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Background: Epigenetic changes of lung adenocarcinoma (LUAD) have been reported to
be a relevant factor in tumorigenesis and cancer progression. However, the molecular
mechanisms responsible for DNA methylation patterns in the tumor immune-infiltrating
microenvironment and in cancer immunotherapy remain unclear.

Methods: We conducted a global analysis of the DNA methylation modification pattern
(DMP) and immune cell-infiltrating characteristics of LUAD patients based on 21 DNA
methylation regulators. A DNA methylation score (DMS) system was constructed to
quantify the DMP model in each patient and estimate their potential benefit
from immunotherapy.

Results: Two DNA methylation modification patterns able to distinctly characterize the
immune microenvironment characterization were identified among 513 LUAD samples. A
lower DMS, characterized by increased CTLA-4/PD-1/L1 gene expression, greater
methylation modifications, and tumor mutation burden, characterized a noninflamed
phenotype with worse survival. A higher DMS, characterized by decreased methylation
modification, a greater stromal-relevant response, and immune hyperactivation,
characterized an inflamed phenotype with better prognosis. Moreover, a lower DMS
indicated an increased mutation load and exhibited a poor immunotherapeutic response
in the anti-CTLA-4/PD-1/PD-L1 cohort.

Conclusion: Evaluating the DNA methylation modification pattern of LUAD patients could
enhance our understanding of the features of tumor microenvironment characterization
and may promote more favorable immunotherapy strategies.

Keywords: lung adenocarcinoma (LUAD), DNA methylation, tumor microenvironment, immunotherapy,
mutation burden

Frontiers in Oncology | www.frontiersin.org

1 September 2021 | Volume 11 | Article 734873


https://www.frontiersin.org/articles/10.3389/fonc.2021.734873/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.734873/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.734873/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.734873/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.734873/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:100456@cqmu.edu.cn
https://doi.org/10.3389/fonc.2021.734873
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.734873
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.734873&domain=pdf&date_stamp=2021-09-06

Yuan et al.

DMS in LUAD Immune Microenvironment

INTRODUCTION

The global DNA methylation is strongly associated with growth
selection and uncontrolled cell proliferation in multiple cancer
types (1, 2). Among the epigenetic mechanisms of the
mammalian genome, DNA methylation is catalyzed by series
of DNA methyltransferases catalyzing the transfer of a methyl
group from S-adenyl methionine to the C5 position of a cytosine
residue to form 5-methylcytosine at CpG sites (3). The
expression and function of those methyltransferases has been
reported to be partly responsible for immunomodulation and
might have an impact on DNA methylation modification
patterns in human cancers (4, 5).

Lung adenocarcinoma (LUAD) is the most common form of
lung cancer and is responsible for the cancer deaths worldwide (6).
However, the overall survival time of LUAD patients remains short
despite the enormous research efforts for the development of
effective diagnostic techniques and therapeutics. Recently, as a
result of an increasing number of studies focusing on tumor
immune cell infiltrations and DNA epigenetic modification,
crucial immune cell types and methyltransferase subsets in tumor
growth, metastasis, and outcome have gradually been identified
(7-10). The integrated analysis of the composition of the immune
cells in both LUAD tumors and paired normal adjacent tissues has
revealed that a deeper exploration of immune signatures or
biomarkers in the tumor microenvironment (TME) could play an
essential role in revealing the potential oncogenic mechanism in
LUAD (11). Moreover, the immunotherapeutic efficacy of several
immune checkpoint inhibitors (ICIs) (anti-CTLA4/PD-L1/PD-1, 8)
has widely assessed and has achieved a notable response in tumor
treatment, including LUAD (12-14). Further studies have also
proposed that the identification of altered epigenetic methylation
patterns may represent a valuable diagnostic approach toward novel
therapeutic strategies for preventing and treating LUAD. For
instance, Yang et al. reported that the downregulation of
methyltransferases DNMT3A and MBD4 could promote ALDH2
expression, reducing the probability of bone metastasis in LUAD
patients (15). Forloni et al. found that the inhibition of the
demethylase TET oncogene family member 1 (TET1) could
induce epigenetic silencing of antitumor genes in the oncogenesis
EGFR signaling pathway, indicating that dysregulated DNA
methylation probably played a major role in tumorigenesis (16).
However, the global profiles of DNA methylation regulators based
on the correlation between immune microenvironment and
immunotherapy of LUAD samples have not been fully evaluated
(12, 17).

