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Gene regulatory and signaling phenomena are known to be relevant players underlying the
establishment of cellular phenotypes. It is also known that such regulatory programs are
disrupted in cancer, leading to the onset and development of malignant phenotypes.
Gene co-expression matrices have allowed us to compare and analyze complex
phenotypes such as breast cancer (BrCa) and their control counterparts. Global co-
expression patterns have revealed, for instance, that the highest gene-gene co-
expression interactions often occur between genes from the same chromosome (cis-),
meanwhile inter-chromosome (trans-) interactions are scarce and have lower correlation
values. Furthermore, strength of cis- correlations have been shown to decay with the
chromosome distance of gene couples. Despite this loss of long-distance co-expression
has been clearly identified, it has been observed only in a small fraction of the whole co-
expression landscape, namely the most significant interactions. For that reason, an
approach that takes into account the whole interaction set results appealing. In this
work, we developed a hybrid method to analyze whole-chromosome Pearson correlation
matrices for the four BrCa subtypes (Luminal A, Luminal B, HER2+ and Basal), as well as
adjacent normal breast tissue derived matrices. We implemented a systematic method for
clustering gene couples, by using eigenvalue spectral decomposition and the k–medoids
algorithm, allowing us to determine a number of clusters without removing any interaction.
With this method we compared, for each chromosome in the five phenotypes: a)Whether
or not the gene-gene co-expression decays with the distance in the breast cancer
subtypes b) the chromosome location of cis- clusters of gene couples, and c) whether or
not the loss of long-distance co-expression is observed in the whole range of interactions.
We found that in the correlation matrix for the control phenotype, positive and negative
Pearson correlations deviate from a random null model independently of the distance
between couples. Conversely, for all BrCa subtypes, in all chromosomes, positive
correlations decay with distance, and negative correlations do not differ from the null
model. We also found that BrCa clusters are distance-dependent, meanwhile for the
control phenotype, chromosome location does not determine the clustering. To our
knowledge, this is the first time that a dependence on distance is reported for gene
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clusters in breast cancer. Since this method uses the whole cis- interaction geneset,
combination with other -omics approaches may provide further evidence to understand in
a more integrative fashion, the mechanisms that disrupt gene regulation in cancer.
Keywords: eigenvalue decomposition, gene co-expression clustering, loss of long-distance co-expression,
co-expression matrices, breast cancer molecular subtypes
1 INTRODUCTION

1.1 Breast Cancer: A Complex Disease
Breast cancer is the first cancer-related cause of death in women
worldwide. It is also, according to the most recent data (1), the
most diagnosed neoplasm in the world. Breast cancer is also the
malignant neoplasm with the highest incidence (1). Its diagnosis,
response to treatment, relapse, and outcome are strongly
determined by the molecular profile underlying the disease (2–4).
The PAM50 classifier is among the most relevant methods of
classification for breast cancer molecular subtypes (5). This
molecular classification is based on the expression signature of
50 genes relevant to the oncogenic phenotype (5–7).

Publicly available massive cohorts of genomic and clinical
data in the study of cancer, have allowed the analysis of an
immeasurable amount of information. The latter has contributed
to a better understanding of the oncogenic process (8). Based on
gene expression of hundreds-to-thousands of samples, now it is
possible to study such vast experimental information to infer and
analyze the whole-genome co-expression landscape, aiming to
highlight similarities and differences between cancer and non-
cancer samples. Among these efforts, The Cancer Genome Atlas
(TCGA) has contributed in an outstanding way (9).
1.2 Gene Co-Expression Networks
The study of Cancer within the framework of complex networks
has become increasingly relevant in the last years (10–20). Given
its size and complexity, genome-wide regulation may include a
large number of features (all the genes), potentially inducing a
fully connected network, with contributions of very different
relevance and certainty. For this reason, several approaches to
reduce its dimensionality have been implemented, including the
use of threshold methods, to look for the most significant co-
expression relationships (18, 21). In particular, in the case of
breast cancer molecular subtype networks, the most significant
co-expressed pairs have been used as connected nodes in
biologically relevant modules (22–25).

Further approaches to determine the optimal network size
may analyze a wide range of network scales (13, 26, 27) or
backbone-related threshold networks (28), and even use gene co-
expression subsets of clinical/biological relevance (29).

In the attempt of reducing the dimensionality of a fully-
connected network, identification of groups of genes that behave
in a similar way –indicating that their expression profiles are
correlated– is a relevant problem and is still an open challenge in
network biology (29, 30). The latter point is closely related to the
2

so-called graph sparsification problem in graph theory. The
choose of a significance threshold then becomes relevant.

