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Background: Many patients experience recurrence of renal cell carcinoma (RCC) after
radical and partial nephrectomy. Radiomics nomogram is a newly used noninvasive tool
that could predict tumor phenotypes.

Objective: To investigate Radiomics Features (RFs) associated with progression-free
survival (PFS) of RCC, assessing its incremental value over clinical factors, and to develop
a visual nomogram in order to provide reference for individualized treatment.

Methods: The RFs and clinicopathological data of 175 patients (125 in the training set
and 50 in the validation set) with clear cell RCC (ccRCC) were retrospectively analyzed. In
the training set, RFs were extracted from multiphase enhanced CT tumor volume and
selected using the stability LASSO feature selection algorithm. A radiomics nomogram
final model was developed that incorporated the RFs weighted sum and selected clinical
predictors based on the multivariate Cox proportional hazard regression. The
performances of a clinical variables-only model, RFs-only model, and the final model
were compared by receiver operator characteristic (ROC) analysis and DeLong test.
Nomogram performance was determined and validated with respect to its discrimination,
calibration, reclassification, and clinical usefulness.

Results: The radiomics nomogram included age, clinical stage, KPS score, and RFs
weighted sum, which consisted of 6 selected RFs. The final model showed good
discrimination, with a C-index of 0.836 and 0.706 in training and validation, and good
calibration. In the training set, the C-index of the final model was significantly larger than
the clinical-only model (DeLong test, p = 0.008). From the clinical variables-only model to
the final model, the reclassification of net reclassification improvement was 18.03%, and
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the integrated discrimination improvement was 19.08%. Decision curve analysis
demonstrated the clinical usefulness of the radiomics nomogram.

Conclusion: The CT-based RF is an improvement factor for clinical variables-only model.
The radiomics nomogram provides individualized risk assessment of postoperative PFS
for patients with RCC.
Keywords: renal cell carcinoma (RCC), Radiomics, CT, progression-free survival (PFS), predict model,
artificial intelligence
INTRODUCTION

Renal cell carcinoma (RCC) is a malignant tumor originating from
the proximal tubular epithelial system of renal parenchyma, and
accounts for about 85% of all adult renal malignant tumors. It is
estimated that, in 2020, there were 431,288 new cases of RCC
worldwide, resulting in 179,368 deaths, and accounting for 2.2%
and 1.8% of global new cancer morbidity and mortality,
respectively. In addition, the incidence of renal cancer is
increasing yearly (1). The clear cell renal cell carcinoma
(ccRCC) is the most common subtype accounting for about
75% of all RCC (2), and is associated with high invasion and
poor prognosis (3, 4). According to the AJCC Tumor
Classification Criteria eighth Edition (2017) (5), surgery is the
preferred treatment for patients with stage I–III RCC, and is
associated with a 5-year survival rate of 71% to 91% (6). However,
approximately 20% to 30% of patients will relapse after surgery (7).
If we can predict these patients with high risk of recurrence before
surgery, and give them targeted treatment and close follow-up, it
will be very helpful to improve the prognosis of these patients.

Traditional radiotherapy and chemotherapy have poor
efficacy for RCC, and there are no effective adjuvant therapies
for RCC. A recent clinical trial showed that a subset of patients
with more aggressive disease could benefit from targeted therapy
after surgery (8). According to National Comprehensive Cancer
Network and European Association of Urology guidelines,
adjuvant therapy can reduce the recurrence rate of stage III
ccRCC, which is associated with a high recurrence risk. However,
about 50% of patients in this high-risk subgroup still do not have
postoperative recurrence, and do not need to receive expensive
adjuvant targeted therapy. Therefore, there is a need to develop
prognostic factors to identify patients who will and will not
benefit from adjuvant targeted therapy.

There are currently no markers for a diagnosis of RCC.
Tumor stage and pathological nuclear grade are the most
important prognostic factors. Nevertheless, distinct outcomes
are demonstrated in patients with equivalent tumor-node-
metastasis stage and pathological grade; they cannot fully
address the issue of individualized treatment for patients with
different recurrence risks (9, 10).

The field of artificial intelligence and radiomics has developed
rapidly in recent years. Many studies have demonstrated that
radiomics can be used to assess the heterogeneity of tumors, thus
providing clinicians with more accurate prognostic information
to inform treatment decisions (11–13). It has been increasingly
reported that radiomics can be used for differentiating benign
2

and malignant renal tumors, as well as discriminating high and
low Fuhrman nuclear ccRCC (14, 15). However, to the best of
our knowledge, no study has evaluated radiomics for its ability to
predict the aggressive potential of ccRCC.

