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Background and Purpose: With improved life expectancy, preventing neurocognitive
decline after cerebral radiotherapy is gaining more importance. Hippocampal damage has
been considered the main culprit for cognitive deficits following conventional whole-brain
radiation therapy (WBRT). Here, we aimed to determine to which extent hippocampus-
avoidance WBRT (HA-WBRT) can prevent hippocampal atrophy compared to
conventional WBRT.

Methods and Materials: Thirty-five HA-WBRT and 48 WBRT patients were
retrospectively selected, comprising a total of 544 contrast-enhanced T1-weighted
magnetic resonance imaging studies, longitudinally acquired within 24 months before
and 48 months after radiotherapy. HA-WBRT patients were treated analogously to the
ongoing HIPPORAD-trial (DRKS00004598) protocol with 30 Gy in 12 fractions and dose
to 98% of the hippocampus ≤ 9 Gy and to 2% ≤ 17 Gy. WBRT was mainly performed with
35 Gy in 14 fractions or 30 Gy in 10 fractions. Anatomical images were segmented and the
hippocampal volume was quantified using the Computational Anatomy Toolbox (CAT),
including neuroradiological expert review of the segmentations.

Results: After statistically controlling for confounding variables such as age, gender, and
total intracranial volume, hippocampal atrophy was found after both WBRT and HA-
WBRT (p < 10−6). However, hippocampal decline across time following HA-WBRT was
approximately three times lower than following conventional WBRT (p < 10−6), with an
average atrophy of 3.1% versus 8.5% in the first 2 years after radiation therapy,
respectively.
August 2021 | Volume 11 | Article 7147091

https://www.frontiersin.org/articles/10.3389/fonc.2021.714709/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.714709/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.714709/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.714709/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ilinca.popp@uniklinik-freiburg.de
https://doi.org/10.3389/fonc.2021.714709
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.714709
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.714709&domain=pdf&date_stamp=2021-08-19


Popp et al. Hippocampal Volume Preservation With HA-WBRT

Frontiers in Oncology | www.frontiersin.org
Conclusion: HA-WBRT is a therapeutic option for patients with multiple brain
metastases, which can effectively and durably minimize hippocampal atrophy
compared to conventional WBRT.
Keywords: hippocampus, atrophy, WBRT (whole-brain radiation therapy), cognitive function, MRI
INTRODUCTION

Cerebral radiation therapy (RT) is a central pillar in the
treatment of brain metastases (1). For patients with multiple
metastases, whole-brain RT (WBRT) is a common treatment
option, as it was shown to significantly improve distant
intracerebral tumor control and reduce the neurological death
rate compared to local therapies alone (2). However, with
increased survival due to improved systemic and supportive
therapies, reported neurocognitive deficits following cerebral
irradiation and in particular WBRT have gained substantial
importance (3, 4). More specifically, WBRT is associated with
an increased risk of cognitive dysfunction and decline in quality
of life (3–6), with numerous prior studies having deemed RT-
induced hippocampal damage the most important culprit (7–11).
Cognitive decline can be observed as early as 6 weeks after
WBRT (3, 5) and appears to predominantly involve verbal
memory (3, 12, 13).

Hippocampus-avoidance WBRT (HA-WBRT) selectively
restricts the radiation dose in the hippocampal region with the
intention of preserving cognitive functions. It is generally
considered a safe method, with a low risk of hippocampal and
peri-hippocampal relapse (10, 14–16). The protective effect of
HA-WBRT on the hippocampi has been and is currently still
being investigated in prospective clinical trials, but mainly
indirectly by means of neurocognitive testing. In the single
arm RTOG 0933 trial (9) and in the randomized phase III
NRG Oncology CC001 trial (10), a reduction in neurocognitive
decline was observed following HA-WBRT compared to
conventional WBRT. The evaluation of neurocognitive
functions in these trials could only be reliably performed for a
maximum of 6 months following RT, although more than 50% of
patients were still alive after this point (10). High death rates and
noncompliance with neurocognitive testing may thus hinder a
comprehensive long-term evaluation using neurocognitive
testing as a proxy of hippocampal damage. Furthermore,
distinguishing tumor fatigue and declining physical health
from a specific RT-related hippocampal neurocognitive failure
remains challenging.

