to predict drug sensitivity (1, 67). We have
summarized some network-based methods in Table 3. Due to
the increase in drug development costs and the decrease in the
number of newly approved drugs, it is necessary to determine the
new value of existing drugs. Some network-based methods help
design unique drug target combinations and combined drugs
therapies (68), and improve the treatment of specific patients
through powerful channels (69).

Some researchers have proposed that the relationship between
drug application, disease treatment, and genes should be studied
(70). Some studies analyzed disease diagnosis, treatment, and drug
TABLE 2 | Matrix decomposition-based methods.

Study Logistic matrix
factorization

Bayesian
matrix

factorization

Probability
matrix

factorization

Other Description Ref

Liu et al. √ Neighborhood regularized logic matrix factorization (NRLMF) (54)
Hao et al. √ Dual network integrated logistic matrix factorization (55)
Ban et al. √ The Hyperparameter Optimization of Improved Neighborhood Regularization Logic Matrix

Factorization
(56)

Bolgár
et al.

√ An extended Bayesian matrix factorization (57)

Bolgár
et al.

√ Variational Bayesian multiple kernel logistic matrix factorization (VB-MK-LMF) (58)

Gonen √ A novel Bayesian formula combing matrix factorization and dimensionality reduction (59)
Peska
et al.

√ Matrix decomposition based on Bayesian personalized ranking (BPR) (60)

Cobanoglu
et al.

√ Analyze large-scale interactive networks through probability matrix factorization (PMF) (61)

Cobanoglu
et al.

√ Online tool based on probability matrix factorization method and DrugBank v3 (62)

Zheng
et al.

√ Multiple similarities collaborative matrix factorization (MSCMF) (63)

Wang et al. √ An improved method of disallow the regular term of the drug pathways (64)
Ezzat et al. √ Two matrix factorization methods using graph regularization (65)
Peng et al. √ A framework model integrating non-negative matrix factorization, low-rank representation,

neighbor interaction profile and sparse representation classification
(34)

Dai et al. √ A matrix factorization model that combines drugs, diseases and genes with feature
vectors of the same dimension

(66)
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discovery from the perspective of biological systems and network
structure frameworks (71–73). With the development of high-
throughput sequencing technology, it is possible to reconstruct
cell network and biomolecules. From the cellular level, the
reconstructed network will become a hierarchical structure (74).
Guney et al. introduced a drug-disease proximity measure that
quantifies the interaction between disease and drug targets (84).

Additionally, network-based proximity can help us determine
the therapeutic effects of drugs and predict novel drug-disease
associations. Kotlyar et al. summarized how drugs disrupt the
network, and previous network-based drug effects
characterizations included direct binding to partners (75). Drugs
can also affect the transcriptome of cells, and networks have been
used for the first time to characterize genes differentially regulated
by drugs. Cheng et al. constructed a bipartite graph based on the
network inference method to predict the interaction between drug
and target (76). Chen et al. constructed a general heterogeneous
network (77), which was composed of drug and protein, and
considered drug-drug chemical similarity, protein-protein
sequence similarity and drug-target interaction (78).

The mining potential of drug-disease associations has been
consistently used to accelerate the drug repositioning by
pharmaceutical companies. Cheng proposed an inference
method based on drug-target bipartite network (76), which can
be used to predict new targets of known drugs, and described the
importance of developing computational methods for predicting
potential DTIs. Then, Chen proposed two inference methods,
ProbS and HeatS (78), which can predict drug-disease
interactions based on the measurement of basic network
topology. Methods probs and heats are two methods based on
recommendation techniques (79, 80). In order to find the
correlation between known drugs and diseases, they solve the
above problem by mining the data of drug-disease bipartite
network properties. Then, Wang proposed a heterogeneous
network model (81). This method uses existing omics data to
relocate drugs, diseases and drug targets. This three-layered
Frontiers in Oncology | www.frontiersin.org 6
heterogeneous network model for drug repositioning captured
the interrelationships among diseases, drugs, and targets, with
the purpose of novel drug usage prediction. Chen et al. provided
a principled method to transfer knowledge from these two
domains and improve prediction performance for these two
tasks (82), With the help of the relationship between drug
target disease, this method urges us to consider drug relocation
and drug target prediction in drug discovery.