The purpose of this study was to investigate Radiomics
Features (RFs) associated with progression-free survival (PFS)
of RCC, assessing its incremental value over clinical factors, and
to develop a visual nomogram in order to provide reference for
individualized treatment and prognosis evaluation of RCC.
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Ethics Committee of
Southern Medical University, and because of the retrospective
nature of the analysis, the requirement of informed patient
consent was waived. The data of patients with RCC who were
treated in the Department of Urology, NanfangHospital, Southern
Medical University, from March 2011 to March 2016 were
retrospectively collected. Patients were randomly divided into a
training set and validation set in a ratio of approximately 7:3.
Clinical, pathological, and surgical data collected included age, sex,
symptoms (low back pain, hematuria, emaciation, low-grade fever,
cough, abdominal mass, and paraneoplastic syndrome), the
interval from diagnosis to treatment, Karnofsky performance
status (KPS) score, hemoglobin level, serum calcium level,
neutrophil count, platelet count, maximum tumor size, stage,
and pathological subtype, WHO/ISUP nuclear grade, overall
tumor size, growth pattern, necrosis and calcification, treatment
method, and adjuvant treatment. Inclusion criteria for the study
were as follows: (1) Histological subtype ccRCC; (2) Clinical stage
I–III (stage I–II, T1-2N0M0 and stage III, T1-2N1M0, T3N0-
1M0); (3) Received radical nephrectomy or partial nephrectomy;
and (4) Complete enhanced computed tomography (CT) imaging
data, containing non-contrast phase (NCP), cortico-medullary
phase (CMP), nephrographic phase (NP), and excretory phase
(EP). Patients with a complete cystic renal tumor, positive tumor
margins, and inadequate CT images were excluded.

CT Parameters
A Siemens 64-slice (Somatom Definition CT scanner; Siemens
Medical Solutions Company, Malvern, PA, USA) CT scanners
were used. A supine CT scan was performed from the
diaphragmatic apex to the lower poles of both kidneys with
January 2022 | Volume 11 | Article 742547
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breath holding using the following parameters: CT tube voltage =
120 kV, tube current = 150–320 mA, layer thickness = 5 mm,
layer spacing = 5 mm, field of view = 360 mm, matrix = 512 ×
512. After obtaining unenhanced images, Omnipaque (GE
Healthcare) was injected into the anterior elbow vein with a
high-pressure syringe at a dose of 2 ml/kg and an injection rate of
2.5 ml/s, with a maximum dose of 160 ml. Enhanced CT
scanning was started at 25–30 s, 75–80 s, and 180–200 s.

Image Segmentation
Image segmentation was performed by 2 radiologists with 5 and 8
years, respectively, of abdominal imaging diagnosis experience
using ITK-snap software. CT images were obtained from the
PACS system, with a window width of 300–400 HU, a window
level of 45–65 HU, and a slice thickness of 5 mm. The volume of
the tumor was selected as the region of interest (ROI), and the
edges were kept about 1 mm away from tumor edges to reduce
interference from adjacent tissues (such as fat or normal renal
tissue). Based on the threshold, areas with CT values less than −55
HU and greater than 350 HU pixels were filtered out. Intra-group
and inter-group correlation coefficients (ICCs) were used to ensure
stability and repeatability. First, 40 images were randomly
segmented by the 2 physicians to assess reproducibility between
groups. A week later, Doctor A repeated the same procedure to
assess the reproducibility within the group. The results showed that
ICC > 0.80 between groups and within groups; it means that the
image segmentation was consistent, and the remaining image
segmentation was performed by Dr. A.

Radiomics Feature Extraction and Selection
RFs were extracted, preprocessed, and filtered from segmented
images using the PyRadiomics computing platform. First, the
Frontiers in Oncology | www.frontiersin.org 3
original CT images and 3D segmented images were imported
into the platform for loading. Then, the image was preprocessed
based on the Simple ITK software package embedded in the
platform to ensure that the isotropic voxels of texture feature
and shape feature are equidistant from adjacent bodies in all
directions. Then, the preprocessed image was filtered based on the
platform built-in filter, including PyWavelets and Simple ITK for
wavelet filter and logarithmic filter, and NumPy for the remaining
filters. Finally, four custom feature extraction methods based on
the platform were used for radiomics feature extraction.