For instance, in a recent study by Kimura et al. (31), an
approach was developed to select parameters in genetic networks
by computational methods (mainly Machine Learning and
Artificial Intelligence). Other approaches have used the
complete set of interactions in order to construct a network
backbone (28). There, the authors used the complete matrix of
interactions to obtain the most important relationships,
preserving those edges with statistically significant deviations
with respect to a nul l model for the local edge ’s
weight assignment.
1.3 Gene Co-Expression Is Distance
Dependent
In cancer, gene co-expression networks have been used to
uncover genes and relationships that may represent crucial
elements to determine differences between phenotypes (32). In
particular, in breast cancer and breast cancer molecular subtypes
(4), gene co-expression networks have been useful to identify the
phenomenon of loss of long-range co-expression (10, 12, 14, 33):
this is, a property observed in cancer networks in which the most
significant gene co-expression relationships occur between genes
that belong to the same chromosome, i.e., cis- interactions.
Conversely, inter-chromosome (trans-) interactions are often
weak in cancer.

Furthermore, the loss of long-range co-expression is not only
observed at the level of genes located on different chromosomes.
Regarding cis- (intra-chromosome) gene interactions, there is an
exponential decay of strength of correlations (14) as genes
become more distant. This situation could be related to a
diminishing of the accessibility that a certain region of the
genome may have of its environment during the carcinogenic
process. Importantly, this lack of accessibility can be attributed to
several factors, among which we can mention aberrant
expression of transcription factors, copy number alterations,
incorrect binding to CTCF, or changes in Topologically
Associated Domains (TADs). All of these factors have the
potential to alter, both, the structure of DNA and
gene expression.

Despite this phenomenon has been discovered not only in
breast cancer, but also in clear cell renal carcinoma (13), lung
adenocarcinoma and squamous cell lung carcinoma (12), loss of
long-range co-expression has been determined for the top
highest interactions: a small subset of the most co-expressed
gene-gene interactions (tens-to-hundreds of thousands) of the
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whole co-expression landscape is observed to be biased to
cis- interactions.

Since the strength of intra-chromosome interactions have
been observed to be the highest ones, it becomes important to
evaluate the behavior of the whole intra-chromosome landscape
of cancer networks. In these terms, network clustering may
provide us with information related to, for example, sets of
genes constrained by physical restrictions in certain regions of
the genome, genes that act in tandem, events related with the
transcriptional process, etc.

To address the questions above, we performed a data-driven
clustering analysis using a hybrid algorithm that involves
eigenvalue decomposition and k–medoids from correlation
matrices of each chromosome. These matrices were inferred
from RNA-Seq-based gene expression. We evaluated whether or
not the loss of long-range co-expression is preserved, by studying
all chromosomes for the four breast cancer subtypes as compared
with normal tumor-adjacent tissue as control.

With this approach, we constructed co-expression matrices
for all chromosomes in adjacent normal breast tissue network, as
well as in all four breast cancer subtypes. We analyzed the
statistics for their clustering nearest neighbor distributions
within each chromosome, comparing each breast cancer
molecular subtype as well as the adjacent normal tissue.
Additionally, for all phenotypes, we constructed a null model
to provide statistical robustness to our analyses. With this, we
present a systematic method for intra-chromosome gene
clustering, which allows to compare the whole co-expression
landscape between a cancerous phenotype with its
control counterpart.
2 MATERIALS AND METHODS

2.1 Data Acquisition
Gene expression data of breast invasive carcinoma was collected
from The Cancer Genome Atlas (TCGA) (34). 735 tumor and
113 non-cancerous (adjacent normal), samples were considered,
see Table 1. Illumina HiSeq RNASeq samples were filtered
(biotype, expression mean >10), pre-processed, and log2
normalized gene expression values as described in (10). We
performed data corrections for transcript length, GC content
and RNA composition. Tumor expression values were classified
using PAM50 algorithm into the respective intrinsic breast
cancer sub-types (Luminal A, Luminal B, Basal, and HER2-
Enriched) using the Permutation-Based Confidence for
Molecular Classification (35) as implemented in the pbcmc R
package (36).

Tumor samples with a non-reliable breast cancer sub-type call
were removed from the analysis. To avoid overlapping patterns
Frontiers in Oncology | www.frontiersin.org 3
among subtype expression values, multidimensional noise
reduction was performed using ARSyN R implementation (37),
and a multidimensional Principal Component Analysis (PCA)
was implemented to confirm noise reduction (14).

Since a crucial part of this work lies in having a highly-
confident set of matrices, it is necessary to obtain as many well-
characterized samples as possible, for each molecular subtype.
Due to this fact, we decided to include all the available samples
with a molecular subtype classification i.e., those samples with a
molecular subtype label from the original source. Further
investigations must be conducted with even more stringent
inclusion and exclusion criteria, such as histologically
confirmed diagnosis, histopathologically-assessed axillary
lymph nodes, metastatic disease at presentation, adjuvant
treatment, etc.