In this study, we collected and integrated the clinical
information and genomic data of 513 patients from The Cancer
Genome Atlas (TCGA) LUAD cohort and comprehensively

Abbreviations: CNV, copy number variation; DEGs, differentially expressed
genes; DMP, DNA methylation modification pattern; DMPs, DNA methylation
patterns; DMS, DNA methylation score; GEO, Gene-Expression Omnibus; GO,
Gene Ontology; GSVA, gene-set variation analysis; ICIs, immune checkpoint
inhibitors; LUAD, lung adenocarcinoma; PCA, principal component analysis;
ssGSEA, single sample gene-set enrichment analysis; TCGA, The Cancer Genome
Atlas; TCIA, Cancer Immunome Database; TME, tumor microenvironment;
TMB: tumor mutation burden; TPM, transcripts per kilobase million.

evaluated the TME characteristics represented by distinct
patterns of DNA methylation modifications. We finally identified
two independent DNA methylation patterns (DMPs) by
unsupervised consensus clustering the expression of 21 DNA
methylation regulator-related genes, which we defined as
methylation regulators. The immune cell-infiltrating properties of
two DMPs were highly consistent with immune-noninflamed or
immune-inflamed phenotype, respectively. We then constructed a
DNA methylation score (DMS) system to investigate the efficacy of
DNA methylation modification patterns in individual patients and
estimated their immunotherapeutic value in several clinical trials.

MATERIALS AND METHODS

Data Collection and Preparation

The workflow of this study is presented in Figure S1A. Gene
expression data and complete clinical annotations of LUAD
samples were retrospectively collected from publicly available
datasets of the Gene-Expression Omnibus (GEO) and TCGA
databases. A total of six GEO lung adenocarcinoma cohort
somatic mutation, copy number variation (CNV), and clinical
data, including tumor stage, age, sex, and overall survival times/
states were obtained from TCGA databases (GSE116959,
GSE58772, GSE99995, GSE68571, GSE68465, and GSE26939)
and one TCGA-LUAD cohort were enrolled for further analysis.
For the GEO microarray data, the normalized matrix files were
directly downloaded. As for TCGA cohort, the RNA sequencing
data (FPKM value) for gene expression was downloaded from
the Genomic Data Commons and then transformed into
transcripts per kilobase million (TPM) format. Batch effects
among GEO datasets were corrected using the “ComBat”
algorithm of the sva package. The baseline information of all
eligible datasets is summarized in Table S1.

Consensus Molecular Clustering of 21
DNA Methylation Regulators

We collected DNA methylation regulator-related studies, and a
total of 21 regulator genes (including “writers> DNMT]I,
DNMT3A, DNMT3B; “easers” TETI1, TET2, TET3; and
“readers”> MBD1, MBD2, MBD3, MBD4, TDG, SMUGI,
UHRF1, UHRF2, ZBTB4, ZBTB24, ZBTB33, ZBTB38, NSUN2,
MGMT, DMAP1) were extracted for DNA methylation
modification pattern identification (Table S2). The
ConsensusClusterPlus algorithm was employed to conduct
unsupervised clustering of individual tumor samples with the
gene expression profiles of 21 DNA methylation regulators (18).
The cluster assignments were stable when k = 2.

Gene-Set Variation Analysis and

Functional Annotation

We performed Gene-Set Variation Analysis (GSVA) enrichment
analysis with “GSVA” R packages to study the differed biological
pathway between different DNA methylation modification
patterns in cancer samples (19). The Hallmarker gene-set of
“c2.cp.kegg.v7.4.symbols” was retrieved from the MSigDB

Frontiers in Oncology | www.frontiersin.org

September 2021 | Volume 11 | Article 734873


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Yuan et al.

DMS in LUAD Immune Microenvironment

database (20). Adjusted p-values <0.05 were considered
statistically significant for GSVA analysis. Gene ontology (GO)
and pathway annotation for DNA methylation pattern-related
genes were performed using the R package “clusterProfiler” with
a cutoff value of p < 0.05.