In the training set, feature selection was performed based on
the stability LASSO algorithm. It performed through 100 times
hierarchical 5-fold cross-validation. The LassoCV method used
automatically found the optimal penalty coefficient a value
through k-fold cross-verification. The criterion of a selection is
to minimize generalization error. RFs were extracted in the
training set with 5-fold cross-validations, and RFs with R2 >
0.8 were retained in the 5-fold cross-validation test set. The top
20% RFs of the 100 times 5-fold cross-validation were selected as
the final features (Figure 1).

Development of Clinical Variable-Only,
RFs-Only, and the Final Model
Multivariate Cox proportional hazard regression models were used
to estimate the correlation coefficients of selected RFs to PFS, and to
calculate the RFs-weighted sum as an independent variable in both
training and validation sets. In the training set, univariate and
multivariate Cox proportional hazard regression models were used
to investigate factors associated with PFS. Independent variables
with a value of p < 0.05 in univariate results were entered into a
multivariate model, and variables that were significant in the
multivariate model were considered factors associated with PFS,
FIGURE 1 | Image segmentation and feature extraction, selection schematic diagram.
January 2022 | Volume 11 | Article 742547

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhang et al. Radiomics for RCC Survival
and estimated hazard ratios (HRs) were calculated. The final
associated factors were used to build a multivariate Cox
regression model. The optimal cutoff value of continuous
variables was determined by the maximally selected rank statistics
from the “maxstat” R package and used to predict PFS. Kaplan-
Meier function was used to predict PFS for categorical variables.

Assessment of the Performance of
Different Models
The probabilities were used as an independent continuous
variable in receiver operating characteristic (ROC) curve
analysis, and the C-index (area under curve the ROC curve
[AUC]) and likelihood parameters were determined. A cutoff
value was determined by maximizing the Youden index and used
to predict PFS. ROC analysis was used in the validation set to
assess the final model’s diagnostic effectiveness.

To compare the performance of a clinical variable-only
model, RFs-only model, and the final model, ROC analysis and
the DeLong test were used. The Hosmer–Lemeshow test was
used to check the calibration. Decision curve analysis was used to
observe the net benefits. Finally, index net reclassification
improvement (NRI) and integrated discr iminat ion
improvement (IDI) were used to calculate the increment from
the clinical variables-only model to the final model.

Statistical Analysis
Continuous data were presented as mean ± standard deviation,
and categorical data were presented as number and percentage
(%). For comparisons of means between groups, Student’s
independent t-test or Mann–Whitney U test was used,
depending on normality assumption. Categorical data were
tested using chi-square test or Fisher’s exact text (if an expected
value ≤ 5 was found). In all analysis, a 2-tailed value of p < 0.05 was
considered to indicate statistical significance. Statistical analyses
were performed using IBM SPSS version 25 software (IBM
Corporation, Somers, New York). A nomogram was established
using the associated factors in the training set with R statistical
software (version 3.5.2) and the “rms” package. The surv_cutpoint
function in the “surviminer” package finds the best cutoff value for
a continuous variable. The “Predict ABEL” package is used to
calculate the NRI and IDI. The decision curve analysis was also
performed with R software and “rmda” package.
RESULTS

Patient Clinical Characteristics and RFs of
the Training and Validation Sets
A total of 175 patients were included in the analysis, with 125 in
the training set and 50 in the validation set. The mean age of the
training set was 52.31 ± 14.51 years, and that of the validation
was 52.06 ± 13.19 years. The male:female ratio of the training set
was 2.05:1, and that of the validation set was 1.63:1. The mean
PFS of the training set was 55.83 ± 22.25 months, and that of the
validation set was 61.06 ± 20.29 months. In the training set and
Frontiers in Oncology | www.frontiersin.org 4
TABLE 1 | Patient’s clinical characteristics between training set and validation
set.

Parameters Training set
(n = 125)

Validation set
(n = 50)

p

Age, years 52.31 ± 14.51 52.06 ± 13.19 0.915
Gender 0.513
Male 84 (67.20%) 31 (62.00%)
Female 41 (32.80%) 19 (38.00%)

Symptoms 0.811
No 65 (52.00%) 25 (50.00%)
Yes 60 (48.00%) 25 (50.00%)

Interval from diagnosis to treatment 1.000
>1 year 115 (92.00%) 46 (92.00%)
<1 year 10 (8.00%) 4 (8.00%)

KPS score 0.064
score ≥80 115 (92.00%) 50 (100.00%)
score <80 10 (8.00%) 0 (0.00%)

Hemoglobin 0.451
≥120 g/L 96 (76.80%) 41 (82.00%)
<120 g/L 29 (23.20%) 9 (18.00%)

