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Purpose: We aimed to assess the additional value of a radiomics-based signature for
distinguishing between benign and malignant non-mass enhancement lesions (NMEs) on
dynamic contrast-enhanced breast magnetic resonance imaging (breast DCE-MRI).

Methods: In this retrospective study, 232 patients with 247 histopathologically confirmed
NMEs (malignant: 191; benign: 56) were enrolled from December 2017 to October 2020
as a primary cohort to develop the discriminative models. Radiomic features were
extracted from one post-contrast phase (around 90s after contrast injection) of breast
DCE-MRI images. The least absolute shrinkage and selection operator (LASSO)
regression model was adapted to select features and construct the radiomics-based
signature. Based on clinical and routine MR features, radiomics features, and combined
information, three discriminative models were built using multivariable logistic regression
analyses. In addition, an independent cohort of 72 patients with 72 NMEs (malignant: 50;
benign: 22) was collected from November 2020 to April 2021 for the validation of the three
discriminative models. Finally, the combined model was assessed using nomogram and
decision curve analyses.

Results: The routine MRmodel with two selected features of the time-intensity curve (TIC)
type and MR-reported axillary lymph node (ALN) status showed a high sensitivity of 0.942
(95%CI, 0.906 - 0.974) and low specificity of 0.589 (95%CI, 0.464 - 0.714). The radiomics
model with six selected features was significantly correlated with malignancy (P<0.001 for
both primary and validation cohorts). Finally, the individual combined model, which
contained factors including TIC types and radiomics signatures, showed good
discrimination, with an acceptable sensitivity of 0.869 (95%CI, 0.816 to 0.916),
improved specificity of 0.839 (95%CI, 0.750 to 0.929). The nomogram was applied to
the validation cohort, reaching good discrimination, with a sensitivity of 0.820 (95%CI,
0.700 to 0.920), specificity of 0.864 (95%CI,0.682 to 1.000). The combined model was
clinically helpful, as demonstrated by decision curve analysis.
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Conclusions: Our study added radiomics signatures into a conventional clinical model
and developed a radiomics nomogram including radiomics signatures and TIC types. This
radiomics model could be used to differentiate benign from malignant NMEs in patients
with suspicious lesions on breast MRI.
Keywords: breast cancer, non-mass enhancement, radiomics, differential diagnosis, magnetic resonance imaging
1 INTRODUCTION

According to the American College of Radiology (ACR) BI-
RADS® Atlas, 5th edition (1), breast lesions with abnormal
enhancement variables on dynamic contrast-enhanced breast
magnetic resonance imaging (breast DCE-MRI) include foci,
masses, and non-mass enhancement lesions (NMEs). In 2020, breast
cancer became the most common cancer of women worldwide (2),
and the differentiation between benign and malignant breast lesions
using MRI-based diagnostics was found to be critical for breast
cancer treatments. However, distinguishing benign and malignant
breast lesions on DCE-MRI is challenging, especially when NMEs
are present (3).

NMEs are associated with a wide-ranging spectrum of different
pathologic findings (4–6), with an overlap in the imaging findings
between malignant and benign lesions. NMEs remain a diagnostic
challenge for radiologists despite the frequent attempts to
distinguish benign from malignant NMEs using different
methodologies, including conventional morphologic comparisons
(6–8) and the measurement of different parameters, such as ADC
values and the initial slope of kinetic curves (9–11). Baltzer et al.
reported that the primary cause for false positive results of breast
MRI may due to NMEs, resulting in unnecessary biopsies (12).
Studies have shown that morphologic assessments are disputable in
attempting to differentiate benign vs. malignant NMEs. Some
studies have demonstrated that morphologic assessments are
more useful than kinetic assessments in distinguishing NMEs
(13–15), while other studies have reported that morphologic
assessments have a relatively low specificity and sensitivity to
distinguish NMEs (16–18). In addition, morphologic assessments
depend on the human eye are subjective with limitations;
thus, substantial inter- and intra-observer variability is seen with
these assessments (19). A meta-analysis (20) showed heterogeneity
among studies with sensitivities from 0% to 100% and specificities
from 48% to 100%. These factors underscore the complexity of the
diagnostic phase and simultaneously present a therapeutic
challenge. For example, idiopathic granulomatous mastitis, a
benign inflammatory disease, can mimic breast cancer, both
clinically and radiologically (21, 22).

