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Objectives: Phosphatase and tensin homolog (PTEN) mutation is an indicator of poor
prognosis of low-grade and high-grade glioma. This study built a reliable model frommulti-
parametric magnetic resonance imaging (MRI) for predicting the PTEN mutation status in
patients with glioma.

Methods: In this study, a total of 244 patients with glioma were retrospectively collected
from our center (n = 77) and The Cancer Imaging Archive (n = 167). All patients were
randomly divided into a training set (n = 170) and a validation set (n = 74). Three models
were built from preoperative MRI for predicting PTEN status, including a radiomics model,
a convolutional neural network (CNN) model, and an integrated model based on both
radiomics and CNN features. The performance of each model was evaluated by accuracy
and the area under the receiver operating characteristic curve (AUC).

Results: The CNN model achieved an AUC of 0.84 and an accuracy of 0.81, which
performed better than did the radiomics model, with an AUC of 0.83 and an accuracy of
0.66. Combining radiomics with CNN will further benefit the predictive performance
(accuracy = 0.86, AUC = 0.91).

Conclusions: The combination of both the CNN and radiomics features achieved
significantly higher performance in predicting the mutation status of PTEN in patients
with glioma than did the radiomics or the CNN model alone.
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1 INTRODUCTION

Diffuse glioma is the most common primary brain tumor that
mainly includes the World Health Organization (WHO) grades
II, III (lower-grade glioma, LGG), and IV (glioblastoma, GBM).
The WHO classification of central nervous system (CNS) tumors
was updated in 2016 on the basis of the integrated diagnosis of
molecular genetics (1). Phosphatase and tensin homolog (PTEN)
is a common tumor suppressor gene that regulates the
proliferation, survival, and other cellular processes by opposing
the activation of phosphoinositide 3-kinase (PI3K)/protein
kinase B (AKT/PKB) (2). The mutation status of PTEN is
associated with poor prognosis (3, 4) and resistance to some
treatments (5, 6) of multiple tumors, including glioma.
Currently, the detection of PTEN status relies on genetic
profiling approaches, requiring tumor tissue via surgical
resection. Preoperative prediction of PTEN status has doubtful
clinical benefits.

Previous studies have shown possible correlations between
MRI and PTEN in GBM. GBM with PTEN mutations often
occurs in the right frontal lobe (7). Cerebral blood volume and
apparent diffusion coefficient (ADC) were also associated with
PTEN status (8, 9). Although several studies have associated
radiographic factors with the PTEN mutation status, the
predictive precision is far from satisfactory. Recent advances in
medical image analysis have allowed us to extract high-
dimensional quantitative features from imaging. On the other
hand, machine learning techniques permit predicting clinical
outcomes using quantitative imaging features. Currently, there
are two popular imaging-based machine learning approaches:
radiomics and convolutional neural network (CNN). High-
throughput radiomics features in MRI have shown their power
in predicting PTEN mutations (10). Recent studies have also
investigated the potential of radiomics features in predicting
other molecular markers for glioma, such as isocitrate
dehydrogenase (IDH) mutation (11), O6-methylguanine-DNA-
methyltransferase (MGMT) methylation status (12), and
molecular subgroups (13, 14). However, radiomics depends on
a handcrafted feature extraction pipeline. The handcrafted
nature of radiomics features may be limited by our current
understanding of medical images, which limits the potential of
radiomics-based prediction methods.

Recently, many studies have shown the power of CNN in
medical imaging (15, 16). CNN improved the handcrafted
radiomics pipeline by automatically learning discriminative
features directly from medical images. Recent studies have
shown that deep CNNs can achieve better performance in
tumor detection and diagnosis compared with other machine
learning approaches and even human experts (17–19). CNN
built from preoperative MRI or pathological images have been
shown to be predictive of the IDH mutation status in glioma (20,
21). To our knowledge, little work has been done on associating
CNN with the PTEN mutation status in glioma. Moreover, the
region of interest (ROI) in most previous studies was manually
delineated by specialists, which is costly and time-consuming. In
recent years, deep learning-based models have become more
reliable and accurate in the automatic segmentation of glioma
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from MRI (22–25). However, the performance of the automatic
segmentation method has not been investigated and assessed in
MRI-based prediction the PTEN mutation status in patients
with glioma.