Immune Cell Infiltration Estimation

The Single Sample Gene-Set Enrichment Analysis (ssGSEA) was
implemented to determine variations in immune leukocyte
subtype abundance between different DMP clusters using the R
package “GSEAbase.” Subsequently, the abundances of 22
immune cell types for each tumor specimen were further
identified by estimating relative subsets of RNA transcripts
(CIBERSORT; https://cibersort.stanford.edu/) using the gene
expression profile of LUAD cancer (21).

Identification of Differentially Expressed
Genes and DMS Construction

We used three R packages (“limma,” “edgeR,” and “Deseq2”) to
identify the DNA methylation modification-related differentially
expressed genes (DEGs) across distinct DMP phenotypes.
Univariate Cox model analysis was performed to calculate their
association with overall survival and to extract prognostic DEGs
to construct a scoring system. We then conducted principal
component analysis (PCA) using the identified DEG prognostic
genes, and PCA 1-2 components were selected to act as signature
scores to construct DNA methylation-relevant gene signature,
which we defined as the DMS. This method mainly focused on
evaluating the score for each patient in the dataset with the
largest group of well-correlated (or anticorrelated) genes. We
constructed the DMS using an algorithm similar to the GGI:
DMS = X(PC1; + PC2 ;), where i stood for the relevant gene
expression of the selected set (22, 23).

Immunotherapy Dataset Collection

We searched the immunotherapeutic characteristics of the TCGA-
LUAD patients using the Cancer Immunome Database (TCIA),
which is a publicly available dataset containing corresponding
clinical pathology information (24). The immunotherapeutic GEO
datasets were included in this study: GSE135222 (anti-PD-1/PD-
L1 treatment) (25) and GSE91061 (anti-CTLA-4/PD-1 treatment)
(26). We also retrieved IMvigor210 datasets containing data on
atezolizumab treatment and extracted the relative gene expression
profiles and clinical notes using the R “IMvigor210CoreBiologies”
package (27). The raw count data were then transformed into
TPM value format.

RESULTS

Landscape of DNA Methylation Regulators
in LUAD

In this study, 21 DNA methylation regulators were collected
from the published data. Figure 1A displays the dynamic
reversible process of RNA methylation mediated by regulators
and their corresponding potential biological functions. We

further analyzed the genetic alterations of DNA methylation
regulators in LUAD. Among the 561 cases, 123 samples (21.93%)
harbored genetic alterations of DNA methylation regulators,
primarily including nonsense or missense mutations. TET1
(4%) had the highest mutation frequency, followed by
DNMT3A, TET3, and DNMT3B (Figure 1B). A mutation
cooccurrence pattern across all DNA methylation regulators
was examined, and significant gene mutation relationships
were identified between DNMT1 and ZBTB4, MBD4 and
NSUN2, and DNMT1 and UHRF1 (Figure S1B). Further
analysis of CNV alteration frequency in the 21 regulators
showed a prevalence of CNV mutations. Among these,
NSUN2, DMAP1, SMUG1, DNMT3B, ZBTB33/38, and
DNMT3A showed relatively higher amplification frequency in
terms of CNV, while MBD1/2/3, ZBTB4/24, UHRF1, TDG, and
TET2 had a widespread frequency of copy number deletion
variants (Figure 1C). The location of CNV among the DNA
methylation regulators on chromosomes is shown in Figure 1D.
To investigate whether these genetic variants influenced the gene
expression of regulators in cancer samples, we compared the
expression of the 21 DNA methylation regulators between
normal and LUAD samples and found that regulators with
significant genetic mutation as well as CNV amplification were
significantly higher expressed in cancer groups (Figures 1B-E),
indicating that the regulator gene mutation and the alternation of
CNV could be risk factors leading to the multiperturbation of the
translation of DNA methylation regulators. Univariable and
multivariable Cox proportional hazards regression analyses
were performed to evaluate the association between regulators
and patient survival. The Forest plot and Kaplan-Meier curve
showed that DMAP1 and MGMT were upregulated in tumor
specimens and could be considered protective factors associated
with prolonged survival time, while ZBTB38 and MBD2/3
downregulation in the tumor group was recognized as a risk
factor with worse overall survival (Figures S1C-H), indicating
that the unbalance expression of DNA methylation regulators
could contribute to tumorigenesis. These analyses demonstrated
that the crosstalk between DNA methylation regulators in the
genomic and transcriptomic landscape has a potential role in
LUAD occurrence and complexity.