In recent years, radiomics, a technology of transforming digital
medical images into quantifiable data to improve medical
decisions (23), has been found to have a potential benefit in
increasing the knowledge base of diagnostic oncology and
predicting the accuracy of medical imaging. Radiomics is
partially based on the hypothesis that medical images contain
much more information than can be visually deciphered by
radiologists (24). According to our best knowledge, there is little
research reported the additional value of radiomics to differentiate
2

benign vs. malignant NMEs on DCE-MRI. Additionally, to date, a
model that combines a radiomics signature and conventional
analysis to produce superior diagnostic performance in
diagnosing malignant NMEs has yet to be reported.

In this study, we developed and validated a nomogram that
combined radiomics and conventional analytic clinical factors to
evaluate the additional value of radiomics in differentiating benign
from malignant NMEs. We also compared the diagnostic
performance of the nomogram with the radiomics score and
analytic clinical factors alone.
2 MATERIALS AND METHODS

2.1 Patients
We retrospectively reviewed 3352 consecutive patients who
underwent breast MRI in our hospital between December 2017
and October 2020. In total, 232 female patients with 247 lesions
were selected and comprised the primary training cohort (mean
age, 44.8 ± 10.6 years). Among these patients, 14 had additional
lesions in the contralateral breast and 1 patient had two lesions in
different quadrants of her left breast. The inclusion criteria were
as follows: (a) histologically confirmed benign or malignant
breast lesions on DCE-MRI examinations; (b) no previous
treatments or breast implants; (c) no pregnancy or lactation;
and (d) NMEs found on DCE images. Patients were excluded if
image quality was poor, hemorrhage was present after biopsy,
lesions did not involve parenchyma on the DCE images, or the
lesion sizes were <5 mm. Using this inclusion and exclusion
criteria, a validation cohort of 72 consecutive female patients
(mean age, 47.9± 11.2 years) was selected from 908 consecutive
patients between November 2020 and April 2021 in our hospital.
A flowchart of this study is presented in Figure 1. For each
patient, conventional clinical data, including age and menopause
status, were obtained from electronic medical records.

2.2 Magnetic Resonance
Image Acquisition
MR examinations for both the validation cohort and training
cohort were obtained on a 3T scanner (MAGNETOM Skyra,
Siemens Healthcare, Erlangen, Germany) in our hospital. All
scans were performed with a dedicated 16-channel phased-array
breast coil in the prone position using the same protocol.

For breast diffusion-weighted imaging (DWI), multi-b-value DWI
was applied with a readout-segmented technique (RESOLVE DWI),
similar to our previous works (25): repetition time (TR) = 5000 ms,
echo time (TE) = 70 ms, field of view (FOV) = 169 x 280 mm2,
matrix size = 114 x 188, slice thickness = 5.0 mm, readout
September 2021 | Volume 11 | Article 738330
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segment = 5, average = 1, diffusion gradient mode = 3-scan-trace,
b values = 0, 50, 1000s/mm2, and acquisition time = 4:27
(min: sec).

For breast DCE-MRI, a protocol based on time-resolved
angiography was used with a stochastic trajectory, volume-
interpolated breath-hold examination sequence (TWIST-VIBE).
The detailed scan parameters were as follows: TR = 5.24 ms, TE =
2.46 ms, matrix size = 182 x 320, FOV = 260 x 320 mm2, slice
thickness = 1.5 mm without gap, flip angle = 10°, temporal
resolution = 5.74 s/phase, and acquisition time = 5:57(min: sec).