A more direct measurement of hippocampal cellular loss after
irradiation can be the assessment of changes in hippocampal
volume as a function of dose and time. Hippocampal neuronal
and volume loss have been systematically linked to cognitive
decline, independently of concomitant neuropathological
diseases (17–19). However, at present, it is unknown to which
extent and over which period of time HA-WBRT can prevent
hippocampal cellular loss compared to conventional WBRT. To
close this gap, we retrospectively identified WBRT and HA-
WBRT patients longitudinally monitored with magnetic
2

resonance (MR) imaging and extracted hippocampal volume as
a morphological parameter to elucidate both immediate and
long-term effects of WBRT and HA-WBRT and to determine the
extent to which HA-WBRT can prevent hippocampal atrophy
compared to conventional WBRT over time.
MATERIALS AND METHODS

Patient Sample
The current study was approved by the local ethics committee.
We used a retrospective longitudinal study design and identified
756 patients having received WBRT or HA-WBRT between
December 2003 and December 2016 in the Department of
Radiation Oncology of the Medical Center—University of
Freiburg. Patients were evaluated with respect to inclusion/
exclusion criteria on the patient level and image level, as is
specified in the flowchart in Figure 1.

Patients were included if they had cerebral metastases of solid
tumors, no meningeal spread at the time of WBRT/HA-WBRT,
no known central nervous system pathologies accompanied by
cognitive deficits or radiological changes (e.g., dementia, stroke,
and meningitis), and at least one gross artifact-free three-
dimensional (3D) contrast-enhanced sagittal T1-weighted MR
(CE-T1-MR) imaging study before and after irradiation. Patients
with hippocampal metastases or hippocampal interventions
prior to study treatment were not considered suitable for
analysis. Hippocampal interventions were defined as
hippocampal resections or RT to the head with a total mean
hippocampal dose (Dmean, summed across all RT series) ≥ 3 Gy
(equivalent dose delivered in 2 Gy fractions [EQD2, a/b = 2])
and a total maximal hippocampal dose (Dmax, summed across all
RT series) ≥ 14.4 Gy (EQD2, a/b = 2). The thresholds were set
taking into consideration the strictest hippocampal constraints
imposed in clinical trials (10, 20, 21).

After this first selection on the patient level, patients were
evaluated on the image level. In patients with any further
hippocampal interventions (see definition above) after RT, all
imaging studies acquired after these interventions were excluded
to avoid any bias on the target analyses. Studies lacking the
appropriate quality for processing were also excluded. To this
end, image quality was assessed by means of the Image Quality
Rating (IQR) derived from the brain tissue segmentation using
the Computational Anatomy Toolbox (CAT). The IQR metric is
a continuous index that scales between 0% and 100% and is
graded from A+ to F, which corresponds to an image quality
from 100% to 50% (and below), respectively. Images with grades
A, B, and C are considered to be of excellent, good, to satisfactory
quality, whereas grades D, E, and F denote a sufficient, critical,
August 2021 | Volume 11 | Article 714709
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and unacceptable image quality, respectively. For the present
analyses, the threshold for inclusion of individual image studies
was set to ≥70%, which corresponds to an image quality of at
least C- (satisfactory).

MR imaging at follow-up examinations had been performed
every 3 months or as required according to clinical routine. The
interval for inclusion of image time points into the present
analysis was set to 24 months before and 48 months after RT,
in order to account for a maximal general life expectancy of
cerebrally metastasized patients (22).

Insufficient quality of the automatic segmentation of the
hippocampi with the CAT (see below) and the presence of
edema or metastases in the hippocampi as further exclusion
criteria were visually checked by an experienced neuroradiologist
(AR). Finally, after exclusion of individual imaging studies, only
those patients having at least two imaging studies (minimum one
study before and minimum one after RT) remained in
the analysis.
Frontiers in Oncology | www.frontiersin.org 3
Radiation Treatment Planning
Patients underwent RT-planning computer tomography (CT) in
thermoplastic mask immobilization (BrainLab, Feldkirchen,
Germany). CE-T1-MR and CT images were rigidly co-
registered based on mutual information (iPlan RT Image 4.1.1,
BrainLab, Feldkirchen, Germany) and served for target volume
and organ at risk delineation.

For HA-WBRT, a hippocampus-avoidance region (HAR) was
defined as a 7-mm 3D margin around the hippocampus, as
described previously (23, 24). The planning tumor volume
(PTV) for brain was defined as the whole brain (clinical target
volume, CTV) plus 3 mm, excluding PTVs of metastases and the
HAR. The prescribed dose for the brain PTV was 30 Gy in 12
fractions, with or without simultaneous integrated boost of 51 Gy
or 42 Gy in 12 fractions to the metastases. The hippocampal
avoidance was performed according to the constraints of the
currently ongoing prospective randomized trial HIPPORAD
(NOA-14, ARO 2015-3, DRKS00004598): dose to 98% of the
FIGURE 1 | Flowchart of patient selection. CE-T1-MR, contrast-enhanced T1-weighted magnetic resonance; HA-WBRT, hippocampus-avoidance whole-brain
radiation therapy; RT, radiation therapy; WBRT, whole-brain radiation therapy.
August 2021 | Volume 11 | Article 714709
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hippocampal volume (D98%) ≤ 9 Gy, dose to 2% of the
hippocampal volume (D2%) ≤ 17 Gy, and Dmean ≤ 10 Gy (17).
Patients were treated by volumetric modulated arc therapy
(VMAT) based on 2–4 arcs.