In order to provide all the information to reproduce our
results, the clinical information about histological data by
subtype-samples is now included in the Supplementary
Material S1. There, for each breast cancer subtype sample we
describe: 1) availability of historical adjuvant treatment,
2) lymph node assessment existence, 3) histological type of
tumor and 4) axillary lymph-node-stage method type.

To show that those samples with the same molecular subtype
are indeed properly classified in their molecular profiles to be
included in our correlation matrices, we performed a Principal
Component Analysis (PCA) for each subtype (Supplementary
Figure S1). The PCA groups samples based on the main
eigenvalues of the expression profiles. In this case, we present
the two main principal components (X and Y axes of the
Supplementary Figure S1) -though the calculations were
made with the full eigenvalue spectra of the matrices. Hence,
the PCA could indicate those samples that are not similar to the
rest of their class (if any) or if there is any “confounded” or
misclassified sample.

As it can be noticed in the Supplementary Figure S1, all
subtype samples are clearly separated based on the molecular
classification. All samples are grouped by its subtype (color).
Hence, constructing correlation matrices by using these subtype-
separated samples, certainly improves the statistical significance
without adding a clear source of noise.

2.2 Correlation Matrices
We built intra-chromosomal cross-correlation matrices by
estimating the Pearson correlation coefficient between the
expression of two genes i and j, defined as follows:

Cij =
Cov(gi, gj)

sgisgj
=

1
Ns
o
Ns

s=1

(gis − mgi)(gjs − mgj)

sgisgj
, (1)

where gi is the set of Ns expression samples for gene i. By
definition, a correlation matrix is symmetric (Cij = Cji),
TABLE 1 | Samples for each subtype.

Control Basal Her2 LumA LumB

113 221 105 217 192
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the elements in the diagonal are 1 (Cii = 1, ∀i), and its values are
bounded to –1 ≤ Cij ≤ 1, where Cij = 1 corresponds to perfect
correlations, Cij = –1 corresponds to perfect anticorrelations, and
Cij = 0 corresponds to uncorrelated gene pairs.

We calculated Pearson correlation between all genes for each
chromosome for the five phenotypes. The code for calculation of
Pearson correlations can be found in (38).
2.3 Spectral Decomposition
Pearson correlation matrices for each chromosome were
calculated in order to analyze their spectral properties.
Previous works on correlation matrices have shown that their
spectral properties carry information about the structure and
dynamics of the system (39–48).

For example, in stock market data, the first eigenvectors
correspond to clusters of related industries (49, 50). In
Electroencephalography measurements, these eigenvectors
correspond to different functional regions in the brain (51).
However, not all of the eigenvalues carry relevant information
about the system. It has been shown that the smallest ones are the
most sensitive to noise and some of them correspond to weak
interrelations between small components from different clusters
(47, 48). To distinguish how many eigenvalues contain useful
information to identify clusters, we compared the spectral
properties of the empirical correlation matrix to a null model
represented by an ensemble of random matrices.

This ensemble of random matrices, is obtained by doing non-
biased shuffling over the gene expression values for each sample
(in this way, the original distribution of the data is preserved
while its correlations will be destroyed) and computing the
correlation matrix of each randomized data as in equation 1,
we generated an ensemble of nm = 100 random matrices for each
chromosome and phenotype.

The k deviating eigenvalues of the empirical matrix from the
randomized data max(lR) < {l1, … ,lk} are the ones containing
correlations that cannot be attributed to either the noise in the
system or data randomization. It is worth noticing that instead of
using the eigenvectors from the spectral decomposition, which
can be difficult to separate into independent clusters (52) (see
Supplementary Figure S2), we used the number of k deviating
eigenvalues as the number of independent clusters for a different
clustering method.
2.4 Clustering Analysis
We implemented a clustering analysis based on the k-medoids
algorithm. In a similar fashion to k-means, k-medoids clustering
attempts to minimize the distance between the elements inside a
cluster but one element is designated as the center of the cluster.
The k-medoids algorithm works not exclusively with Euclidean
distances, but with general pairwise interactions, this means we
can use the correlation values we have estimated for each intra-
chromosome matrix. Since correlation values are signed and
their magnitude goes from –1 to 1, we define the pairwise
interactions between genes i and j as:
Frontiers in Oncology | www.frontiersin.org 4
Di,j ≡ 1 − Ci,j

�
�

�
�, (2)

with 0 ≤ D ≤ 1, high correlation or anti-correlation values mean
close distance between points, while small correlation values will
give higher distances. Finally, for the parameter k in the
clustering algorithm, we considered the number of deviating
eigenvalues as obtained from the spectral decomposition.

Given the stochastic nature of the k-medoids algorithm, we
did nr = 100 realizations for each clustering computation to
ensure statistical significance (p < 0.01), choosing the output
configuration as the one with the minimum mean distance
between the centroids and the elements in each cluster.