The contrast medium (Omniscan, GE Healthcare, Milwaukee,
WI) was intravenously injected with a power injector at the end of
the third acquisition phase. The dose was 0.1 mmol/kg body
weight, with an injection rate of 2.5 mL/s, which was followed by a
20 mL saline flush.
2.3 Image Interpretation
For each patient in the training cohort and the validation
cohort, two radiologists (Y.L. and T.A. with 8 and 10 years of
experience in breast MRI, respectively), were blinded to the
pathologic results. Each radiologist reviewed all breast MR
images from the 304 patients, assessing breast density, the
degree of background parenchymal enhancement, and MR-
reported lymph node status by consensus. The maximal
diameter, internal enhancement, and distribution were
recorded in the very early phase (about 90 seconds) after
contrast media injection according to the BI-RADS 5th edition
(1). Of these, the maximal diameter was assessed on
multiplanar reformatted images using a Siemens clinical
Frontiers in Oncology | www.frontiersin.org 3
workstation. The type of time-intensity curve (TIC) for each
case was drawn based on DCE-MRI with a region of interest
(ROI) of approximately 0.2-0.4 cm2 placed on each slice at the
brightest part of the lesions on images obtained in the early
phase after the contrast injection. We recorded the high-level
TIC curve types when different types were present in each
lesion. On all slices of the apparent diffusion coefficient (ADC)
maps, multiple ROIs were carefully placed on the darkest
areas, which were confirmed by agreement by the two
radiologists. Thus, the lowest ROI ADC value was regarded
as the minimum ADC value for each lesion. If no lesions could
be evaluated with DWI or the ADC maps, we copied ROIs on
the DCE-MRI image and pasted them on the ADC maps. We
defined the axillary lymph node (ALN) with a maximal short
diameter of ≥10mm, an absent fatty hilum, or a long axis/short
axis of <2 as MR-reported ALN positive. Vasodilation of the
surrounding feeding artery was defined as positive on
maximum intensity projection images (MIPs) and was
included based on our experience. The above-mentioned
factors were all initial clinical candidate predictors for
NME differentiation.
2.4 Features Extraction and
Radiomics Signature
The radiomics signature was applied to the clinical analyses, and
a diagnostic model for differentiation was developed using the
training cohort. The radiomics analysis was performed on the
very early phase (90 seconds) images after contrast media
injection, as was the morphologic evaluation. Prior to the
FIGURE 1 | Flowchart of the study population enrollment. NME, non-mass enhancement lesion.
September 2021 | Volume 11 | Article 738330
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radiomics analysis, the images of each case were transferred into
the open-source software, ITK-SNAP (Version 3.8.0), to perform
semi-automatically ROI segmentation. ROIs were drawn with
care to include the whole lesion, avoiding normal glandular
tissue, fat, vessels, and necrosis. Pyradiomics open-source
software (https://pyradiomics.readthedocs.io/en/latest/index.
html) was used to automatically extract tissue intensities and
textural, morphologic, and wavelet features. We used the least
absolute shrinkage and selection operator (LASSO) method,
an appropriate tool for high-dimensional data regression
(26), to select the most effective features from the training
cohort data set. For each lesion, a radiomics score (Rad-score)
was calculated weighting by the respective coefficients of
selected features.

2.5 Nomogram in the Training Cohort
and Validation
Initial clinical multivariate logistic regression analysis included
age, menopause status, maximal diameter, fibrotic gland tissue,
background parenchymal enhancement, morphologic
assessment, ALN status, and TIC assessment on DCE-MRI and
the minimum ADC values on DWI. We added radiomics
features into the clinical multivariable logistic regression
analysis and built the radiomics nomogram to supply the
radiologists and clinicians with an effective tool for differentiating
benign andmalignant NMEs. The calibration curve andHosmer &
Lemeshow test (27) were adapted to evaluate the radiomics
nomogram calibration. Nomogram performance was evaluated
using the area under the curve (AUC) analysis.

2.5.1 Consistency Validation
In the data set of the training cohort, consistency validation was
performed by comparing the first measurement and second
measurement one month later of reader 1 (Y.L.) for intra-
observer agreement. The second measurement of reader 1 and
the extraction of reader 2 (Z.L.Y) in 60 patients were compared
to produce inter-observer agreement. The interclass correlation
coefficient (ICC) was applied to assess the feature extraction
agreement, which was greater than 0.80 and considered excellent.

2.5.2 Data Validation
We applied the same method as that of the training cohort to
calculate the Rad-score in the validation cohort. We applied the
logistic regression equation produced in the training cohort to all
lesions of the validation cohort. We tested the performance of the
nomogram using calibration and AUC analyses.

2.6 Statistical Analysis
R (RStudio, Version 3.6.3) software was used for algorithms and
statistical analyses. For continuous variates, Student’s t-tests were
performed. For categorical variates, the chi-square test or Wilcoxon
rank-sum test were applied. We used univariate logistic regression
analysis to determine potential factors affecting differentiation.
Then, logistic regression models containing the above-mentioned
potential factors were used for multivariate analysis. A nomogram
was built on the logistic regression model as a graphical
presentation. The area under the receive operating characteristic
Frontiers in Oncology | www.frontiersin.org 4
(AUC-ROC) curve, accuracy, sensitivity, and specificity were
applied to indicate the discriminative ability of each factor and
nomogram. P-values <0.05 (two-tailed) was considered
statistically significant.
3 RESULTS