Some researchers have attempted to reposition drugs by
targeting network modules through some unique cases, such as
a Parkinson’s disease case study. Yue constructed a framework of
targeted therapy (83), which combines genome-wide association
data with gene co-expression modules of PD disease tissues
representing brain regions, and aims to study dysfunctional
pathways or processes.
REVERSE TRANSCRIPTOME CHANGE-
BASED METHODS

Reverse transcriptome change-based methods (Figure 1) are
methods based on the gene expression profiles induced by drugs.
These methods consider the relationship between drugs, genes, and
disease. The publicly accessible gene expression profiles currently
include Connectivity Map (CMap, http://www.broadinstitute.org/
cmap), National Cancer Institute 60 human tumor cell line
anticancer drug discovery project (NCI-60 http://dtp.nci.nih.gov/),
Library of Integrated Cellular Signatures (LINCS http://www.
lincsproject.org/), and Cancer Cell Line Encyclopedia (CCLE
http://www.broadinstitute.org/ccle) (2, 52).

It is helpful to facilitate repositioning drugs and chemical
compounds with relevant databases. Examples are Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/),
The Cancer Genome Atlas (TCGA, http://tcga-data.nci.nih.gov/
tcga/tcgaHome2.jsp), Gene Expression Database (GXD, http://
TABLE 3 | Network-based methods.

Study Description Ref

Huang et al. A new system calculation tool called DrugComboRanker prioritizes synergistic drug combinations and reveals its mechanism of action (68)
Dorel et al. Drug sensitivity prediction based on high-throughput sequencing data and signal network (69)
Kanehisa M. KEGG Mapper tool introduction (70)
Chen et al. Alternative techniques and tools for analyzing biomolecular networks (71)
Zhang A. Discuss current research problems and solutions in protein-protein interaction networks (72)
Sun P.G. A multi-level network model integrating drugs, diseases and genes for disease diagnosis, treatment and drug discovery (73)
Leiserson
et al.

A novel algorithm to find mutated subnetworks (HotNet2) is used (74)

Guney et al. A metric for quantifying interactions between drugs, targets, and diseases (84)
Kotlyar et al. Use networks to characterize genes that are differentially regulated by drugs and find the differences between the genes regulated by drugs and

drug targets
(75)

Cheng et al. A inference method based on topological similarity of drug target bipartite network (76)
Chen et al. A network method based on restart random walk (77)
Chen et al. A method based on basic network topology measure is used to predict the direct association between drugs and diseases (78)
Zhou et al. A weighting method is used that can be directly applied in extracting hidden network information (79)
Zhou et al. Hybrid algorithm based on heat-spreading (80)
Wang et al. A computing framework based on heterogeneous network model (81)
Chen et al. A principled method to improve the prediction performance of two tasks (82)
Yue et al. Reorientation of PD drugs with systemic pharmacology framework (83)
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www.informatics.jax.org/expression.shtml), ArrayExpress
(http://www.ebi.ac.uk/arrayexpress), et al. The huge amount of
publicly available transcriptome data is enabling the
repositioning of drugs and chemical compounds based on the
gene expression profiles. We summarize the articles based on
the above database in Table 4.

Lamb et al. established CMAP database (85), which contains
more than 6100 gene expression profiles induced by more than
1300 compounds in four cell lines. The main working idea is to
enter a query in the CMap database, using the genome of the
drug as a reference. Drug candidates with a positive correlation
score (the highest is close to 1) may be considered to be related to
the reference drug between downstream regulatory and clinical
drug response, while drug candidates with a negative correlation
score (the lowest is close to -1) may eventually be considered It is
considered that there is no potential correlation or antagonism
with the reference drug.