Serum calcium 1.000
<10.2 mg/dl 117 (93.60%) 47 (94.00%)
>10.2 mg/dl 8 (6.40%) 3 (6.00%)

Neutrophils 0.367
≤7 × 109/L 109 (87.20%) 46 (92.00%)
>7 × 109/L 16 (12.80%) 4 (8.00%)

Platelet 0.240
≤ Normal level 92 (73.60%) 41 (82.00%)
> Normal level 33 (26.40%) 9 (18.00%)

Tumor size group 0.737
<40 54 (43.20%) 18 (36.00%)
40–<70 49 (39.20%) 22 (44.00%)
70–<100 15 (12.00%) 8 (16.00%)
≥100 7 (5.60%) 2 (4.00%)

T stage 0.539
T1 97 (77.60%) 38 (76.00%)
T2 16 (12.80%) 9 (18.00%)
T3 12 (9.60%) 3 (6.00%)

N stage 0.760
N0 115 (92.00%) 47 (94.00%)
N1 10 (8.00%) 3 (6.00%)

Clinical stage 0.306
Stage I–I: T1-2N0M0 105 (84.00%) 45 (90.00%)
Stage III: T1-2N1M0, T3N0-1M0 20 (16.00%) 5 (10.00%)

WHO/ISUP nuclear grade 0.160
Low 91 (72.80%) 31 (62.00%)
High 34 (27.20%) 19 (38.00%)

Grow pattern 0.241
Outside 40 (32.00%) 20 (40.00%)
Middle 60 (48.00%) 17 (34.00%)
Inside 25 (20.00%) 13 (26.00%)

Necrosis 0.956
No 32 (25.60%) 13 (26.00%)
Yes 93 (74.40%) 37 (74.00%)

Calcification 0.855
No 101 (80.80%) 41 (82.00%)
Yes 24 (19.20%) 9 (18.00%)

Surgery type 0.586
Partial nephrectomy 48 (38.40%) 17 (34.00%)
Radical nephrectomy 77 (61.60%) 33 (66.00%)

Adjuvant therapy 0.551
No 107 (85.60%) 41 (82.00%)
Yes 18 (14.40%) 9 (18.00%)

PFS, month 55.83 ± 22.25 61.06 ± 20.29 0.152

(Continued)
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validation set, 32.80% and 24.00% of patients experienced disease
progression, respectively. Patient characteristics are summarized
in Table 1, all clinical characteristics, follow-up results, and RFs
of the training set and validation set were comparable (all,
p > 0.05).

A total of 107 RFs were extracted from the 3D multiphase CT
images of each phase of each patient. The RF features were
categorized as follows: (1) first-order statistics, (2) shape-based
features, and (3) texture features. Of the 107 RFs, there were18
first-order statistics features, 14 shape-based features, 24 gray-
level cooccurrence matrix (GLCM) features, 16 gray-level size
zone matrix (GLSZM) features, 16 gray-level run length matrix
(GLRLM) features, 14 gray-level dependence matrix (GLDM)
features, and 5 neighboring gray-tone difference matrix
(NGTDM) features. A total of 428 (4×107) RFs were extracted
from the 4 phase CT images. There were 6 RFs final selected,
including X1, X2, X3, X4, X5, and X6. Table 2 shows RF’s
designation, phase, abbreviation, classification, and description.
A multivariate Cox regression model for PFS of the training set
was established to integrate the RFs indices into a single index,
the RFs-weighted sum, using the formula: RFs weighted sum =
Frontiers in Oncology | www.frontiersin.org 5
5.5056 × 10-5 × X1 + 0.0013 × X2 + 0.0028 × X3 + 0.0053 × X4 −
10.4363 × X5 + 0.0048 × X6.

Predictive Model of PFS Using the
Training Set
The univariate and multivariate Cox regression analyses results
of the relations of independent variables to PFS in the training set
are shown in Table 3. Variables significant in univariate results
were entered into the multivariate model. Because of the high
correlation between T stage and clinical stage (r = 0.63, p <
0.001), T stage was excluded in the final model. Thus, the final
model for PFS was established using age, clinical stage, KPS
score, and RFs-weighted sum (Table 4).

The results showed that patients with higher age, higher
clinical stage, KPS score < 80, and larger RFs-weighted sum
were more likely to have disease progression. The surv_cutpoint
functions for age and RFs-weighted sum are shown in
Figures 2A, B, the cutoff value of RFs-weighted sum and age
was 48 and −0.73, and significant differences were found between
age ≥ 48 and < 48 (p = 0.013) and between RFs-weighted sum ≥
−0.73 and < −0.73 (p < 0.001).The Kaplan–Meier survival
functions for clinical stage and KPS score are shown in
Figures 3A, B, and significant differences were found between
clinical stage I–II and III (p < 0.001), and between KPS score ≥ 80
and < 80 (p = 0.006).