3.1 Conventional Clinical Analysis
3.1.1 Training Cohort
In the training cohort, of the 247 lesions, 191 malignant and 56
benign lesions were confirmed pathologically by either biopsy,
lumpectomy, or mastectomy. For the patient who had two
lesions in the left breast, the lesion in the upper outer quadrant
was confirmed as adenosis, while the lesion in the medial area
was ductal cancer in situ. Specific pathologic results are shown in
Table 1 . Internal enhancement patterns, background
parenchymal enhancements (BPEs), and MRI reported-
fibroglandular tissue (FGT) were not different between
malignant and benign lesions (P=0.397, 0.760, 0.139). The
mean age of the patients with malignant lesions was older than
that of the benign cases (P=0.035). The maximal diameter of the
malignant lesions was significantly longer than that of the benign
lesions (P<0.001). A higher proportion of postmenopausal
women were found in the malignant group than in the benign
group (P=0.034). The constituent ratio of distribution was
significantly different between malignant and benign cases
(P<0.001). Of these, the proportion with linear distributions
was higher in the benign group than in the malignant group
(P=0.046). The minimum ADC value of the malignant lesions
was significantly lower than that of the benign lesions (P<0.001).
The malignant group had a significantly higher percentage of
higher-level TIC pattern types and MR-reported ALN-positive
and MIP-positive cases (all P<0.001). Specific results are shown
in Table 2. Age, menopause status, maximal diameters,
distributions, TIC patterns, minimum ADC values, MRI
reported-ALN status, and MIP status were potential factors
influencing differentiation according to the univariate logistic
TABLE 1 | Pathologic findings for all non-mass enhancement (NME) lesions.

Pathological results Training Cohort
(n = 247)

Validation Cohort
(n = 72)

Benign 56 22
Adenosis 49 22
Papilloma 1 0
Chronic inflammation 5 0
Fibroadenoma/fibroadenomatous
change

1 0

Malignant 191 50
IDC 88 21
ILC 11 0
Pure DCIS 31 9
Invasive cancer with CIS 50 14
CIS with invasive component 24 6
Mucinous carcinoma 1 0
Septemb
er 2021 | Volume
IDC, Invasive ductal carcinoma; ILC, Invasive lobular carcinoma; DCIS, ductal carcinoma
in situ; CIS, cancer in situ.
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regression analysis. From the multivariate analysis results,
higher-level TIC pattern types, and MR-reported ALN-positive
statuses were significantly associated with malignancy (all
P<0.001). The AUCs, sensitivities, and specificities of the
clinical multivariate regression model developed using TIC
types and MR-reported ALN status were 0.852 (95%CI: 0.799-
0.906), 0.942 (95%CI: 0.906-0.974), and 0.589 (95%CI:0.446-
0.714), respectively, to differentiate between malignant and
benign NME lesions. The specific results are shown in Table 3.

3.1.2 Validation Cohort
In the validation dataset, there were 50 malignant lesions and 22
benign lesions. Like the training dataset, internal enhancement
patterns, MRI reported-FGT, and BPE were not significantly
different between malignant and benign lesions. Moreover, no
Frontiers in Oncology | www.frontiersin.org 5
significant differences were found between the two cohorts
regarding the MIP status. When applying the clinical
multivariate logistic regression equation of the primary cohort
to the validation dataset, the AUCs, sensitivities, and specificities
were 0.842(95%CI: 0.758-0.926), 0.940(95%CI: 0.860-1.000), and
0.545(95%CI: 0.364-0.727), respectively (Table 3).

3.2 Radiomics Analysis and the
Combined Model
3.2.1 Training Cohort
Of all features extracted from the lesions in the primary cohort,
six features were selected as potentially effective factors for
differentiation and were applied in the Rad-score calculation
(Figure 2). The final computation of the model coefficients led to
the following differentiation model for NMEs:
TABLE 2 | Characteristics of patients in the training and validation cohorts.