The WBRT was performed in the majority of cases by
conventional two-dimensional planning (98.1%). A minority
received CT-based three-dimensional planning (1.9%). The
prescribed dose was 35 Gy in 14 fractions in 43.9%, 30 Gy in
10 fractions in 30.8%, 40 Gy in 20 fractions in 11.2%, and other
fractionations in 14% of cases.

Dosimetry and Interfering Events
The Dmax and Dmean applied to the hippocampi and to the whole
brain during WBRT and HA-WBRT were extracted from the
dose-volume histograms and converted into equivalent doses
delivered in 2 Gy fractions (EQD2), considering an a/b = 2, in
order to account for the different prescription doses and
fractionations. Previous and subsequent RT to the brain, head
or neck structures and their corresponding doses to the
hippocampi, as well as hippocampal resections and edema
were also documented.

Image Processing
CE-T1-MR images were segmented using the CAT (version 12.5,
release 1364; http://dbm.neuro.uni-jena.de/cat/) with default
parameter settings running in the Statistical Parametric
Mapping (SPM, version 12.5; https://www.fil.ion.ucl.ac.uk/spm/
software/) software package in Matlab (version 7.14; The
Mathworks Inc., Natick, MA). Deformation field parameters
for nonlinear normalization into the stereotactic Montreal
Neurological Institute (MNI) standard space were computed
using the DARTEL (Diffeomorphic Anatomical Registration
Through Exponentiated Lie algebra) approach (25)
implemented in CAT. Atlas-based segmentation of the
hippocampus and resulting hippocampal volumes were
computed based on the in vivo high-resolution Computational
Brain Anatomy (CoBrA) atlas of the hippocampus (26)
implemented in CAT. An example of a hippocampus
segmentation using CAT is shown in Figure 2.

CAT segmentation was found to be reliable and robust
compared to the ground truth (27). However, for quality
Frontiers in Oncology | www.frontiersin.org 4
assurance, the automatized segmentation was verified by an
experienced neuroradiologist (AR). CE-T1-MR images were
evaluated in a 3D reformation with regard to the accuracy of the
segmentation of the hippocampi, the total intracranial volume
(TIV), and the brain volume. In addition, occurrence of
hippocampal or parahippocampal metastases with hippocampal
edema was assessed. Imaging studies featuring insufficient
hippocampal segmentation accuracy or the presence of metastases
and/or edema were excluded from the analysis (see above).

Statistical Analysis
We hypothesized that treatment with WBRT compared to HA-
WBRT leads to a stronger decrease in hippocampal volume
across time following RT. Given presumably non-linear
patterns of volume change across time, we took advantage of
the statistical software R (version 3.4.4 (28)) and the package
mgcv [version 1.8-31 (29, 30)] for generalized additive mixed
modelling (GAMM). Additive modeling fits a smoothing curve
on subsegments of the data using regression splines (29–31) and
can cope with non-linear patterns without the need of prior
knowledge on the exact shape of the function underlying the
relationship of interest. Effective degrees of freedom (edf) for the
individual model terms are estimated from the data but were in
the present analyses restricted by default to k = 10 (30).
Univariate smooths with thin plate regression splines were
used as smoothing functions. Reported model estimates were
based on a restricted maximum likelihood (REML) approach.

Hippocampal volume as derived from the CAT segmentation
(see above) constituted the dependent variable. Given that the
raw hippocampal volume data were substantially correlated
between hemispheres (r = 0.823) and that no hypotheses were
specified for differential effects of RT on left versus right
hippocampus, we decided to use the average of the raw
hippocampal volumes across hemispheres as dependent
variable to reduce the dimensionality of the data.

Therapy group (WBRT vs. HA-WBRT) and time (as
continuous measure in months centered at the time point of
RT) comprised the independent variables of interest to be
modeled as fixed effects. The effects of time and the interaction
of time by group were thereby modeled using non-linear
smoothing functions.
FIGURE 2 | Example of a hippocampus segmentation on CE-T1-MR imaging using the CAT and the in vivo high-resolution CoBrA atlas of the hippocampus (26).
August 2021 | Volume 11 | Article 714709
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Age at RT, gender, and TIV constituted nuisance variables
that were expected to have a systematic impact on interindividual
variation in hippocampal volume but were of no interest and
modeled as fixed effects. As an exploratory analysis indicated an
expectably strong confound between TIV and gender [r = 0.602;
see also (32)], we decided to orthogonalize the two variables by
regressing TIV on gender and to further use the residuals as
gender-adjusted index of interindividual variation in TIV.