Based on the correlation between drugs and genetic
characteristics, we can discover some new drugs indications, and
assume that drugs with similar characteristics may have similar
therapeutic effects (85). Iskar et al. developed a strict filtering and
state-of-the-art normalization pipeline for CMap gene expression
(86), and it significantly overcomes cross-batch non-biological
experimental variation. Hieronymus et al. proposed a chemical
genomic method based on gene expression analysis (87), which can
be used to discover and predict compounds with cancer phenotypes,
for example, for compounds with gedunin and celastrol activity
HSP90 inhibitors are classified. Epoxy anthraquinone derivatives
have been found to be a novel DNA topoisomerase inhibitor for the
treatment of neuroblastoma and other cancers (88). The alkaloid
thaspine from the croton cortex has been shown to play a role in the
overexpression of drug efflux transporters in cells, and induce
apoptosis of multicellular spheroids cells. It can be used as a dual
topoisomerase inhibitor (89).

The molecular mechanism of the traditional Chinese
medicinal formula Si-Wu-Tang was discovered through
connection maps and gene expression microarray (90). Studies
have found that SWT, as an activator and phytoestrogen of Nrf2,
it can be used as a non-toxic chemopreventive agent, Through
CMap mining and microarray gene expression profiling, the new
mechanism of action of traditional Chinese medicine can be
verified and discovered. K562 cells exposed to sodium valproate
were verified by CMAP database, and it was found that valproate
acid could provide certain therapeutic potential in the treatment
of leukemia (91). As a combination of approved drugs and failed
drugs, repoDB database(http://apps.chiragjpgroup.org/repoDB/)
provides researchers with a simplified hypothesis to prove that all
novel predictions are false (92).

In the past, anticancer drugs were screened by transplantable
animal tumors. In the late 1980s, NCI-60 cell line dataset was
developed by the US National Cancer Institute (NCI), aiming at
drug discovery in vitro (93). The NCI-60 data set involves nine
human cancers with a total of 60 cell lines, including: ovarian
cancer, prostate cancer, lung cancer, leukemia, colon cancer,
breast cancer, etc. The US National Cancer Institute proposed a
comparative algorithm to find new compounds with similar
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mechanisms, or possible mechanisms of action of related
compounds (94). The similarity search method of bioactivity
map can calculate the similarity between drugs according to the
bioactivity map of drugs, and relocate the known drugs
according to the similarity (95).

Reverse-phase protein lysate microarray is a method for
accurately measuring protein expression levels in NCI-60 cell line.
This method has a large number of spots and aims to find a type of
molecular with high protein/mRNA correlation (96). In February
2016, NCI-60 was no longer supported because NCI decided to use
a patient-derived xenograft (PDX) model instead. Since then, some
research institutions and drug companies have begun to build their
own model PDX library. EurOPDX composed by 16 European
institutions jointly consists of 1500 PDX models, The Jackson
Laboratory has 450 PDX models, and the drug screening tool
released by Novartis uses 1000 PDX models.

The Library of Integrated Network-based Cellular Signatures
(LINCS) program was developed by the US National Institutes of
Health to increase understanding of normal and diseased cellular
states and how to alter them. Researchers at the LINCS transcription
center have released a new version of Connectivity Map, which
involves 42000 human cells and more than 1.3 million gene
expression profiles. This data set is based on L1000 analysis and
aims to reduce the cost of gene expression analysis (97).

In order to analyze the effects of different small molecule
drugs on six different breast cancer cell lines, the researchers
proposed a method to obtain survival measurements and cell
growth. Studies have shown that the survival and growth of
certain types of breast cancer cells are affected by drugs, and the
existence of differences helps to understand the response of
breast cancer patients during treatment (98). Studies have
shown that the effects of drugs that can reverse the expression
of cancer-related genes are beneficial to the treatment of some
cancer models (etc. breast, liver, and colon cancer.) (99). They
concluded that the four compounds showed high enough
potency to reverse gene expression in liver cancer, and used a
system-based method to confirm that the four compounds were
effective against the discovered liver cancer cell lines.

It is found that the information obtained by different
measurement methods under different drug doses has
corresponding uniqueness (100), which is conducive to further
exploration of drug effects. When researchers examine the
variability of drug effects, they need to consider many factors
to expand the way they think about drug activity. The conclusion
shows that in the comparison of drug reactions, in addition to the
drug effect and price, many factors should be considered, such as
clinical concentration near and above the IC50.