In order to compare the clustering results between the control
phenotype and any other cancer subtype in a given chromosome,
we constructed the intra-cluster Nearest Neighbor Distance
(NND) distribution for each subtype. The NND of a given
gene i in a cluster k is defined as:

Di
nn ≡ min ( j − ij j) ∀ j ∈ Ck, (3)

where Ck refers to the cluster k. To quantify the difference
between the clustering in adjacent normal and cancer subtypes
we compute Shannon’s entropy H(x) = −Sx∈cp(x) log (p(x)) for
the NND distributions, which in this case can be interpreted as
how localized or how spread are the genes within each cluster in
the chromosome. We also computed the Kolmogorov-Smirnov
distance between the adjacent normal case and each of the
Cancer subtypes. Given two cumulative distribution functions
(CDF) the Kolmogorov-Smirnov distance is defined as:

DKS(Fn, Fm) = sup
x

Fn(x) − Fm(x)j j, (4)

where the functions Fn and Fm are the CDFs for two samples n
and m.
3 RESULTS

A correlation matrix of the sort just described, can be visualized
as a heatmap as shown in Figure 1 where correlation matrices for
adjacent normal and basal subtype samples in the chromosome 1
are displayed. The axis represent the genes ordered by their
physical location in the chromosome. The clearest difference
between both matrices seems to be the lowest value of absolute
correlation for genes that are physically distant in the basal
subtype case. The heatmaps for each chromosome in the five
phenotypes can be observed in Supplementary Materials S2–S6.

The effect of loss in long range co-expression is consistent
with previous works of regulatory networks in breast cancer (10,
12–14, 33, 53). The block-type structure of the basal subtype
matrix suggests the utility of clustering analysis to compare the
structural properties of the correlation matrices. In what follows,
we will present results for these clustering analyses. Through the
manuscript, the presented figures will show different
chromosomes for the five phenotypes. This has been done, in
November 2021 | Volume 11 | Article 726493
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order to illustrate the universal nature of the gene clustering in
breast cancer molecular subtypes, compared with the adjacent
normal tissue.

3.1 Co-Expression Decays in All
Chromosomes in All Subtypes
We observed a common pattern of distance dependency in all
chromosomes in all breast cancer phenotypes. The decay in gene
co-expression corresponds exclusively to positive correlations. In
the case of negative correlations, such effect is not observed.
Conversely, in adjacent normal chromosomes, there is no
dependency of distance neither in negative nor positive
interactions. Interestingly, this effect is observed in all
chromosomes in the four breast cancer molecular subtypes and
not observed in adjacent normal breast tissue-derived
correlations (Figure 2 and Supplementary Materials S7–S11).

In order to evaluate the differences between the empirical data
and the null model, we performed a non-parametric hypothesis
test (Kolmogorov-Smirnov) for the correlation values
distributions (in all tumor subtypes and adjacent normal
Frontiers in Oncology | www.frontiersin.org 5
tissue) versus phenotype-specific null models. Additionally we
implemented their corresponding significance tests (obtained via
bootstrap/permutation analysis). The results of the KS test can be
observed in Figure 3. The results for the rest of chromosomes, as
well as their significance p-values, are presented in
Supplementary Materials S12, S13).

Notice that at short distances, the cancer phenotypes have
larger values than the adjacent normal correlations. However, at
larger distances, KS for adjacent normal network are larger than
those for cancerous phenotypes. The p-values shown in the
upper right part of the figure, represent the average of all set
of distances.