In this retrospective study, we investigated the benefits of
combining both deep CNN and radiomics features extracted
fromMRI. The aim was to build a deep learning-based radiomics
model for pretreatment prediction of the PTEN mutation status
in glioma without any manual segmentation.
2 MATERIALS AND METHODS

2.1 Patient Enrollment
In this retrospective study, 244 patients with glioma were
recruited from The Cancer Imaging Archive (TCIA) and our
center (Sun Yat-Sen University Cancer Center) between 2011
and 2016. TCIA is a publicly available database that removes,
identifies, and hosts a large archive of medical images of cancer
(www.cancerimagingarchive.net). Institutional Review Board
approval for TCIA data was not required. Institutional Review
Board approval from our center was obtained and informed
patient consent was waived. All patients were randomly divided
into two datasets. The training set of 170 patients comprised 114
from TCIA and 56 from our center. Another dataset of 74
patients comprising 53 from TCIA and 21 from our center was
used for validation. The inclusion criteria were as follows: 1)
patients with newly diagnosed histologically confirmed WHO
grade I–IV glioma; 2) pretreatment MRI including T1-weighted,
gadolinium contrast-enhanced T1-weighted, T2-weighted, and
T2-weighted fluid-attenuated inversion recovery (T1w, T1c,
T2w, and FLAIR, respectively); and 3) available PTEN
mutation status. The PTEN mutation data of the TCIA
patients were obtained from The Cancer Genome Atlas
(TCGA), which includes genomics data corresponding to
TCIA patients. The characteristics of the patients in the
training and validation datasets are summarized in Table 1.
The study design is shown in Figure 1.

2.2 MR Imaging
All local MR images were acquired with 3.0-T MR imaging
systems [uMR 780 (United Imaging), or Achieva (Philips), or
Espree (Siemens Healthcare), or Discovery MR 750 (GE)]. T1w
images were acquired at repetition time of 160–2,836.25 ms, echo
time of 8–43 ms, and section thickness of 4.0–6.0 mm. T1c
images were acquired at repetition time of 110–1,900 ms, echo
time of 1.8–22 ms, and section thickness of 0.85–6.0 mm. T2w
images were obtained with repetition time of 1,991.31–
12,528.89 ms, echo time of 76.2–139.55 ms, and section
thickness of 4.0–8.0 mm. FLAIR images were obtained with a
repetition time of 2,000–9,600 ms, echo time of 20–141.3 ms, and
section thickness of 4.0–6.0 mm.

2.3 PTEN Mutation Status Test
The PTENmutation status of TCGA patients and the patients from
our center was detected using whole-exome sequencing (WES).
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The tumor specimen that represents the characteristic was
selected by experienced neurosurgeons for detection. Genomic
DNA was extracted from fresh frozen tumor specimens and
blood samples with a DNeasy Blood and Tissue Kit (Qiagen,
Hilden, Germany). WES libraries were prepared using Agilent’s
SureSelect Human All Exon V5 Kit (Agilent Technologies, Santa
Clara, CA, USA) and sequenced on the Illumina HiSeq2000
Genome Analyzer platform (Illumina, San Diego, CA, USA).
Sequencing reads were aligned to a human reference genome
(UCSC hg19) using the Burrows–Wheeler Aligner (BWA) (26).
Subsequent processing was performed using PICARD
Frontiers in Oncology | www.frontiersin.org 3
(http://picard.sourceforge.net), the Genome Analysis Toolkit
(GATK), and VarScan 2 (27).

2.4 Image Pre-Processing and Tumor
Subregion Segmentation
A pre-processing pipeline was applied on T1w, T1c, T2w, and
FLAIR images for segmentation and image standardization.
Firstly, skull stripping, N4ITK-based bias field correction,
histogram matching-based intensity normalization, isotropic
voxel resampling, rigid registration, and resizing to
240 × 240 × 155 pixels were performed using the BraTS Toolkit
FIGURE 1 | The design of our study.
TABLE 1 | Patient and tumor characteristics of the study population.