The longitudinal design with different number of
observations for individual patients irregularly spaced in time
and measured on different MR scanners was taken into account
by modeling variations between patients and MR scanners as
random intercepts.

Taken together, our target analysis on the differential time
course of changes in hippocampal volume following WBRT vs.
HA-WBRT thus comprised a GAMM model with the dependent
variable volume, the three fixed effects of interest (time, group,
and the interaction between group and time), three fixed effects
for nuisance variables (age at RT, gender, and gender-adjusted
TIV), and two random effects (patient and MR scanner). By
restricting the maximum possible number of smoothing functions
to k−1 = 9 for the effects of age and the interaction between age
and group (see above), the possible total number of individual
fixed-effects parameters including the intercept ranged between 7
and 23 (for potentially resulting k−1 numbers of smoothing
functions between 1 and 9, respectively). Furthermore, given a
total of 544 valid data points (see below), this corresponded to a
ratio of at minimum ≥ 23 to at maximum ≤ 77 observations per
fixed-effect parameter, which was hence sufficient for a valid
model estimation and not prone to overfitting (30).
RESULTS

Final Patient Sample
On the patient level, 617 out of the initially identified 756
suitable patients were considered unsuitable and excluded from
further analysis (see Figure 1 for details). Starting in 2012, all
patients in our department with multiple metastases of solid
tumors, without (peri)hippocampal metastases and eligible for
Frontiers in Oncology | www.frontiersin.org 5
CT-based RT-planning, underwent HA-WBRT with or without
simultaneous integrated boost. The remaining patients (with
hematological malignancies, prophylactic or repeated WBRT,
meningeal spread, or extremely poor prognosis without
possibility of follow-up) were treated with conventional WBRT,
but were removed from further analysis as per set exclusion
criteria. In contrast, all patients before 2012 consistently received
WBRT. Thus, the two resulting cohorts were chronologically
shifted, but with a low risk of biased selection.

After this first selection on the patient level, 139 patients
remained, cumulating in 1,147 CE-T1-MR imaging studies that
were further evaluated on the image level. This resulted in the
exclusion of another 603 studies and 56 patients (see Figure 1
for details).

The final data set comprised 544 CE-T1-MR imaging studies
(WBRT, n = 257; HA-WBRT, n = 287) of 83 patients (WBRT, n =
48; HA-WBRT, n = 35) acquired on 16 different MR scanners
(Figure 1). The utilizedMR scanners were sufficiently overlapping
between groups to allow for includingMR scanners into the model
as a random effect. The individual number of included imaging
studies before and after RT ranged between 1 and 10 and between
1 and 20 per patient, respectively.

An overview on the selected patients’ demographic and
clinical characteristics is provided in Table 1. Patients in the
two groups showed imbalances regarding age (p = 0.049) and
gender (p = 0.061), which were statistically accounted for in the
target analyses on hippocampal volume (see below). Groups did
not significantly differ in the patients’ TIV (p = 0.894) and
individual maximum follow-up time covered post RT (p =
0.974). Primary tumors comprised 12 different etiologies
(breast cancer, gastrointestinal tumors, germinal tumors,
gynecologic tumors, malignant melanoma, small and non-
small cell lung cancer [NSCLC], pancreas tumors, renal cell
carcinoma, salivary gland carcinoma, sarcoma, and carcinoma of
unknown primary). Considering recent improvements in
systemic therapies for NSCLC and melanoma through the
introduction of immune checkpoint inhibitors and third-
generation tyrosine kinase inhibitors, we decided to evaluate
the frequency of these primary tumors versus the remaining
etiologies. The analysis indicated a percentage of approximately
TABLE 1 | Clinical details of selected patients.