Based on a null model that lacks the linear correlations from
the original data (see Methods), we observed that in adjacent
normal chromosomes, positive and negative correlation values
seem to be independent of the distance between genes, having
significantly higher absolute values when compared with the null
model at any distance. In the case of cancer subtypes, negative
correlations are non-significant, but a few small regions in
specific chromosomes (See Supplementary Figure S3).
FIGURE 1 | Pearson correlation square matrices for chromosome 1 in control samples (up) and basal breast cancer subtype (down). Genes are placed according to
their physical location on the chromosome. Colors represent the correlation value: red corresponds to positive values, meanwhile negative correlations are depicted
in blue. The inserts in the right part of both matrices correspond to the scatterplot of Pearson correlations versus distance. The horizontal red line corresponds to
Pearson correlation = 0.
November 2021 | Volume 11 | Article 726493
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González-Espinoza et al. Gene Co-Expression in Breast Cancer
3.2 Eigenvalue Decomposition Defines the
Number of Clusters in All Phenotypes
We generated an ensemble of (N = 100) random matrices and
compare the eigenvalue distributions from both, original and
random matrices (see Materials and Methods). The left panel of
Figure 4 shows the eigenvalue distribution for the ensemble of
random matrices, where its shape is the well-known Marchenko-
Pastur distribution from random matrix theory (54). Overlapped
eigenvalue distributions for the original matrix of chromosome
Frontiers in Oncology | www.frontiersin.org 6
17 and the ensemble of surrogates are shown in the right panel of
Figure 4. A set of significant eigenvalues was determined by
random matrix permutations (p < 0.01) (see box in Figure 4).
3.3 Gene Clustering Is Distance
Dependent in Breast Cancer
With the method referred in Section 3.2 we obtained the full set
of clusters for each chromosome in all phenotypes. Figure 5
FIGURE 2 | Pearson correlation of gene-gene expression versus distance. Plots for adjacent normal and cancer subtypes of chromosome 8 (green) and their
respective null model (orange). The solid lines represent the median of a moving average in the distribution of correlation values over each window and the shaded
area is the range from its first and third quartiles.
November 2021 | Volume 11 | Article 726493
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shows Chromosome 19 clusters with genes sorted by gene start
base pair position. In the adjacent normal chr19 figure (upper
part) we cannot discern a pattern in cluster colors. The
distribution of clusters does not seem to depend on the
distance between genes. Meanwhile, in basal breast cancer, we
can observe cluster panels of colors, clearly detached. In the same
figure, in the right panels, we plot the cumulative distribution of
genes for each cluster. The larger the slope, the more often
contiguous genes belong to the same cluster. All clusters for the
five phenotypes in all chromosomes can be found in
Supplementary Material S14. Cumulative distribution for all
clusters can be found in Supplementary Material S15.

Cumulative distributions for the Nearest Neighbor Distance
(NND) of two different chromosomes are shown in Figure 6,
which can be interpreted as the probability distribution of the
minimum distance between two genes in the same cluster. The
Frontiers in Oncology | www.frontiersin.org 7
behavior seen in the previous Figure 5 holds: genes from the
same cluster are more likely to be close to each other.

Results for the entropies for the NND distributions are shown
on the left panel of Figure 7, where a clear trend with the valueH
(x) can be identified: Luminal A, Luminal B, HER2+, Basal. It is
worth noticing that the aforementioned order coincides with
survival rates and metastatic behavior (14, 55, 56). The subtypes
with the lowest survival rates and more metastatic behavior also
present lower entropy values.

The latter is in agreement with a previously observed trend for
the top 0.1% gene co-expression interactions for the four
phenotypes: The most aggressive phenotype (basal) has the
lowest number of inter-chromosome interactions, meanwhile
the Luminal A subtype, which is considered the one with the best
prognosis, contains a much larger fraction of interactions
between genes from different chromosomes (14).
FIGURE 4 | Probability distributions of eigenvalues for a) the ensemble of random matrices, b) random and empirical data for the chromosome 17 in the Basal sub-type.
FIGURE 3 | KS hypothesis test between empirical data from chromosome 8 and null model for the five phenotypes. This plot represents the KS statistic versus
distance for all phenotypes in chromosome 8. The p– value for the control phenotype is smaller than 10–5.
November 2021 | Volume 11 | Article 726493
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The decay in the entropy for the NND distribution presents
further evidence that in the cancer subtypes, genes co-express in
tighter patterns, in contrast with genes in the control phenotype
that co-express at broadly scattered distances over the
chromosome. A similar trend holds for the KS distance
between the control phenotype and each subtype in the right
panel of Figure 7, where higher values indicate a larger difference
in the spatial organization of the clusters. The difference in
spatial organization within the clusters in the chromosome is
evident with both measures and it is correlated with the survival
rate and metastasis of the subtype (14).
Frontiers in Oncology | www.frontiersin.org 8
4 DISCUSSION

Cancer research increasingly requires comprehensive
computational analysis tools. In the search for relevant
biological information, it is essential to be able to find selective
patterns of individual or collective gene expression. In this sense,
clustering methods are becoming a pivotal computational tool.

In this work, we studied the co-expression of genes in breast
cancer molecular subtypes. We implemented a method to find
the optimal clustering between genes that are co-expressed. We
observed a grouping pattern in the case of cancer phenotypes
FIGURE 6 | Cumulative NND distributions for each subtype in Chromosomes 14 and 19. Distributions of Cancer subtypes have different behavior in short and long
distances compared with the adjacent normal tissue.
FIGURE 5 | Cluster assembly of Chromosome 19 for adjacent normal-tissue and Basal breast cancer matrices. Upper part: Heatmap for all clusters in the adjacent
normal matrix. Lower part: analog heatmap for Basal breast cancer network. The right panels correspond to the cumulative distribution for each cluster in
chromosome 19. Colors represent the top-10 largest clusters.
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with respect to the adjacent normal group. These patterns in the
genome indicate that in cancer, physically close genes are co-
expressed (cis- interactions), while for distant genes (trans-
interactions) the clustered co-expression is, to a large extent, lost.