Characteristic TCIA Local p-value

No. of patients 167 (68.4%) 77 (31.6%)
Age (years), mean (range) 51.7 (20–85) 40.8 (7–78) <0.001
Sex 0.204
Female 84 (50.3%) 32 (41.6%)
Male 83 (49.7%) 45 (58.4%)

PTEN 0.072
Mutated 20 (12.0%) 16 (20.8%)
Wild type 147 (88.0%) 61 (79.2%)

WHO grade <0.001
I 0 (0%) 10 (13.0%)
II 64 (38.3%) 12 (15.6%)
III 38 (22.8%) 10 (13.0%)
IV 65 (38.9%) 45 (58.4%)
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(23, 28, 29). The model from Zhao et al. (22) was implemented
and the tumors were segmented into two subregions: solid tumor
core (TC, comprising a contrast-enhancing area, a non- enhancing
area, and necrotic portions, if any) and the whole tumor (WT,
combining the tumor core and edema).

2.5 Radiomics Feature Extraction
Based on the segmented subregions, we extracted three groups of
features according to recommendations of the Imaging Biomarker
Standardization Initiative (IBSI) (30): 1) geometry features, 2)
intensity features, and 3) texture features. The features were
extracted within two extraction subregions from both the
original image and a wavelet transformed image for each of the
four MRI sequences. The wavelet filter decomposed the original
image into eight decompositions. An example of the segmentation
result is shown in Figure 2. For each subregion, 14 geometry
features were extracted to describe the three-dimensional (3D)
characteristics of the tumor shape. From the four MR modalities,
and eight wavelet decompositions, 576 intensity features were
extracted. These intensity features described the first-order
distribution of the multi-regional intensities. The texture features
were extracted using four methods, namely, the gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size zone matrix (GLSZM), and the
neighborhood gray tone difference matrix (NGTDM). Two
thousand four hundred texture features were computed from
four MRI sequences, and eight decompositions, describing the
patterns or the high-order distributions of the intensities. Finally,
for each patient and subregion 2,900 quantitative features were
extracted. All the calculations were conducted using a python
package: PyRadiomics, version 3.0.1 (31).

2.6 VASARI Feature Extraction
Visually Accessible Rembrandt Images (VASARI) features were a
controlled vocabulary of well-defined radiographic features
(https://wiki.nci.nih.gov/display/CIP/VASARI), which aims to
describe the morphology of glioblastoma on MR images. For
comparison, we also extracted 26 VASARI features for the
prediction of the PTEN mutation status. These features were
Frontiers in Oncology | www.frontiersin.org 4
measured by one neuroradiologist (H-YC) with 1 year’s
experience in neuroimaging and neurosurgical oncology and
confirmed by a neurosurgeon (F-HL) with 10 years’ experience
in neurosurgical oncology. The reviews and measurements were
conducted using an open-source software, ITK-SNAP, version
3.8.0 (32).

2.7 Prediction Model Construction
2.7.1 ResNet Model
CNN can automatically learn discriminative features from images
using multiple convolutional layers. The residual deep neural
network (ResNet) is a popular CNN architecture that is widely
used in object detection and image classification tasks. Here, a 3D
ResNet consisting of 18 layers was chosen as the network backbone.
The WT images from four MRI sequences were resized, trimmed,
and padded with zero into a shape of (4, 32, 224, 224) (modality,
depth, height, width). To handle the data imbalance problem, each
image from the PTEN mutated patients in the training set was
randomly rotated within −15° to 15° twice. The reshaped images
were used as the ResNet input. The ResNet output was a class
probability vector as the prediction result for each patient. The
network was trained with binary cross-entropy loss function and
root mean square prop optimizer with a regularization weight of
0.001 and a batch size of 16. The learning rate was 0.001. All the
parameters were initialized with Glorot initialization (33). The
details of the ResNet are summarized in Supplementary Table S1.
Similarly, another popular CNN architecture named VGGNet was
also implemented. Here, an 11-layer 3D VGGNet with batch
normalization was trained. For a fair comparison, all the training
hyperparameters were the same as those of the ResNet model.