DNA Methylation Modification Patterns in
TCGA Cohort

To determine the pattern of DNA methylation modification
mediated by 21 regulators, the TCGA-LUAD cohort and their
corresponding clinical data were prepared for analysis (Table S3).
A comprehensive landscape of the interactions and the prognostic
significance of the 21 regulators was visualized using the
conetwork plot (Figure 2A). We dissected the relationship
among those regulators and found that most regulators showed
a positive correlation with each other, which is consistent with the
above analysis. We also demonstrated that the expression of
UHRF1, SMUGI, TDG, and MBD1/2/3 presented the most
significant positive correlation with other regulators and might
be the risk factors for carcinoma formation. Notably, the readers,
such as MGMT and ZBTB4, showed a remarkably negative
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FIGURE 1 | Landscape of genetic variation of DNA methylation regulators in LUAD. (A) Summary of 21 DNA methylation regulators and their potential biological
processes. (B) Mutation landscape of 21 DNA methylation regulators in 561 LUAD patients. Individual patients are presented in the upper column. Mutation
frequency of each regulator are represented in the right bar plot. (C) The CNV frequency of 21 DNA methylation regulators in TCGA cohort. (D) The location of 21
regulators on chromosomes. (E) Differences in gene expression levels of 21 regulators between normal and tumor patients in TCGA cohort. **p < 0.01, **p < 0.001.

relationship with the other regulators. Thus, these findings
indicated that crosstalk among DNA methylation regulators
may play a critical role in the onset of LUAD.

We continued to conduct unsupervised clustering based on
the expression of 21 DNA methylation regulators to identify
DNA methylation modification patterns in LUAD samples, and
two distinct clusters were accordingly obtained via the
ConsensusClusterPlus package in R software, including 246
cases in cluster A and 267 cases in cluster B (Figure 2B). We
renamed those clusters as DNA methylation pattern (DMP-A
and DMP-B) (Table S4). Survival analysis for the two DNA
methylation modification clusters showed that DMP-B had a
relatively better prognosis in the TCGA cohort (Figure 2C). In
addition, we conducted heatmap analysis of the relative
expression of 21 DNA methylation regulators between distinct
DNA methylation modification patterns and observed that most
regulators were markedly elevated in the DMP-A cluster
(Figure 2B). Principal component analysis (PCA) also
indicated that two DMP clusters were completely segregated,
indicating that they could be easily distinguished via the gene

expression pattern of the 21 regulators (Figure 2D). The
heatmap analysis of the tumor methylation status determined
that the DMP-B cluster presented a low-methylation
epigenotype with worser clinical outcomes (Figure 2F). These
results demonstrated that altered expression of DNA
methylation regulators could affect patient survival by
regulating tumor methylation levels, which contributes to the
high heterogeneity of LUAD.

TME Cell Infiltration Characteristics of the
Two Distinct DMPs in the TCGA Cohort

To further explore differences in biological behaviors among the
two DNA methylation modification patterns, we performed GSVA
enrichment analysis. As shown in Figure 2E and Table S5, DMP-A
was mainly presented a CD4+ immune regulator and stromal
activation phenotype, associated with many related pathways, such
as the cell cycle, DNA replication, Toll-like receptor, and Nod-like
receptor signaling pathways in cancer. Whereas, DMP-B
represented enriched pathways associated with immune/
inflammation hyperactivation including the activation of the
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PPAR signaling pathway and the autoimmune response, including
asthma, autoimmune thyroid disease, allograft rejection, and graft-
versus-host disease. Furthermore, we conducted a TME cell
infiltration analysis using the ssGSVA algorithm and
demonstrated that DMP-A showed a relatively lower proportion
of immune cell infiltration and exhibited a shorter survival time
(Figures 2B, 3A). However, DMP-B did present a matching
survival advantage and significantly elevated innate immune cells
including activated B cells, MDSCs, macrophages, mast cells,
natural killer cells, and activated CD8+ T cells and so on. The
CIBERSORT analysis also indicated that DMP-B was markedly
enriched in immunoactive cells, such as M2 macrophages, memory
B cells, plasma cells, and Tregs, which is coherently indicative of a
better prognosis (Figures 2B, 3B). Previous studies have reported
that the immune-excluded phenotype in tumors also presented
immune cells limited to the stroma surrounding the tumor cell
nests (28). Therefore, we suspected that the stromal activation and
low immune cell density in DMP-A pattern caused the suppression
of antitumor response, which was also validated in the GEO LUAD
cohort (GSE116959, GSE58772, and GSE99995) (Figure S2I).
Altogether, these results indicated that LUAD patients could be
classified into two immune phenotype groups, among which the
DMP-A pattern represented a noninflamed phenotype (immune-
excluded or immune-deserted trait) characterized by stromal
activation and weakened immune regulator status, whereas the
DMP-B pattern represented an immune-inflamed phenotype
characterized by immune/inflammation hyperactivation and
multicomponent immune cell infiltration in the TME.