The piece-wise Kolmogorov-Smirnov tests for all tumor
subtypes and adjacent normal tissue versus phenotype-specific
null models and their corresponding significance tests (obtained
via bootstrap/Permutation analysis) (included in the
Supplementary Materials S12, S13), show that correlation
values at short distances are much more significant for all
chromosomes in any cancer phenotype than the adjacent
normal network.

It is worth noticing that the significance of the KS tests also
decays with the distance for all chromosomes in any cancer
phenotype. Conversely, for the adjacent normal network,
distance does not exert a considerable influence in the
significance of the KS test. Finally, the KS test also show that
the significance of differences between the correlation of our
empirical data with the null model is unique for each
chromosome and for each phenotype.

The fact that genes are highly co-expressed in groups with
close positions, may be due to a favored number of nearby
transcription sites or to the strong presence of transcription
factors. It has been observed for instance, that in Luminal A
breast cancer gene co-expression networks, co-factors, CTCF
binding sites (57, 58) or copy number alterations (59, 60), may
remodel chromatin making it more or less accessible, thus
allowing gene transcription of local neighborhoods, resulting in
the concomitant high co-expression between those neighboring
genes (53). On the other hand, TFs influence more often inter-
chromosome edges, meanwhile intra-chromosome interactions
are less affected by them (53).

Physical interactions such as CTCF binding sites have
captured attention in recent years (61, 62), and more
importantly, in breast cancer (63).
Frontiers in Oncology | www.frontiersin.org 9
For instance, in (53), we constructed an intra-chromosome
gene-co-expression network for Luminal A breast cancer
samples. There, a community detection method was performed
to determine whether CTCF binding sites appeared in the
borders of those communities. We observed that there is no
link between CTCF binding sites and the border of intra-
chromosome communities. In that sense, we argued that, at
least for Luminal A breast cancer gene co-expression networks,
CTCF binding sites are not determinant for network structure.

Transcription factor (TF) regulation is, of course, one of the
central mechanisms for gene regulation. With respect to the role
that TFs may exert on gene clustering, we have previously shown
that TFs influence genes in a trans- fashion, i.e. TFs from a given
chromosome regulate genes from different chromosomes. We
have shown that in terms of Master Regulators in breast cancer
(64, 65), but also in Luminal A breast cancer networks (53).
Conversely, for intra-chromosome genes, TFs influence is much
less evident.

Finally, Copy Number Variations (CNVs) have been
considered as a crucial factor in the rise and development of
breast cancer (59). In fact, a correlation between CNVs, protein
levels and mRNA gene expression has also been reported
previously (66). Hence, high correlations between clusters of
physically closed genes appear to be related to copy
number alterations.

We have used TCGA-derived CNV data and compared the
amplification/deletion peaks with LumA network communities.
Interestingly, the community with more overexpressed genes,
composed of genes such as FOXM1, HJURP, or CENPA,
presented large regions of deletions. The apparently
contradictory result suggested that the copy number alterations
do not influence the structure of that community. On the other
hand, a gene community formed by HLA family genes, presented
a common pattern of amplification, but those genes were not
differentially expressed (53).
A B

FIGURE 7 | (A) Entropy for the NND distribution in all chromosomes. (B) Kolmogorov-Smirnov distance between the CDF of the NND in the adjacent normal
phenotype and each of the Cancer subtypes for each chromosome.
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With the aforementioned in mind, we argue that CNVs are
not as relevant as one could expect in terms of the gene clustering
shown here. Moreover, CNVs influence may be at the expression
level, but said effect is more limited regarding co-expression.
However, further investigation is necessary to clarify these ideas.

The structure of clustered genes in physically close
neighborhoods resembles the images obtained by Hi-C
methods (67–69).

In recent times, there has been an increased interest as to how
chromosome conformation capture experiments such as Hi-C
may lead to relevant clues towards our understanding of further
effects in connection with transcriptional regulation. Indeed, we
are currently conducting research along these lines in our group.
Work is ongoing, however, we can advance that there seems to be
important correlations between loss/gain of statistically
significant chromosomal contacts and co-expression
relationships between genes in the associated genomic regions.
It remains to be determined however whether said correlations
are significant via proper assessment of null models and, more
importantly, to determine what may be the biological
consequences of these associations.

Preliminary findings from our Hi-C analysis in breast cancer
indicate that more relevant contacts are mostly (but not
exclusively) on close genomic regions. This is not unlike what
we have observed with MI-based gene co-expression networks in
which there is a preponderance of co-expression interactions in
shorter distances for tumors. Future work undoubtedly will focus
on the comparison between the network clusters constructed by
this method and those from Hi-C. In particular, the zones/genes
between gene groups. The assessment and comparison of both
structures will provide us more information regarding the
structural alterations during the carcinogenic process.