Characteristic Training Cohort Validation Cohort

Malignant (n = 191) Benign (n = 56) P Malignant (n = 50) Benign (n = 22) P

Age, mean ± SD, years 45.4 ± 10.2 42.0 ± 11.8 0.035 51.4 ± 10.2 39.9 ± 9.5 <0.001
Menopause status, No (%)
Postmenopausal 41 (21.5) 5 (8.9) 0.034 20 (40) 2 (9.1) 0.011
premenopausal 150 (78.5) 51 (91.1) 30 (60) 20 (90.9)
MRI reported-FGT, No (%)
a 1 (0.5) 0 (0) 2 (4) 1 (4.5)
b 37 (19.4) 8 (14.3) 11 (22) 3 (13.6)
c 140 (73.3) 44 (78.6) 34 (68) 15 (68.1)
d 13 (6.8%) 4 (7.1) 0.395 3 (6) 3 (13.6) 0.331
MRI reported-BPE, No (%)
Minimal-Mild 143 (74.9) 36 (64.3) 24 (48) 7 (31.8)
Moderate 43 (22.5) 19 (33.9) 23 (46) 10 (45.5)
Marked 5 (2.6) 1 (1.8) 0.099 3 (6) 5 (22.7) 0.079
Maximal diameter, mean ± SD, mm 47.7 ± 21.4 32.9 ± 18.9 <0.001 44.3 ± 16.6 29.6 ± 10.6 <0.001
NME Enhancement patterns
Distribution, No (%)
Focal 21 (11.0) 16 (28.6) 0 (0) 0 (0)
Linear 2 (1.0) 6 (10.7) 0 (0) 4 (18.2)
Segmental 38 (19.9) 11 (19.6) 13 (26) 5 (22.7)
Regional 82 (42.9) 14 (25.0) 26 (52) 13 (59.1)
Multiple regions 35 (18.3) 8 (14.3) 9 (18) 0 (0)
Diffuse 13 (6.8) 1 (1.8) <0.001 2 (4) 0 (0) 0.016
Internal enhancement patterns, No (%)
Homogeneous 11 (5.8) 7 (12.5) 2 (4) 4 (18.2)
Heterogeneous 127 (66.5) 34 (60.7) 36 (72) 12 (54.5)
Clumped 46 (24.1) 13 (23.2) 9 (18) 6 (27.3)
Clustered ring 7 (3.7) 2 (3.6) 0.438 3 (6) 0 (0) 0.474
TIC pattern, No (%)
Persistent 11 (5.8) 33 (58.9) 3 (6) 12 (54.5)
Plateau 82 (42.9) 18 (32.1) 27 (54) 9 (40.9)
Washout 98 (51.3) 5 (8.9) <0.001 20 (40) 1 (4.5) <0.001
Minimum ADC value, mean ± SD, 10^-6 mm2/s 769.3 ± 173.4 914.2 ± 247.8 <0.001 730.1 ± 147.8 898.5 ± 118.1 <0.001
MRI reported- ALN status, No (%)
ALN-positive 70 (36.6) 4 (7.1) 15 (30) 0 (0)
ALN-negative 121 (63.4) 52 (92.9) <0.001 35 (70) 22 (100) 0.003
MIP
positive 117 (61.3) 17 (30.4) 16 (32) 8 (36.4)
negative 74 (38.7) 39 (69.6) <0.001 34 (68) 14 (63.6) 0.789
Radiomics score, median (interquartile range) 1.833 (1.320to 2.391) 0.368 (-0.335 to 0.977) <0.001 1.453 (1.108 to 2.074) 0.376 (-0.161 to 0.925) <0.001
September 20
21 | Volume 11 | Article
Percentages may not add up to 100 because of rounding. TIC, Time Intensity Curve; BPE, Background Parenchymal Enhancement; FGT, Fibro glandular Tissue; ALN, Axillary Lymph
Nodes; MIP, Maximum Intensity Projection.
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Rad − score  =   − 0:594 original _ shape _ SurfaceVolumeRatioð Þ
+ 0:061 wavelet :HLL _ glcm _ ldnð Þ
− 0:176 original _ firstorder _ Skewnessð Þ
+ 0:343 wavelet : LLH _ glcm _ ldmnð Þ
− 0:017 original _ glszm _ SmallAreaEmphasisð Þ
+ 0:110 wavelet : LLL _ firstorder _Kurtosisð Þ
+ 1:468

Of the six features, the biggest weight was given to the shape
feature (Surface Area to Volume Ratio). A significant difference
in the Rad-score between benign and malignant NMEs was
found in the training cohort (P<0.001). The AUC, sensitivity,
Frontiers in Oncology | www.frontiersin.org 6
and specificity of the radiomics multivariable logistic regression
alone for NME differentiation was 0.864 (95%CI: 0.805-0.923),
0.827 (95%CI: 0.770-0.880), and 0.804 (95%CI: 0.696-0.893)
(Figure 3, Table 3). After adding the radiomics analysis into
the clinical multivariate regression model, MR-reported ALN
status was no longer an independent factor of malignancy. We
built a nomogram for the training cohort based on the TIC types
and the radiomics signature (Figure 4), the specificity of which
was improved from 0.589 (95%CI: 0.464- 0.714) in the clinical
model to 0.839 (95%CI: 0.750- 0.862) in the combined model
(Table 3). The final regression equation and correlation
coefficients were calculated. In Table 3, the parameters in
detail are reported. Using ROC curve analysis, the optimal
cutoff value of the final regression equation was 0.772. Lesions
with values below the cutoff value are judged as benign, while
those with values exceeding the cutoff value are judged
as malignant.
TABLE 3 | Risk factors for malignancy and the performance of the clinical and combined models for breast non-mass enhanced (NME) lesions.