DMP Phenotype-Related DEGs and
Functional Annotation

To further explore the characteristics of the DMP in the LUAD
cohort, a total of 2,720 DNA methylation regulator pattern related
to the DEGs were obtained and subjected to conduct enrichment
analysis. The KEGG pathway related to the cell cycle and the p53
signaling pathway were also significantly enriched in DMP-related
gene set (Figure 3C). The results of GO terms showed that those
genes were mainly enriched in the cell cycle process and DNA
replication (Figure 3D). We subsequently selected 792 prognostic
genes (p < 0.05) via univariate Cox model analysis (Table S6).
Based on the expression of the 792 representative genes,
unsupervised clustering analysis was performed to classify LUAD
patients into three distinct clusters, namely, DNA methylation gene
cluster I/II/III (Figures 4A, B; Figures S2A-E). The heatmap and
survival analysis showed that patients in gene cluster III were
characterized by earlier clinical stage and better prognosis, while
patients in gene cluster II were characterized by advanced staging
and worser survival outcome (Figures 4B, C). In addition,
multivariate Cox regression analysis indicated that the overall
survival between the gene cluster gene signatures remained
statistically significant after considering multiple factors,
including age, tumor stage (T and N), and sex (Figure 4D),
indicating that the identified gene clusters could represent
independent factors of prognosis. We also noted that the gene
expression of the 21 regulators exhibited significant differences
among the three gene clusters, and in particularly patients in gene

cluster IIT were related to the higher expression of protective factors
(TET2/MGMT), which is in line with the findings regarding DNA
methylation modification patterns (Figure 4E). The patients in
gene cluster III also presented higher immune cell infiltration,
indicating a phototype of immune activation. While the levels of
almost all immune cells in gene cluster II were relatively lower than
in other groups, these presented a phenotype of immune
suppression (Figure 4F). We further evaluated the DNA
methylation status of the gene clusters, and results indicated that
the gene cluster II exhibited a hypermethylation status, whereas the
gene cluster III presented a weaker methylation status (Figure 4G).
All these results also confirmed that the perturbed DNA
methylation regulator genetic expression was highly correlated
with different immune responses, genetic methylation levels, and
clinical outcomes and contributed to LUAD heterogeneity, which
was consistent with the previous findings.

Construction of DMS and Exploration of
Clinical Relevance

To accurately evaluate the DNA methylation status of individual
patients with LUAD, we developed a scoring scheme termed the
DMS based on the expression of 792 DNA methylation-
related genes.