In brief, after revising the evidence about other mechanisms
of gene regulation, we may hypothesize that the ultimate cause of
the distance-dependent gene clustering is not a single
mechanism, but instead, it could be a non-linear combination
of different phenomena. In particular, regarding gene clustering,
we have evaluated for the first time the whole set of gene
interactions, and the loss of long-distance co-expression
remains, which is more evident in the most aggressive subtypes.

Homogeneity/redundancy promotes higher entropy. Systems
with redundancy are less likely to fail to catastrophic events. In
other words, it seems there are mechanisms that give robustness to
gene regulation in a control phenotype. It is still uncertain whether
the loss of long range (or gain in short range) gene co-expression is
a consequence of cancer, forcing the system to work in a less
entropic configuration, but it seems that this preference for a less
entropic configuration is common in all cancer subtypes and is
consistently progressive with subtype aggressiveness.

As a summary of findings, we may establish the following:

• We used tools previously implemented in time series analysis
in the stock market and neuroscience settings (49–51) to
develop a systematic, data-driven method for intra-
chromosomal gene expression clustering. Using spectral
decomposition and a null model, we were able to determine
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the number of co-expressed group of genes to perform k–
medoids algorithm calculations and determine the most
accurate clustering configuration. This method allowed us
to have significant results, avoiding to set an a priori threshold
for co-expression values.

• In the adjacent normal phenotype matrices, negative and
positive correlations are significant throughout the entire
chromosome. On the other hand, in breast cancer, negative
correlations are observed in the same rank than those from a
null model (see Figure 2); furthermore, the positive ones are
only out of the null model cloud over short distances.

• In cancer, clustering mostly occurs between nearby genes,
unlike what happens in the adjacent normal phenotype
matrices. This is a representation of high co-expression over
short distances. This fact coincides and corroborate previous
results on mutual information-based co-expression networks
in these and other types of cancer (10, 12–14).

• The intra-cluster Nearest Neighbor Distance (NND) clearly
decays from the adjacent normal network to those cancerous
ones. Additionally, the NND for breast cancer networks also
decays according to the aggressiveness of the subtype:
Luminal A, Luminal B, HER2+ and Basal.

• Analogously to the last point, Kolmogorov-Smirnov (KS)
distance between the Cumulative Distribution Function of
the NND in the adjacent normal and each breast cancer
subtype network, increases with the aggressiveness of the
subtype, thus indicating that the larger value of the KS
distance, the larger difference between adjacent normal and
breast cancer phenotypes’ networks.

Clustered genes may be subject to further analyses to reveal,
for instance, statistical enrichment of functional categories
revealing certain biological functions, additional patterns of
coordinated activity, etc. This in turn may lead to the
generation of hypotheses to be tested via more narrowly
targeted assays and interventions.

A closer look at matrices’ patterns generated by other type of
sorting methods may shed some light on possible mechanisms
behind the regulatory changes in co-expression and perhaps even
in the establishment of the tumor phenotypes. This is, indeed,
still ongoing work.

Further steps towards the understanding of co-expression
patterns and the differences in clustering among adjacent normal
and cancerous phenotypes may be also based on the usage of
multi-layer approaches (11, 70).

There are remaining questions prompted by this study.
For example, while it is evident that there is a decay in the
strength of correlations depending on the distance in all
chromosomes, it is not fully clear what is the origin of the
differences in the slope of the aforementioned decays. Also, the
negative correlations in adjacent normal network are significant,
independently of the position in the chromosome. Is the anti-
correlation between genes a possible mechanism of negative
feedback? Is that mechanism disrupted in breast cancer?
Another important question regarding the clustering in cancer
network is the size of the clusters. Is there an “optimal” cluster
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size for cancer networks? If so, what is the rationale behind
such number?

Finally, the fact that other types of cancer, which have been
analyzed in terms of gene co-expression interactions, such as
clear cell renal carcinoma (13), lung adenocarcinoma, or lung
squamous cell carcinoma (12) have been reported to have the
same bias in short-distance interactions, a remaining question is
whether the clustering behavior observed in breast cancer
subtype networks is a conserved phenomenon along other
cancer types.