Intercept and Variable Clinical model Radiomics model Combined model

b Odds Ratio (95% CI) P NA b Odds Ratio (95% CI) P

Intercept -3.064 <0.001 NA -3.167 <0.001
TIC types 2.049 7.761 (4.225 to14.259) <0.001 NA 1.463 4.319 (2.310 to 8.074) <0.001
MR-reported ALN status 1.399 4.052 (1.262 to13.009) 0.019 NA 0.680 1.975 (0.526 to 7.419) 0.314
Radiomics signature NA NA NA NA 1.173 3.233 (1.963 to 5.325) <0.001
AUC
Training cohort 0.852 (0.798 to 0.906) 0.864 (0.805 to 0.923) 0.908 (0.864 to 0.952)
Validation cohort 0.842 (0.758 to 0.926) 0.876 (0.791 to 0.962) 0.901 (0.827 to 0.974)
Sensitivity
Training cohort 0.942 (0.906 to 0.974) 0.827 (0.770 to 0.880) 0.896 (0.817 to 0.916)
Validation cohort 0.940 (0.860 to 1.000) 0.800 (0.680 to 0.900) 0.820 (0.700 to 0.920)
Specificity
Training cohort 0.589 (0.464 to 0.714) 0.804 (0.696 to 0.911) 0.839 (0.750 to 0.862)
Validation cohort 0.545 (0.364 to 0.727) 0.863 (0.727 to 1.000) 0.864 (0.682 to 1.000)
September
 2021 | Volume 11 | Article
b is the regression coefficient; NA, not applicable; TIC, time-intensity curve; ALN, axillary lymph node; AUC, area under the curve.
A B

FIGURE 2 | Texture feature selection. (A) Using the LASSO model, tuning parameter (l) selection was according to a 5-fold cross-validation. Using the minimum
criteria and the 1 standard error of the minimum criteria, dotted vertical lines were drawn for the optimal values. A l value of 0.0495 with a log (l) of -3.005783 was
chosen for the 5-fold cross-validation. (B) According to the log (l) sequence, a coefficient profile plot was produced. At the value selected with the 5-fold cross-
validation, a vertical line was drawn, where the optimal l resulted in six non-zero coefficients.
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A B

FIGURE 3 | Receiver operating characteristic (ROC) curves of the clinical model, radiomics signature, and combined model to differentiate benign from malignant
non-mass enhancement (NME) lesions. (A) Three methods in the training cohort; (B) Three methods in the validation cohort.
A

B C

FIGURE 4 | The combined nomogram for differentiating benign and malignant non-mass enhancement (NME) lesions. (A) The radiomics nomogram developed
with the training cohort included time-intensity curve (TIC) types and radiomics signatures. (B, C) Calibration curves of the combined model in the training (B) and
validation (C) cohorts. The Bias-corrected line represents the nomogram performance. The closer the red Bias-corrected line is to the diagonal dotted (ideal) line
indicates a better differentiation performance.
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3.2.2 Validation Cohort
In the validation cohort, there was also a significant difference in
the Rad-score between benign and malignant NMEs (P<0.001).
After adding the Rad-score analysis into the clinical model, the
specificity increased from 0.545 (95%CI: 0.364- 0.727) to 0.864
(95%CI: 0.682- 1.000) (Table 3).

For the differentiation between benign and malignant NMEs,
the calibration curve of the combined model demonstrated
excellent agreement between the prediction and real pathologic
results in the training cohort as well as the validation cohort
(Figure 4). In clinical medicine, the decision curve analysis for
the combined model was developed according to a previous
study (28) and is showed in Figure 5. The decision curve
demonstrated that if the threshold probability was >19%, the
nomogram could add more benefit to the discrimination of
benign and malignant NMEs than the clinical model.

3.3 Consistency Validation
Based on the comparisons of radiomics feature measurements
assessed one month apart by reader 1, the intra-observer
agreement was excellent (ICC value=0.936, 95%CI: 0.929 to
0.942). Using the second measurements of the 60 patients
assessed by reader 1 and the features extraction of the same
data set assessed by reader 2, inter-observer was also excellent
(ICC value =0.887, 95%CI: 0.876 to 0.898).