Patient Characteristics WBRT HA-WBRT Differences between
groups (test, p-value)

Age (years), median, range 59, 34–80 54, 33–84 Mann–Whitney U = 1,053.5,
p = 0.049

Gender (no.), male/female 25/23 11/24 c2 = 3.52, p = 0.061
Total intracranial volume before RT (ml), median, range 1,438, 1,240–1,715 1,435, 1,209–1,934 Mann–Whitney U = 855,

p = 0.894
Hippocampal volume before RT (ml), median, range 3.37, 2.36–4.03 3.24, 2.45–4.25 Mann–Whitney U = 908,

p = 0.536
Follow-up time (months), median, range 6.9, 2.5–39.1 7.8, 1.8–47.0 Mann–Whitney U = 836,

p = 0.974
Additional low-dose RT hippocampal exposure (before and/or after WBRT/HA-WBRT)
with total Dmean < 3 Gy and Dmax < 14.4 Gy (no.): yes/no

10/38 18/17 c2 = 8.48, p = 0.004

Primary tumor (no.): melanoma+NSCLC/other 23/25 20/15 c2 = 0.69, p = 0.406
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50%NSCLC/melanoma, similar in both RT groups (p = 0.406). A
detailed listing of all applied systemic therapy agents can be
found in Supplementary Table S1. Finally, there was a
significantly higher proportion of HA-WBRT patients (51.1%)
than WBRT patients (20.8%) with a history of additional
radiotherapy (radiosurgery and stereotactic fractionated
radiotherapy) with very low-dose hippocampal exposure (p =
0.004; Table 1).

RT was performed according to the prescribed doses,
achieving a median Dmean (EQD2 a/b = 2) for the whole brain
of 39.4 Gy (range 37.5–40.0 Gy) in the WBRT group and 34.9 Gy
(range 33.4–39.7 Gy) in the HA-WBRT group. WBRT in the
selected patients was performed exclusively by conventional two-
dimensional planning. Thus, Dmean and Dmax (EQD2 a/b = 2)
for both hippocampi were identical to the whole-brain doses and
ranged between 37.5 and 40.0 Gy, with a median of 39.4 Gy. In
the HA-WBRT group, Dmean for the left hippocampus ranged
between 5.8 and 8.4 Gy, with a median of 6.8 Gy, while Dmax

ranged between 12.5 and 24.1 Gy, with a median of 15.7 Gy
(EQD2 a/b = 2). For the right hippocampus, Dmean was in
median 6.7 Gy (range 5.5–9.2 Gy), while Dmax was 14.8 Gy
(range 11.3–21.8 Gy).

Finally, controlling for selection bias, we compared
characteristics of patients included in the present analyses to
those of the excluded patients (cf. flowchart in Figure 1),
revealing a significant difference for age (median of 54 vs. 63
years, respectively; p = 4.34 × 10−5) but neither for gender (male
vs. female, n = 36/47 vs. n = 316/327; p = .322) nor for type of
primary tumor (NSCLC/melanoma vs. other, n = 43/40 vs. n =
293/350, p = .283). The significantly higher median age in the
group of excluded patients was concomitant with a significantly
shorter median survival time (3.8 vs. 12.7 months; p =
4.17 × 10−13).
Frontiers in Oncology | www.frontiersin.org 6
Target Analysis on RT-Induced
Hippocampal Atrophy
A generalized additive mixed model (GAMM) of the differential
time course of changes in hippocampal volume between groups
revealed a significant main effect of time (F = 10.19, edf = 2.63,
p = 7.48 × 10−7) and a significant interaction of time by group
(F = 8.44, edf = 4.04, p = 1.14 × 10−7), whereas the simple effect of
group was not significant (t = −0.05, p = 0.957). Fixed effects of
nuisance variables age (t = −3.77, p = 1.19 × 10−4), gender (t =
4.61, p = 5.19 × 10−6), and gender-adjusted TIV (t = 11.78, p <
10−16), as well as random effects of patient (F = 19.57, edf = 74.13,
p < 10−16) and MR scanner (F = 11.96, edf = 7.46, p = 1.25 ×
10−4), also reached significance. Model validation indicated no
relevant deviations from the underlying assumptions
(Supplementary Figure S1).