2.7.2 Radiomics Model
For comparison, we also built a prediction model using only the
radiomics features. Firstly, using high-dimensional radiomics
features, feature selection was performed. The maximal
information coefficient of each feature was then calculated and
the top 30% was selected. The selected features were used to build
a four-layer fully connected neural network, where a sigmoid end
was used to generate the output probability. The rectified linear
FIGURE 2 | Example of the segmentation results for patients from our center. The four image modalities were T1, gadolinium contrast-enhanced T1 (T1c), T2, and
fluid-attenuated inversion recovery (FLAIR), from left to right. Yellow represents the contrast-enhancing area. Red and yellow represent the tumor core (TC). The
whole tumor (WT) contains all three labels.
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unit (ReLU) was used as the activation function of all hidden
layers. The dropout technique, which is an effective technique for
the regularization and prevention of the co-adaptation of neurons,
was used in the first two layers after linear transformation. The
dropout probabilities were 20% and 50%. The network was trained
with binary cross-entropy loss function and root mean square
prop optimizer with a learning rate of 0.001, a regularization
weight of 0.05, and a batch size of 32. Details of the radiomics
model are shown in Supplementary Table S2. All the calculations
were conducted with the python package scikit-learn, version
0.23.2 (34).

2.7.3 Integrated Model Based on Both ResNet and
Radiomics Features
An integrated prediction model was built by combining the
ResNet features and the radiomics features. The integrated
model employed a four-layer fully connected network for
mutation prediction. The ReLU was used as the activation
function of hidden layers. The sigmoid end was used to yield
the final prediction. The concatenation of the ResNet features
extracted from the average pooling layer and the features
extracted from the third layer of the radiomics model was fed
into the integrated network. The network was trained with
binary cross-entropy loss function and root mean square prop
optimizer with a learning rate of 0.1, a regularization weight of
0.005, and a batch size of 16. The overall architecture of the final
network is shown in Figure 3 and Supplementary Table S3. The
networks were implemented on PyTorch, version 1.7.0+cu110
(https://pytorch.org).

2.7.4 VASARI Model
For further comparison, a VASARI model was built. For a fair
comparison, the 26 VASARI features were fed into a four-layer
fully connected neural network, the same as the radiomics model.

2.8 Statistical Analysis
All prediction models were trained on the training set and
evaluated on the validation set. The predictive performance
was assessed by accuracy (ACC), the area under the receiver
operating characteristic curve (AUC), positive predictive value
(PPV), and negative predictive value (NPV). The AUCs between
models were statistically compared using the DeLong test (35).
Furthermore, bootstrap resampling was performed to assess the
average performance of all prediction models in terms of the
AUC. Here, 100 bootstrapping repetitions were used with the
training set of 170 patients and the validation subset of 74
patients. In each iteration, the model training and validation
processes were repeated on the resampled training and validation
sets, respectively. All statistical analyses were performed with R
software, version 3.6.3 (https://www.r-project.org/).
3 RESULTS

The characteristics of the patients are summarized in Table 1.
The performances of the ResNet, radiomics, and integrated
models in predicting the PTEN mutation status in the training
Frontiers in Oncology | www.frontiersin.org 5
and validation sets are summarized in Table 2. The receiver
operating characteristic (ROC) curves in the training and
validation sets are shown in Figure 4. Among all models, the
integrated model showed the best performance, with the highest
ACC of 86.5%, the highest AUC of 0.906, and the highest PPV of
87.7% in the validation set. The AUC of the integrated model was
significantly higher than that of both the ResNet and radiomics
models (DeLong p = 0.024 and 0.048, respectively, one-tailed).
The ResNet model achieved an ACC of 81.1% and an AUC of
0.836, which were higher than those of the radiomics model,
which had an ACC of 66.2% and an AUC of 0.829. The difference
between the AUCs of the ResNet model and the radiomics model
was not significant (DeLong p = 0.46, one-tailed).