The DMP-B pattern had a higher level of DMS compared
with patients in DMP-A (Figure 5A). Notably, gene cluster III
showed the highest level of DMS, followed by gene clusters I and
1I (Figure 5B). With an optimum cutoff value of 2.17 determined
by the survminer package, we divided LUAD patients into high-
and low-DMS groups. The alluvial diagram summarized the
attribute changes of patients according to the DNA methylation
regulator pattern, gene cluster, and DMS groups (Figure 5C).
We then examined the correlation between biological processes,
immune cell infiltration, and the level of DMS signatures using
Spearman’s analysis. The DMS signatures were significantly
negatively correlated with cell cycle and DNA/RNA repair
signatures but were positively correlated with immune activation
and stromal-relevant pathways (Figure 5D; Figure S2F). In
addition, we calculated the distribution differences of tumor
genome somatic mutations between the DMS groups using the
R “maftools” package. As we expected, the low-DMS group with
shorter survival time presented significantly higher tumor
mutational profiles than the high-DMS group, consistent with
recent findings that gene alterations correlated highly with tumor
invasion and cell proliferation. Furthermore, survival analysis
revealed that the DMS-low patients were significantly correlated
with a worse prognosis in the TCGA cohort (p < 0.001, Figure 5E),
which was further validated by the ROC curves (AUC = 0.652,
Figure 5F). The multivariate Cox regression model confirmed the
DMS factor could stand as an independent prognostic biomarker
for evaluating patient outcomes in the TCGA-LUAD cohort (HR,
2.03 [95% confidence interval, 1.34-3.08], p < 0.001, Figure 5G).
To further verify this DMS model, we also performed multivariate
Cox regression model and prognosis analysis using meta-GEO
cohorts (GSE68465, GSE68571, and GSE26939), which provided
further support that DMS was a significant prognostic factor for
predicting patient outcomes (Figures S2G, H). The analysis of
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tumor mutation burden (TMB) confirmed that the low-DMS
cluster was significantly correlated with a higher TMB
(Figures 5H, I). The mutational landscape of significantly
mutated genes showed that most genes (including TP53 and
TTN) had higher somatic alteration rates in the lower-DMS
group, whereas KRAS had a higher somatic alteration rate in the
higher-DMS group. We further observed that there was a
markedly negative correlation between the TMB score and DMS
(R = -0.48, p < 0.001), demonstrating the crosstalk between the
DMS and genetic mutation evaluation (Figure 5]). Meanwhile, the
methylation heatmap analysis revealed that the higher-DMS
group exhibited hypomethylation compared with the lower-
DMS group (Figure S2J). These results demonstrated that the
DMS could represent the DNA methylation modification patterns
and comprehensively could reflect genomic variation
modifications, as well as effectively predict the prognosis of
LUAD patients.

The Role of DMS in Predicting
Immunotherapy

Significant progress has been made to identify the effective
immune-related signatures that correlated with response to
antitumor therapy, particularly represented by TMB and ICls.
Our analysis found that the gene expression of the CTLA-4/PD-
1/PD-L1 in TCGA-LUAD cohort was significantly increased in the
DMS-low group (Figures 6A-C). Considering the high correlation
across DMS levels with the immune response, we explored whether
the DMS system could predict the patients’ response to ICI
treatment in two independent immunotherapy cohorts treated
with CTLA-4/PD-1/PD-L1 antibody inhibitors. In the TCIA-
LUAD cohort (anti-CTLA-4/PD-1 treatment), patients classified
as the DMS-high group exhibited a significantly clinical response
(Figures 6D-G), indicating the immunotherapeutic benefits of
CTLA-4/PD-1 antibody treatment in DMS-high patients. In the
anti-CTLA-4/PD-1/PD-L1 GEO cohort (GSE91061 and
GSE135222), higher DMS in tumor patients was associated with
a stronger immune response and higher therapeutic benefits
(Figures 6H, I). The progression-free survival analysis showed
that higher-DMS patients exhibited prolonged survival (Figure 6I).
A similar result was also identified in the IMvigor210 cohort (anti-
PD-L1 treatment) (Figures 6J-M). Those results demonstrated that
the DMS signature system was strongly associated with the tumor
immune response and might contribute to predicting the efficacy
value of the anti-CTLA-4/PD-1/PD-L1 immunotherapy.

DISCUSSION

Increasing evidence has indicated that aberrant DNA methylation
might increase genome instability by silencing of notable
antioncogenes by methylated modifications, resulting in TME
alterations, CNV, and biological process conversion (29, 30).
However, the global modulation of DNA methylation modification
in the immune contexture of LUAD patients remains to be
comprehensively recognized. Thus, the identification of distinct
DNA methylation modification patterns in the tumor immune

microenvironment could provide a useful evaluation of the
correlation between DNA methylation on the immune-related
response and may assist in achieving more effective
immunotherapy resolution.