Figures 6 and 7 show two cases in detail.

3.4 Specificity Changes
Considering the low specificity in the conventional clinical
analysis, we conducted an analysis for the false positive (FP)
lesions (n=33) and the true negative (TN) lesions (n=45) on the
Frontiers in Oncology | www.frontiersin.org 8
basis of the conventional clinical analysis in the whole cohort (78
benign NMEs). The results showed that compared to the TN
lesions, the FP lesions had a significant larger proportion of
moderate or marked BPE (P=0.004), plateau or washout type of
TIC (P<0.001), and positive MIP sign (P<0.001). Of the 33 FP
NMEs, 30 (90.9%) lesions were confirmed as adenosis, and the
other 3 lesions were chronic inflammation. In addition, 21 of 33
(63.6%) FP lesions were categorized as malignancy applying the
final combined model.
4 DISCUSSION

In this study, we developed a clinical model that consisted of
clinical characteristics, morphologic lesion assessments, the ALN
status, TIC assessments on DCE-MRI, and minimum ADC
values on DWI to differentiate benign and malignant NMEs.
This model showed high sensitivity and low specificity in both
the training (0.942, 0.589) and validation (0.940, 0.545) cohorts.
To investigate the added value of the radiomics signature for
NME differentiation, we added radiomics features derived from
early phase DCE-MRI to the clinical model and built the
combined model. The combined model achieved a higher
specificity in the training (0.839) and validation (0.864) cohorts.

For the morphologic analysis, we used early phase images
after contrast agent injection for NME evaluations because
NMEs can be affected and obscured by more pronounced
BPEs on the delayed phase images (29). Remarkably, although
morphologic assessments, including distribution and internal
enhancement patterns, were reported effective in previous
studies (13–15), our study demonstrated that these
morphologic features were not independently associated with
NME differentiation, which is consistent with the results of a
study by Naoko Mori et al. (10). Conversely, this lack of an
independent association with morphologic features could be
explained by decision-making pitfalls caused by the subjective
judgment of visual examinations and by the variance of
morphologic proportions contained in different study cohorts.
In China, this can happen because the national breast cancer
screening program is largely lacking compared with other
countries; therefore, the lesions in the cohort of our study had
larger sizes and a higher proportion of regional distributions and
heterogeneous enhancement patterns. Thus, considering the
potential role and subjective nature of morphologic
assessments, we drew ROIs covering the whole lesion in each
image plane and investigated the performance of the radiomics
signatures alone, achieving a high sensitivity (82.7%) and
specificity (80.4%). Of the six selected radiomics features, the
surface area to volume ratio was given a maximum negative
correlation (-0.594); lower ratios indicated a greater likelihood of
NME malignancy, which is hard to identify with the human eye.
Overall, these results indicated an important role for
morphologic assessments in differentiating benign and
malignant NMEs. However, it also indicated that histological
patterns enrolled in the study may impact on the sensitivity and
specificity of the model. The number of lesions in this study is
FIGURE 5 | Decision curve analysis of the combined model. The Y-axis
demonstrates the net benefit to patients. As indicated in the curve, the net
benefit of using the combined model to differentiate benign and malignant
NME lesions is greater than when the clinical model is used at a threshold
probability of > 0.19.
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relatively small, and further research should be undertaken in a
large cohort to investigate the impact of different histological
patterns on the differentiation performance of the model.

A previous study observed that minimum ADC values
potentially suggested the presence of an invasive component in
ductal carcinoma in situ (DCIS) (30). In our study, we applied
the same approach for malignant component detection. To
perform this approach, we assumed that the area with
minimum ADC values corresponded to the region with the
highest tumor cell density, reflecting malignancy. However, we
demonstrated that malignant lesions had significantly lower
minimum ADC values than benign lesions. The multivariate
analysis indicated that the minimum ADC value was not an
independent factor for the discrimination of benign and
malignant lesions, suggesting a limited role for DWI. These
results are consistent with those of some recent studies (9, 31).

Naoko Mori et al. reported that kinetic assessments might be
more important than the morphologic assessments in
Frontiers in Oncology | www.frontiersin.org 9
differentiating benign from malignant NMEs on the ultrafast
DCE-MRI (10). In this study, we employed a similar ultrafast
DCE-MRI approach and achieved similar results. Comparatively,
malignant lesions tended to have more neovascularization (32).
Thus, it is reasonable to set the ROI on the brightest areas
of the images during the very early phase after contrast injection
to obtain TIC curves. The selection of higher TIC curve
types could provide greater detection of malignant components
in the lesion enhancements. The TIC type alone gave a
higher sensitivity (94.2%) and lower specificity (58.9%) for
NME differentiation.