As can be seen in Figure 3, treatment with WBRT was
associated with a significantly steeper atrophy of hippocampal
volume compared to treatment with HA-WBRT. In the WBRT
patients, the estimated average hippocampal volume loss after 6,
12, 24, and 48 months (with time of RT as reference) comprised
−0.113 ml (95% prediction interval [−0.288, +0.063]), −0.190 ml
[−0.369, −0.012], −0.320 ml [−0.505, −0.136], and −0.519 ml
[−0.873, −0.165]. This was equivalent to a volume loss at 6, 12,
24, and 48 months of −3.0% [−7.8%, +1.82%], −5.1% [−10.0%,
−0.1%], −8.5% [−13.9%, −3.1%], and −13.8% [−24.7%, −2.9%].
In the HA-WBRT patients, the estimated average hippocampal
volume loss after 6, 12, 24, and 48 months (with time of RT as
reference) was −0.027 ml [−0.158, +0.104], −0.055 ml
[−0.187, +0.077], −0.116 ml [−0.252; +0.019], and −0.196 ml
[−0.358, −0.033]. This was equivalent to a volume loss at 6, 12,
24, and 48 months of −0.7% [−4.2%, +2.8%], −1.5%
[−5.0%, +2.1%], −3.1% [−6.8%, +0.6%], and −5.2%
[−9.75%, −0.7%].
FIGURE 3 | Evolution of hippocampal atrophy 24 months before and 48 months after WBRT versus HA-WBRT (averaged for left and right hippocampus) across
time (with the gray vertical line denoting the time of RT and the gray horizontal line depicting the average hippocampal volume at the time of RT as reference). The
two treatment groups, WBRT and HA-WBRT, show significantly distinct time courses. Dots represent individual data points, and bands represent standard errors.
Adjusted volume refers to the estimated marginal means after accounting for variation of nuisance variables (effects of age, gender, TIV, patient, and MR scanner).
The number of patients with adequate imaging studies still in follow-up was n = 49 at 6 months, n = 29 at 12 months, n = 14 at 24 months, and n = 5 at 36 months.
HA-WBRT, hippocampus-avoidance whole-brain radiation therapy; WBRT, whole-brain radiation therapy.
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The predicted hippocampal volume decline following WBRT
was therefore approximately three times higher in the first 2
years posttreatment than following HA-WBRT.

In contrast, volume changes 24, 12, and 6 months before the
time of RT as reference comprised +0.076 ml ([−0.148, +0.299];
+2.0% [−3.8%, +7.8%]), +0.103 ml ([−0.082, +0.288]; +2.7%
[−2.0%, +7.5%]), and +0.074 ml ([−0.105, +0.253]; +2.0%
[−2.7%, +6.6%) in the WBRT patients and +0.037 ml ([−0.128,
+0.201]; +1.0% [−3.3%, +5.3%]), +0.028 ml ([−0.109, +0.166];
+0.8% [−2.9%, +4.4%]), and +0.018 ml ([−0.144, +0.151]; +0.5%
[−3.0%, +4.0%]) in the HA-WBRT patients, respectively. That is,
predicted hippocampal volume changes before RT were
substantially lower, not significantly different from zero, and
comparable between groups.

Supplementary Analyses
We computed several control analyses, which are in brief
reported below. (i) To answer the question whether
hippocampal atrophy over time was significant on the level of
the individual treatments, we computed two GAMMs on the
effect of time separately for the two groups (each including only
the effect of time, but neither group nor the interaction between
time and group; plus fixed nuisance effects of age, gender,
gender-adjusted TIV, and random intercepts for patient and
scanner). Results confirmed significant changes in hippocampal
volume across time for both WBRT (F = 28.52, edf = 4.47,
p < 10−16) and HA-WBRT (F = 13.51, edf = 2.18, p = 1.91 × 10−7).
(ii) Furthermore, to more directly consider the time of RT as the
actual onset of the observed hippocampal atrophy, we extended
the original GAMM of our target analysis by the factor pre/post
and accordingly centered the continuous variable time pre RT to
−24 months and restricted the post RT data to the first 24
months. The model hence comprised the fixed effects of time
(continuous), group, time point (pre vs. post RT), and their two-
way and three-way interactions, as well as the fixed nuisance
effects of age, gender, gender-adjusted TIV, and random
intercepts for patient and scanner. Results revealed the critical
three-way interaction of time by group by pre/post (F = 9.94,
edf = 2.00, p = 6.13 × 10−5), thus statistically confirming that the
differential effects in hippocampal volume decline between
groups and across time were indeed manifest post RT (see also
Figure 3). (iii) Finally, given the chronological shift between the
data acquisitions in the two treatment groups and potentially
confounding changes in secondary systemic therapies for
melanoma and NSCLC tumors, we conducted a control
analysis explicitly testing whether the interaction effect of time
by RT group on the evolution of hippocampal atrophy was
differentially driven by primary tumor (melanoma and NSCLC
vs. other). That is, we extended our target analysis by the factor
primary tumor type, thus resulting in model with fixed effects for
time, group, primary tumor, and their two-way and three-way
interactions, as well as the fixed nuisance effects of age, gender,
gender-adjusted TIV, and random intercepts for patient and
scanner. However, neither the critical three-way interaction of
time by RT group by primary tumor nor any lower-order effects
of primary tumor were significant (all p > 0.266).
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DISCUSSION

The current study used retrospective longitudinal analysis of
hippocampal volume as a direct morphological marker to
determine the impact of moderate RT doses on the
hippocampus in the context of whole-brain irradiation. In a
sample of patients with multiple (>3) brain metastases closely
followed-up with serial MR imaging, we found significant
hippocampal atrophy over time after both WBRT and HA-
WBRT, with considerably lower atrophy rates following the
latter. To our knowledge, this is the first study to show the
differential time course of the effects of WBRT with and without
hippocampal avoidance on hippocampal volume.