The above mentioned questions, together with the acquired
knowledge on cancer networks, will be eventually answered and
that will bring us with complementary information to have a
broader point of view on gene regulation in cancer.
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39. Vinayak, Prosen T, Buča B, Seligman TH. Spectral Analysis of Finite-Time
Correlation Matrices Near Equilibrium Phase Transitions. Epl (2014)
10820006. doi: 10.1209/0295-5075/108/20006

40. Vinayak V, Seligman TH. Time Series, Correlation Matrices and Random
Matrix Models. AIP Conf Proc (2014) 1575:196–217. doi: 10.1063/1.4861704

41. Gopikrishnan P, Rosenow B, Plerou V, Stanley HE. Quantifying and
Interpreting Collective Behavior in Financial Markets. Phys Rev E - Stat
Physics Plasmas Fluids Related Interdiscip Topics (2001) 64:4. doi: 10.1103/
PhysRevE.64.035106

42. Luo F, Zhong J, Yang Y, Zhou J. Application of Random Matrix Theory to
Microarray Data for Discovering Functional Gene Modules. Phys Rev E - Stat
Nonlinear Soft Matter Phys (2006) 73:1–5. doi: 10.1103/PhysRevE.73.031924
November 2021 | Volume 11 | Article 726493

https://doi.org/10.3322/caac.21590
https://doi.org/10.4137/BIC.S9455
https://doi.org/10.1056/NEJMoa063994
https://doi.org/10.3389/fphys.2016.00568
https://doi.org/10.1038/35021093
https://doi.org/10.1073/pnas.191367098
https://doi.org/10.1038/onc.2011.301
https://doi.org/10.1016/j.cels.2019.06.006
https://doi.org/10.1016/j.cell.2018.03.022
https://doi.org/10.1038/s41598-017-01314-1
https://doi.org/10.1007/s41109-020-00291-1
https://doi.org/10.1007/s41109-020-00291-1
https://doi.org/10.3389/fgene.2021.625741
https://doi.org/10.3389/fgene.2020.578679
https://doi.org/10.3389/fonc.2020.01232
https://doi.org/10.1038/ncomms4231
https://doi.org/10.1371/journal.pone.0087075
https://doi.org/10.1109/TCBB.2015.2476790
https://doi.org/10.3389/fonc.2018.00374
https://doi.org/10.3389/fgene.2020.00311
https://doi.org/10.1038/s41598-020-67476-7
https://doi.org/10.1186/1752-0509-4-132
https://doi.org/10.3389/fphys.2016.00184
https://doi.org/10.3389/fphys.2017.00915
https://doi.org/10.1155/2018/9585383
https://doi.org/10.3389/fimmu.2019.00056
https://doi.org/10.3389/fimmu.2019.00056
https://doi.org/10.1038/s41598-019-50885-8
https://doi.org/10.3389/fphys.2018.01423
https://doi.org/10.1073/pnas.0808904106
https://doi.org/10.1186/1471-2105-10-s11-s4
https://doi.org/10.1016/b978-0-12-809633-8.20290-2
https://doi.org/10.3389/fgene.2020.595912
https://doi.org/10.1007/s41109-019-0129-0
https://doi.org/10.1038/s41598-021-95313-y
https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1093/bioinformatics/btw704
https://doi.org/10.1093/bioinformatics/btw704
https://doi.org/10.18129/B9.bioc.pbcmc
https://doi.org/10.1093/biostatistics/kxr042
https://doi.org/10.1093/biostatistics/kxr042
https://github.com/josemaz/gene-matrices/blob/master/Notebooks/CorrelationVsDistance.ipynb
https://github.com/josemaz/gene-matrices/blob/master/Notebooks/CorrelationVsDistance.ipynb
https://doi.org/10.1209/0295-5075/108/20006
https://doi.org/10.1063/1.4861704
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.64.035106
https://doi.org/10.1103/PhysRevE.73.031924
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
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Consequences of Amplicon Formation in Human Breast Cancer. Genome Res
(2014) 24:1559–71. doi: 10.1101/gr.164871.113

60. Myhre S, Lingjærde OC, Hennessy BT, Aure MR, Carey MS, Alsner J, et al.
Influence of DNA Copy Number and mRNA Levels on the Expression of
Frontiers in Oncology | www.frontiersin.org 13
Breast Cancer Related Proteins. Mol Oncol (2013) 7:704–18. doi: 10.1016/
j.molonc.2013.02.018

61. Achinger-Kawecka J, Clark SJ. Disruption of the 3D Cancer Genome
Blueprint. Epigenomics (2017) 9:47–55. doi: 10.2217/epi-2016-0111

62. Pugacheva EM, Kubo N, Loukinov D, Tajmul M, Kang S, Kovalchuk AL, et al.
Ctcf Mediates Chromatin Looping via N-Terminal Domain-Dependent
Cohesin Retention. Proc Natl Acad Sci (2020) 117:2030–31. doi: 10.1073/
pnas.1911708117

63. Fiorito E, Sharma Y, Gilfillan S, Wang S, Singh SK, Satheesh SV, et al. Ctcf
Modulates Estrogen Receptor Function Through Specific Chromatin and
Nuclear Matrix Interactions. Nucleic Acids Res (2016) 44:10588–602. doi:
10.1093/nar/gkw785
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