For comparison, the VGGNet model achieved an AUC of
0.591 in the validation set, which was numerically lower than
that of the ResNet model. A significant difference between the
AUCs of the VGGNet and ResNet models was found (DeLong
p = 0.033). The VASARI model achieved an AUC of 0.755 in the
validation set, which was much lower than that of either the
CNN or the radiomics model.

The bootstrap-corrected AUCs in the validation set were
0.801 for the ResNet model, 0.824 for the radiomics model,
0.893 for the integrated model, 0.573 for the VGGNet model, and
0.728 for the VASARI model. The bootstrap-corrected results
demonstrated the stability of our models for different
data splitting.
4 DISCUSSION

Medical images have the characteristic of having a huge amount
of data with similar and standardized patterns. This
characteristic indicates the potential of applying quantization
and machine learning in medical images. Quantization of
medical images can assist in clinical decision-making. With the
rise of the concept of radiomics (36), high-throughput
quantization of medical images is becoming possible. An
effective radiomics analysis relies on the extraction and
selection of prior known features. On the one hand, the
extraction of high-throughput features might lead to problems
of dimensionality and overfitting. On the other hand, radical
feature selection might cause underfitting. CNN can
automatically extract predictive features and transform them
layer by layer. Recently, CNN-based models have achieved
diagnostic accuracy and become clinically applicable in
dermatology (17), ophthalmology (18), and gastroenterology
(19), which have not been attained by radiomics approaches.

Although deep learning has outperformed radiomics, a huge
number of data are needed for training and preventing
overfitting. However, glioma is a relatively low-prevalence
tumor, which accounts for only 2% of all primary tumors (37),
and PTEN mutated patients are less than one-fourth of glioma
patients (38). Even data enhancement may balance the data
distribution, to some extent; the limited size of data restricts a
variety of deep learning features, while prior known radiomics
features can enhance the performance of a CNN-based model.
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Glioma is the most common primary brain tumor. The
prognosis and treatment of glioma are highly correlated with
biomarkers (1). Previous studies have shown the promising
ability of machine learning in predicting biomarkers and the
survival of glioma patients using MRI. Lu et al. (39) showed the
ability to predict the IDH mutation and 1p/19q co-deletion
status, two classic biomarkers of glioma, with radiomics,
achieving AUC values between 0.922 and 0.975. In the study
by Han et al. (40), the effect of combining CNN features with
radiomics using the Cox model was demonstrated. For
Frontiers in Oncology | www.frontiersin.org 6
predicting PTEN status, Ryoo et al. (8) proposed a
radiographic feature, the normalized relative tumor blood
volume (nTBV), where the AUC reached 0.674. Radiomics was
also applied by Li et al. (10), obtaining an AUC value of 0.787.
Although previous studies have shown the power of radiomics in
predicting glioma molecular subtypes, its value in predicting
PTEN status has only been seldom investigated. To the best of
our knowledge, although MRI-based machine learning
approaches have been demonstrated useful in predicting
biomarkers of glioma, only a few studies have evaluated the
FIGURE 3 | Architecture of the integrated model.
October 2021 | Volume 11 | Article 734433
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value of CNNs in biomarker prediction, especially on the
mutation status of PTEN. Meanwhile, no study has evaluated
the combined effects of radiomics features and CNN with a deep
learning-based model.

In this study, we built an integrated model from multi-
parametric MRI and multi-regional radiomics features to
predict the mutation status of PTEN in patients with glioma.
The integrated model outperformed the CNN and radiomics
models. Furthermore, unlike most previous studies, we did not
merely include glioblastoma patients but also patients with other
classifications of gliomas since the pathological diagnosis is
unknown before surgery and our goal was to predict the PTEN
mutation status before surgery. In this retrospective study, we
firstly developed a CNN based on WT images and a fully
connected neural network based on radiomics features for
preoperative PTEN mutation status prediction. Additionally,
we concatenated the CNN features from the full connection
layer of the ResNet with the transformed radiomics features from
the last but two layers of the radiomics model as supplements to
the auto-extracted features.