Hippocampal Atrophy Following
Radiotherapy
For the fractionated, partial brain RT of primary brain tumors,
Seibert et al. (33) similarly measured the hippocampal volume in
52 patients before and 1 year after treatment. The authors found
a significant reduction in volume after high-dose RT (Dmean > 40
Gy), but not after low-dose RT (Dmean < 10 Gy). Our results
substantially extend these findings by longitudinally
demonstrating the impact of moderate-dose RT (median
Dmean < 40 Gy) and low-dose RT (median Dmean < 7 Gy) on
the hippocampus as applied in the WBRT and HA-WBRT
group, respectively. Moreover, the here observed annual
atrophy rate of approximately 5% in the first 2 years after
WBRT clearly exceeds the reported mean annualized rates of
3.5%–4% for patients with Alzheimer ’s disease (17).
Furthermore, these values also surpass those observed in
elderly patients experiencing worsening cognitive decline (17).

In normal aging, hippocampal atrophy relative to the rest of
gray matter is reported to begin after the ages of 63 in men and
67 in women (34) and increase to an estimated annual decline
rate of 1.7% after the age of 80 (17). In the HA-WBRT cohort, the
median age was 54, with only 14% of patients over the age of 63.
Thus, the significant hippocampal atrophy of 1.6% per year in
the first 2 years after RT seems higher than what would be
expected for this age group (34) and contrasts notably the lack of
volume change in the 2 years prior to HA-WBRT in the same
patients. Since hippocampal Dmean for HA-WBRT was generally
below 7 Gy EQD2 a/b = 2 and a significant atrophy was noticed
only after this intervention, our data suggest a possibly high
hippocampal radiosensitivity to lower doses, similar to the
observations of Mizumatsu et al. in animal studies (7). These
results are in line with the data of Nagtegaal et al., who found a
dose-dependent increase in hippocampal age of 2–20 years and a
hippocampal volume loss rate of 0.16%/Gy in 33 patients having
undergone RT for grade II–IV glioma (35). Compared to this, the
atrophy rate obtained for our HA-WBRT cohort was slightly
higher (1.6% versus 0.16 × 6.8 Gy = 1.1%). Whether and to which
extent additional low-dose hippocampal exposure (with a total
Dmean < 3 Gy, EQD2 a/b = 2) from previous and subsequent
radiotherapies may have contributed to the hippocampal
atrophy in the HA-WBRT group is unclear and has to be
explored in future trials.
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Although hippocampal volume assessment may not be
sensitive to all forms of neurodegeneration, hippocampal
volume loss has been systematically associated with cognitive
decline in dementia, with significantly higher atrophy rates in
patients showing clinical worsening (17, 18). Following RT,
hippocampal atrophy in general (36, 37) and the inhibition of
neurogenesis in the neural stem cell niche found in the
subgranular zone of the dentate gyrus in particular are
considered to be responsible for memory impairment (7, 38).
Although data on the persistence of human hippocampal
neurogenesis in adults is controversial (39, 40), sparing of
the hippocampi in RT planning appears to be clinically
relevant and effective in preventing cognitive deterioration
(9, 10, 41).

In this respect, various hippocampal constraints have been
considered safe for irradiation. In the NRG Oncology CC001
trial (10) and the preceding single-arm RTOG 0933 trial (9),
100% of the hippocampus did not exceed a dose of 9 Gy (6.5 Gy
EQD2 a/b = 2), and the hippocampal Dmax did not exceed 16 Gy
in 10 fractions (14.4 Gy EQD2 a/b = 2). Dosimetric analyses
performed after stereotactic fractionated RT for benign or low-
grade adult brain tumors revealed an equivalent dose of 7.3 Gy in
40% of the bilateral hippocampi (D40%, EQD2 a/b = 2) as cutoff
for the occurrence of long-term cognitive impairment (11).
Another clinical trial exploring hippocampal sparing
prophylactic cranial irradiation in patients with small-cell lung
cancer limited hippocampal Dmean to 8 Gy in 10 fractions (5.6 Gy
EQD2 a/b = 2) (21). In the ongoing prospective randomized
HIPPORAD trial (NOA-14, ARO 2015-3, DRKS00004598), the
hippocampal constraints include D98% ≤ 9 Gy (6.2 Gy EQD2 a/
b = 2), D2% ≤ 17 Gy (14.5 Gy EQD2 a/b = 2), and an aimed
Dmean ≤ 10 Gy (7.1 Gy EQD2 a/b = 2) (20). The equivalent dose
applied in our HA-WBRT-cohort was therefore in alignment
with these data and could be considered sufficient for
neurocognit ive protection. Consistent with cl inical
observations, our results showed that HA-WBRT prevents
considerable hippocampal volume loss compared to
conventional WBRT. Evaluating the time course of
hippocampal decline in both groups, the atrophy rate was
highest within the first six months following RT and decreased
thereafter. Despite this deceleration across time, the differential
three-times lower atrophy rate for HA-WBRT persisted over a
time frame of 4 years after RT and remained significant after
accounting for patient age, gender, and TIV.