Our results showed that MR-reported ALN alone offered a
higher specificity (92.9%) and lower sensitivity (36.6%) than
conventional DCE-MRI assessments, which could be explained
since less axillary lymphadenopathy was detected on the MRI
images of most patients with malignant or benign lesions in this
study. However, this situation was not consistent with what is
seen in clinical practice.
A B

DC

FIGURE 6 | A 49 years old woman diagnosed as BIRADS 4 preoperatively by radiologists and confirmed as adenosis by operation. (A) Axial dynamic contrast-
enhancement images obtained in the very early phase (about 90 seconds) show a non-mass enhancement lesion with segmental distribution in the right breast.
(B) On the ADC map, multiple ROIs are placed to cover the whole area of the lesion. The ADC map shows the minimum ADC value of the ROIs is 1056 ×10−6 mm2/s.
(C) After drawing the TIC curves for all ROIs at the brightest part on each slice, the high-level TIC curve type of this lesion is persistent type. (D) Using the ITK-SNAP
software, the whole lesion was segmented. Finally, the logistic regression equation of the combined model for this lesion was calculated as 0.669, which was lower than
the cut-off value 0.772 and adjudicated as benign lesion, consistent with the pathological results.
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The analysis of low specificity showed that moderate or
marked BPE, plateau or washout TIC, and MIP positive status
may be prone to yield false positive results for NMEs in the
conventional clinical analysis. It further indicated the difficulty
and complexity of differentiation in clinical practice. Finally, the
combined model of clinical features with added radiomics
signature features improved the specificity in both the training
(0.839) and validation cohorts (0.864). Given the comparable
proportion of benign and malignant lesions and the good
agreement between observers, the improved performance
indicated that the radiomics signature was robust for the
differentiation of benign and malignant NME lesions. The
nomogram was primarily used to improve personalized
diagnostics. The results of our study might suggest that
additional radiomics signatures could help improve the
specificity of differentiating benign and malignant NME lesions
and avoid unnecessary biopsies. However, further studies with
larger sample sizes are needed.
Frontiers in Oncology | www.frontiersin.org 10
There were several limitations in our study. A primary
limitation was the retrospective nature of the analysis, making
potential selection bias difficult to avoid. Second, most of the
patients in our hospital underwent breast MRI scans for two
possible indications; preoperative staging for known breast
cancer and further scanning for suspicious lesions in high-risk
patients. Thus, the proportion of malignant lesions in
our cohort was high, and there was a difference in the
malignant/benign ratio between the training and validation
cohorts. Third, the morphologic assessments and parameter
measurements were accomplished by two radiologists using a
consensus, and further research is needed to validate the
repeatability of inter- and intra-observer. Fourth, the
maximal diameters and morphologic assessments were
recorded in the early phase to avoid being affected by BPEs;
thus, some lesions with progressive enhancements might not
have been evaluated accurately. Optimal timing needs to be
determined in future studies.
A B

DC

FIGURE 7 | A 44 years old woman diagnosed as BIRADS 4b preoperatively by radiologists and confirmed as invasive ductal carcinoma by operation. (A) Axial
dynamic contrast-enhancement images obtained in the very early phase (about 90 seconds) show a non-mass enhancement lesion with segmental distribution in the
right breast. (B) The ADC map shows the minimum ADC value of the ROIs is 745 ×10−6 mm2/s. (C) After drawing the TIC curves for all ROIs at the brightest part on
each slice, the high-level TIC curve type of this lesion is washout type. (D) Using the ITK-SNAP software, the whole lesion was segmented. Finally, the logistic
regression equation of the combined model for this lesion was calculated as 0.989, which was higher than the cut-off value 0.772 and adjudicated as malignant
lesion, consistent with the pathological results.
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In conclusion, the clinical multivariate regression analysis
indicated that TIC patterns and ALN status were independent
factors for the differentiationof benignandmalignantNME lesions.
Our results demonstrated that a radiomics nomogram combining
clinical factors with radiomics signatures derived from early phase
DCE-MRI could achieve high sensitivity and specificity for NME
differentiation. Additional radiomics signatures could be used to
improve specificity and avoid unnecessary biopsies.We believe that
our model may not substitute but could improve conventional
diagnostic workflow.However, amore extensive analysis with large
samples is needed.
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