Herein, following unsupervised clustering analysis of the gene
expression of 21 regulators, we defined two different DMPs
characterized by distinct immune phenotypes in the tumor
immune microenvironment. DMP-A—clustered patients presented
with hypermethylation had a lower proportion of immune cells,
characterized by the suppression of the immune cell-infiltrating
response in tumor cells and a noninflamed (immune-excluded/
deserted) phenotype, which corresponded to a worser survival
prognosis. In contrast, the DMP-B-clustered individuals presented
with hypomethylation was characterized by the activation of
abundant immune effector/pathways and the presence of multiple
immune cell infiltrations in the TME, which exhibited an immune-
inflamed phenomenon, corresponding to significant survival benefits.
Analysis of the tumor immunophenotype in patients with solid
tumors has also widely supported the view that the immune
environment plays a central role in the pathogenesis of
tumorigenesis and metastasis and harbored important clinical
implications for effective immunotherapy outcomes (27, 31-33).
The available literature to date has reported that the immune-
excluded phenomenon is largely reflected by hyper-invigorating
stromal cells surrounding tumor cell nests, categorized as an
immune-inflamed phenotype (34, 35). Stroma with lower
expression of immune markers (tumor-infiltrating lymphocytes
and CD8+ T cells) could suppress the antitumor signatures and
interfere with the penetration of immune cell infiltration into the
tumor parenchyma, consistent with the poorer survival in the DMP-
A immune phenotype (36-38). The immune-inflamed phenotype
was represented by a higher density of immune T cells, enrichment of
abundant immune signal pathways, and the presence of preexisting
immune infiltration in an antitumor microenvironment (34, 39).
Recapitulating our analysis of the TME immune-infiltrating
characteristics using the ssGSEA and CIBERSORT algorithm with
our proposed DMP clusters confirmed the above definition of
immune classification. In addition, previous reports have also
shown that DNA hypomethylation is associated with immune
signaling activation (40), which further supported our findings in
this study.

To further elucidate the characteristics of transcriptome traits
in DMP, the DEGs of distinct DNA methylation modification
patterns were obtained and selected as the DNA methylation
signature genes, which were concurrently found to be
significantly associated with the cell cycle and DNA replication
biological behaviors. Based on the mRNA expression levels of
these DEGs, three DNA methylation gene clusters with different
survival prognosis and immune-infiltrating features were
identified, indicating there were indeed different clinical
immune phenotypes associated with LUAD (11, 41). In
addition, we established a methylation-based scoring system to
quantify the DNA methylation modifications of individual
patients, which helped to define the DMP signature, thus
yielding greater scientific insight into the complex mechanisms
of tumorigenesis and progression (27, 31, 32). As expected, the
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DMP-A group was associated with gene cluster I/II and was
characterized by the presence of immune suppression and a
higher methylation phenotype and a lower DMS, which
corresponded to a shorter survival time. The multivariate
analysis of the LUAD cohort confirmed the DMS system could
be an independent factor for patient prognosis. Altogether, the
above results indicated that there was indeed a higher
heterogeneity of DNA methylation modifications in the tumor
immune/alteration microenvironment of LUAD (42).

Consistent with the previous analysis, the DMS, which was
negatively correlated with TMB, was found to be markedly
enriched in the immune activation and stromal-relevant
pathways, underlining the pivotal role of stromal immune
activation in resistance to immune checkpoint therapeutics (43,
44). Our study revealed that cancer drug resistance was not only
accompanied by the hyperactivation of various stromal pathway
associated with TGF beta, MAPK, and Wnt signaling pathway
but also correlated to gene repair and cell cycle processes. For
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instance, the inhibition of the TGF beta pathway was reported to
induce durable responses to PD-1/PD-L1 blockade in tumor
models (45, 46). Previous studies also demonstrated that the
cancer epithelial-mesenchymal transition is frequently activated
by TGF-B, Wnt, Notch, and MAPK signaling pathways, which
are the major factors promoting metastasis and notorious invasion
of cancer cells (47, 48). Furthermore, recent studies searching for the
effective immunotherapies in cancer and found that ICIs were
successful cancer treatments, particularly in metastatic urothelial
cancer and melanoma where anti-CTLA-4/PD-1/PD-L1 antibodies
have found widespread application (27, 49, 50). However, using our
data, we evaluated the therapeutic value of the DMS in the immune
checkpoint (CTLA-4/PD-1/PD-L1) treatment cohorts and showed
the opposite clinical benefit to immune inhibitors. Compared with
the lower-DMS group, the higher-DMS group, which presented a
smaller proportion of genetic mutations and methylation, exhibited
a stronger antitumor immune response and benefit of ICI
treatment. Meanwhile, TP53 and TTN mutations in the lower-
DMS subgroup showed a larger proportion of mutation rates
compared with the higher-DMS subgroup, whereas the KRAS
mutation rate increased in the high-DMS subgroup. TP53 and
KRAS are prevalent oncogenic drivers in most tumor types, and
their cooccurring mutations result in the upregulation of tumor
immunogenicity and immune tolerance/escape in response to PD-1
blockade immunotherapy in LUAD (51). Furthermore, TTN and
TP53 mutations may exhibit a synergistically prognostic benefit in
various lung cancers except LUAD (52). Those findings supported
that the notion that the DMS signature of DNA methylation
regulator patterns, combined with gene mutation signals, as
promising to predict the efficacy of anti-CTLA-4/PD-1/PD-L1
immune checkpoint blockade therapy, and could contribute to
guide more effective strategies for precision immunotherapy in
cancer individuals. Therefore, the DMS signature could stand as
an important biomarker to estimate the benefit of antitumor
immune response to cancer treatment (53, 54).