Limitations
Because of the retrospective study design, a major limitation of
the study is that clinically relevant neurocognitive functional
parameters have not been systematically assessed so that a
direct link between clinical neurocognitive outcome and
hippocampal atrophy after RT could not be established.
Furthermore, the final data set was also considerably smaller
compared to the initially identified patient list. While the
stringent patient selection may impact the generalizability of
results, this was necessary to ensure homogeneity and a correct
data interpretation. The analysis of excluded patients showed
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no major discrepancies in gender and tumor type, but revealed
lower survival rates corresponding to older age and poorer
prognosis. The selected cohort could thus be not representative
for all cerebrally metastasized patients, but for the population
most eligible for HA-WBRT.

In spite of this selection, there are still several medical
conditions that may also influence the size of the hippocampus
with increasing age (e.g., cardiovascular disease, obesity, diabetes,
hypertension, anxiety, or clinical depression) (42). However,
considering the chronological shift of the two groups, the risk
of biased selection based on potentially relevant comorbidities
was minimized.

Another possible confounder is represented by the cancer and
treatment-related neurocognitive dysfunction, reported in the
majority of cancer patients and colloquially known as
“chemobrain” (43, 44). Although differences in applied
systemic therapies did not seem to influence the degree of
hippocampal atrophy in our cohort, differences in type and
duration of systemic therapies due to the chronological shift
may still have had disparate effects on hippocampal volume, as
preclinical data suggest a negative impact on neurological
pathways and cognition. In particular, hippocampal
neurogenesis seems to be inhibited by a wide range of
chemotherapeutic agents, including the commonly used
cisplatin, oxaliplatin, and paclitaxel (45–47). Morphological
alterations and synaptic dysfunction were also noticed in the
treatment with certain immune, targeted, and hormone therapies
(48–51). However, clinical data on these effects are extremely
scarce. While some MRI studies suggest reductions of
hippocampal volume in patients receiving systemic treatment
(52), others do not (53). Moreover, to our knowledge, the
influence of dose and duration of the applied therapies was not
investigated as of now. These particularities may thus constitute
unknown confounders, which were not systematically
documented and could not be included in the present analysis.
Given its detailed documentation and prospective design, these
interfering aspects will be further explored in the ongoing
randomized HIPPORAD trial (20).

Finally, the allowed small RT doses to the hippocampus (in
total Dmean < 3 Gy and Dmax < 14.4 Gy, EQD2 a/b = 2) during
additional interventions (radiosurgery and stereotactic
fractionated radiotherapy) before and after study treatment
(WBRT vs. HA-WBRT) may have also had an effect on
hippocampal volume. However, this affected the HA-WBRT
group substantially more than the WBRT group, so that the
results of our target analysis showing a preservation of
hippocampal volume after HA-WBRT remain valid. Similarly,
the prescribed RT regimens were not uniform, but
heterogeneous in both the WBRT and the HA-WBRT group,
with higher doses applied to the whole brain in theWBRT group.
While the effect of the whole brain dose on hippocampal volume
independently of hippocampal dose is not known, this difference
may have also had an impact on the dynamics of hippocampal
atrophy. However, the variation in hippocampal dose between
groups (difference in median hippocampal Dmean of 32.6 Gy) was
higher by one order of magnitude compared to the hippocampal
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dose variation within the individual groups (Dmean range of 2.5
Gy and 3.7 Gy for WBRT and HA-WBRT, respectively) and to
the whole-brain dose variation between groups (difference in
median Dmean of 4.5 Gy). Therefore, we do not expect a
significant impact on the results of our target analysis.
CONCLUSION

The current study shows that HA-WBRT may effectively and
durably minimize hippocampal damage compared to
conventional WBRT, achieving a threefold reduction in atrophy
over a time frame of 4 years following irradiation. To which
extent low or cumulative radiation doses over time or applied
systemic therapies may also have a significantly negative impact
on hippocampal volume and hippocampal-related cognition is
still unclear and warrants further investigation in clinical trials.
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