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to
conduct a detailed genetic characterization of a large panel of
human cancer cell lines (27). CCLE provides public access
analysis and visualization of DNA copy number, mRNA
expression, mutation data, and other items for approximately
1000 cancer cell lines, as well as the pharmacological profiles of
24 anti-cancer drugs in 50% of cell lines. Barretina et al. developed
the research tools for predicting the genetic variation of cancer drug
sensitivity and evaluated their systematic analysis methods. They
July 2021 | Volume 11 | Article 711225
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also applied the prediction model method to the cancer genetic
subsets that challenge the current treatment methods.
DISCUSSIONS

We reviewed the four popular in silico methods for drug
repositioning based on feature, matrix factorization, network,
and reverse transcriptome change. Through the analysis of the
four methods, we found that each method has its advantages and
limitations and more optimal performance can usually be
obtained by combining different methods and strategies.

Despite the creation of some excellent drug repositioning models
and methods, the development of robust and satisfactory models is
still an indispensable process. One of the main problems is the
difficulty in developing functional theoretical models or methods,
which is challenging because the construction of such models or
methods to simulate biological behavior will have a certain degree of
complexity. Due to changes in the conditions and environments
that exist during different experiments, the gene expression profile
may be difficult to define, which results in data discrepancies in gene
expression characteristics. In addition, when genes are used as drug
targets, gene expression is not always significant, resulting in
inaccurate data. Because of these problems, it is difficult for
models or methods to identify potential drug target interactions
when following chemical structures or molecular mechanisms.

Another major problem associated with the drug
repositioning model is the lack of reliable gold standard
datasets. In the process of model building, one scheme is to
combine the divided training, validation, and test set with k-fold
Frontiers in Oncology | www.frontiersin.org 8
cross validation and then use the popular evaluation index to
evaluate the performance. Another scheme is to establish unique
gold standard datasets and then use the evaluation indicators to
evaluate the model or method proposed to finally avoid the
occurrence of over-fitted problems.

Although there are many challenges in the research of drug
repositioning, the integration of multi-source information
related to drugs and their side effects, interactions of drugs and
diseases, and interactions of drugs and drugs is essential to
improve the performance of the drug repositioning domain
model. There is still a lack of treatment plans corresponding to
the large number of existing diseases, which has inspired more
scientific researchers and medical workers to carry out research.
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TABLE 4 | Reverse transcriptome change–based methods.

Study CMap NCI-
60

LINCS CCLE Description Ref

Lamb et al. √ Establish CMap database (85)
Iskar et al. √ Developed a pipeline for strict filtering and state-of-the-art normalization for gene expression in CMap (86)
Hieronymus
et al.

√ Regulators for predicting cancer phenotypes based on chemical genomics (87)

Gheeya et al. √ Prediction of the mechanism of action of unknown drugs based on CMap database (88)
Fayad et al. √ Analysis of MCF-7 gene expression in breast cancer cells based on CMap database (89)
Wen et al. √ Detection of gene expression changes caused by traditional Chinese medicine ingredients based on CMAP

database
(90)

Zhang et al. √ Prediction of molecular mechanism of VPA against CML based on CMAP database (91)
Brown et al. √ A standard database for drug repositioning (repoDB) (92)
Shoemaker √ Review the development and use of the NCI-60 (93)
Zaharevitz
et al.

√ Explain and demonstrate an example of using COMPARE on the web page (94)

Cheng et al. √ Use the NCI-60 data set to identify new targets for drugs and bioactive compounds on a larger scale (95)
Nishizuka
et al.

√ Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays (96)

Subramanian
et al.

√ Designed a method for cheap and large-scale gene expression analysis (L1000 assay) (97)

Niepel et al. √ Developed a method for cell growth and survival measurements (98)
Chen et al. √ Predicted four highly effective compounds capable of reversing liver cancer gene expression, and confirmed that

all four compounds are effective against five liver cancer cell lines
(99)

Fallahi-
Sichani et al.

√ Multi-parameter methods involving analysis (100)

Barretina
et al.

√ Created a research tool for predicting genetic variation in cancer drug sensitivity (27)
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