However, there were some limitations in this study. Firstly, we
used only 21 DNA methylase-related regulators to construct the
model system; newer methylation regulators should be included
in further analyses. Second, additional clinical data are needed to
validate the efficacy of the immunotherapy and to evaluate the
accuracy of the DMP and DMS system.

CONCLUSION

We identified two DNA methylation modification patterns in LUAD
patients based on 21 methylase-related regulators and constructed a
methylation profile score model for individual patients. The TME
disparity between the distinct DMPs highlighted the potential
complexity and heterogeneity of LUAD formation, casting light on
multiple processes fueling tumor evolution, immune infiltration, and
drug resistance. The systematic analysis of the immune and/or
clinical characteristics in the DMP and DMS will contribute to
enhance a deeper understanding of the tumor immune-infiltrating
microenvironment and will promote the development of effectively
targeted immunotherapies.
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Supplementary Figure 1 | Correlation and prognostic value of 21 DNA
methylation regulators and overview of study design. (A) Overview of this study
flow. (B) The cooccurrence and mutual exclusion of 21 regulators. Cooccurrence,
blackish green; mutual exclusive, yellowish brown. (C, D) Clinical prognostic
significance of expression of DNA regulators by univariate (C) and multivariate
(D) Cox regression analyses. (E-H) Survival analysis of the regulators in TCGA
cohort, including MBD3, DMAP1, and ZBTB38.

Supplementary Figure 2 | Unsupervised clustering of 586 DNA methylation
gene signatures and construction of the DMS system. (A-C) The consensus matrix
(CM) plot of DNA methylation gene signature for k = 3 to k = 5. (D) The distribution of
the consensus index cumulative distribution function (CDF) curves in the LUAD
cohort for each k. (E) Tracking plot of subclusters at each k. (F) Correlation between
DMS and immune-infiltrating trait in TCGA samples by the Spearman’s analysis.
(G) Subcluster analysis determining the clinical prognostic ability of DMS in the
meta-GEO cohort by multivariate Cox regression. The length of the horizontal line
represented the 95% confidence interval for each group. (H) Survival analysis of
patient between low- or high-DMS subclusters in the meta-GEO cohort. (I) The
abundance of immune cell infiltration in different DMP groups using the ssGSVA
algorithm in the meta-GEO cohort. (J) The methylation heatmap analysis of low- or
high-DMS group.

Supplementary Table 1 | Clinical information of LUAD cohorts from GEO/TCGA
in this study.

Supplementary Table 2 | Summary of DNA methylation modification regulators.

Supplementary Table 3 | Clinical annotation and DNA methylation regulators of
individual patient in TCGA-LUAD cohort.

Supplementary Table 4 | Information of samples clustering in TCGA-LUAD
cohorts.

Supplementary Table 5 | Enrichment score of KEGG pathways in TCGA-LUAD
cohorts.

Supplementary Table 6 | Prognostic DEGs related to DNA methylation
modification patterns using the univariate Cox regression model.
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