In our study, although the CNN model showed higher ACC
and AUC values than did the fully connected neural network
Frontiers in Oncology | www.frontiersin.org 7
based on radiomics features on both the training and validation
sets, the difference in the AUC values was not significant
(DeLong p = 0.050 and 0.462, respectively, one-tailed). By
combining the radiomics features with the CNN features, the
performance was further enhanced, and the improvement in the
AUC was significant when compared with that of the CNN and
radiomics models (DeLong p = 0.024 and 0.048, respectively,
one-tailed).

Safe maximal resection is of utmost importance for glioma
patients, while several reasons, such as a close relationship
between the tumor and functional areas or vessels, may limit
the extension of resection. It has been reported that
neoadjuvant chemotherapy might be able to shrink glioma
(41). Therefore, predicting biomarkers before surgery is
necessary and clinically beneficial when the diagnosis,
classification, treatment, and prognosis are all highly
correlated with biomarkers. Especially, PTEN is a classic
biomarker across multiple tumor types, including glioma (3).
Mutations in PTEN will lead to a significantly shorter overall
survival of glioma patients. The PTEN pathway may relate to
radiation sensitivity and anti-angiogenic treatment resistance
or serve as a therapeutic target (5, 6, 42, 43). Thus, researchers
TABLE 2 | Summary of the performance of the CNN, radiomics, and integrated models in predicting the mutation status of PTEN in the training and validation datasets.

Model Index Training Validation

ResNet AUC 1.000 (1.000–1.000) 0.836 (0.707–0.965)
ACC (%) 99.4 81.1
PPV (%) 100 (97.5–100) 83.1 (71.7–91.2)
NPV (%) 96.3 (81.0–99.9) 66.7 (29.9–92.5)

Radiomics model AUC 0.991 (0.980–1.000) 0.829 (0.718–0.940)
ACC (%) 94.1 66.2
PPV (%) 94.4 (89.3–97.6) 63.1 (50.2–74.7)
NPV (%) 92.6 (75.7–99.1) 88.9 (51.8–99.7)

Integrated model AUC 1.000 (1.000–1.000) 0.906 (0.807–1.000)
ACC (%) 99.4 86.5
PPV (%) 100 (97.5–100) 87.7 (77.2–94.5)
NPV (%) 96.3 (81.0–99.9) 77.8 (40.0–97.2)
October 2021 | Volume
Statistical quantifications were demonstrated with 95% confidential interval (CI), when applicable.
CNN, convolutional neural network; ACC, accuracy; AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; and NPV, negative predictive value.
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FIGURE 4 | Receiver operating characteristic (ROC) curve of the three models in the training (A) and test (B) sets.
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have briefly tried predicting mutations in PTEN noninvasively.
During the pre-radiomics era, researchers mainly focused on
some quantifiable factors and contrast agents (8, 44). With the
rise of the concept of radiomics, high-throughput features have
shown their ability to predict PTEN status (10). However, an
AUC of 0.787 is far from satisfactory and limits further studies
based on the preoperative PTEN status. By extending radiomics
features with deep learning features, as our approach has
described, a more precise prediction can be made. In our
study, we recruited more patients and included all gliomas
instead of only glioblastoma, making the model more robust
and clinically translatable.

Our study has several limitations. Firstly, due to the
population size, there was no independent test dataset. To
further evaluate the robustness of the deep learning-based
model, we will try to recruit an independent test dataset from
lesser known centers. Moreover, the interpretability of deep
learning-based networks is always a problem. Although we
showed the efficiency of the CNN features, further descriptions
of the mechanism of CNN features are highly required. In
addition, with the advance of medical imaging, novel
modalities such as dynamic susceptibility contrast-enhanced
perfusion MRI are generally applied, which might provide
extra factors for further improving the predictive precision.
5 CONCLUSION

In conclusion, the automatic CNN-based model allowed an
accurate prediction of the mutation status of PTEN from
preoperative MRI in patients with glioma, which achieved
higher AUC, PPV, and NPV values compared to the radiomics
model. Further combination of both the CNN and radiomics
features achieved significantly higher AUC, PPV, and NPV
values than did the radiomics or the CNN model alone.
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