ROC Analysis and Nomogram
Table 5 and Figure 4 show the results of ROC analysis of the
final models of the training set and validation set. The C-index of
training and validation models was 0.836 and 0.706, respectively.
The Hosmer–Lemeshow test indicated that the final models of
the training set (chi-square = 15.05, p = 0.058) and validation set
(chi-square = 13.84, p = 0.086) were acceptable. A nomogram of
the final model was established for clinical use (Figure 5), and
included risk estimations of PFS, and 1-, 3-, and 5-year survival.

Comparisons of Clinical Variables-Only,
RFs-Only, and Final Models
Three models were compared to investigate the importance
of the RFs indices. The models included a clinical variables-
only model (age, clinical stage, and KPS score), RFs-only model
TABLE 1 | Continued

Parameters Training set
(n = 125)

Validation set
(n = 50)

p

Progression 0.252
No 84 (67.20%) 38 (76.00%)
Yes 41 (32.80%) 12 (24.00%)

1-year survival 121 (96.80%) 49 (98.00%) 1.000
3-year survival 107 (85.60%) 47 (94.00%) 0.122
5-year survival 98 (78.40%) 44 (88.00%) 0.142
RFs
X1 160.39 ± 181.67 134.74 ± 149.50 0.377
X2 54.58 ± 54.19 59.69 ± 71.86 0.609
X3 37.42 ± 17.05 36.21 ± 15.84 0.665
X4 60.72 ± 34.13 59.03 ± 26.54 0.753
X5 0.21 ± 0.09 0.22 ± 0.09 0.739
X6 59.40 ± 41.28 66.25 ± 66.52 0.412

RFs weighted sum −1.41 ± 1.28 −1.44 ± 1.31 0.900
NCP, Non-contrast phase; CMP, cortico-medullary phase; NP, nephrographic phase; EP,
excretory phase.
TABLE 2 | Patient’s selected RF’s designation, phase, abbreviation, classification, and description.

Phase Designation Abbreviation Category Description

Corticomedullary
phase

Size-Zone Non-
Uniformity

X1 GLSZM The variability of size zone volumes in the image, with a lower value indicating more homogeneity in
size zone volumes.

Corticomedullary
phase

Complexity X2 NGTDM An image is considered complex when there are many primitive components in the image, i.e., the
image is non-uniform and there are many rapid changes in gray-level intensity.

Corticomedullary
phase

Least Axis
Length

X3 Shape This feature yield the smallest axis length of the ROI-enclosing ellipsoid and is calculated using the
largest principal component l least.

Excretion period Maximum 2D
Diameter Row

X4 Shape It is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the
column-slice (usually the sagittal) plane.

Non-enhanced
phase

Surface Volume
Ratio

X5 Shape A lower value indicates a more compact (sphere-like) shape. This feature is not dimensionless, and is
therefore (partly) dependent on the volume of the ROI.

Parenchyma
phase

Maximum 2D
Diameter Slice

X6 Shape It is defined as the largest pairwise Euclidean distance between tumor surface mesh vertices in the
row-column (generally the axial) plane.
January 2022 | Volume 11 | Article 742547
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TABLE 3 | Univariate and Multivariate Cox-regression results in training set.

Parameters Univariate Multivariate

HR (95% CI) p HR (95% CI) p

Age, years 1.03 (1.00 to 1.05) 0.032 1.04 (1.01 to 1.07) 0.012
Gender
Male ref. –

Female 1.44 (0.77 to 2.68) 0.251
Symptoms
No ref. –

Yes 1.06 (0.58 to 1.96) 0.842
Interval from diagnosis to treatment
>1 year ref. –

<1 year 1.60 (0.57 to 4.49) 0.376
KPS score
score ≥80 ref. – ref. –

score <80 3.21 (1.34 to 7.69) 0.009 2.80 (0.99 to 7.94) 0.035
Hemoglobin
≥120 g/L ref. –

<120 g/L 1.54 (0.78 to 3.01) 0.210
Serum calcium
<10.2 mg/dl ref. –

>10.2 mg/dl 1.79 (0.64 to 5.03) 0.271
Neutrophils
≤7 × 109/L ref. – ref. –

>7 × 109/L 2.27 (1.08 to 4.77) 0.031 1.62 (0.65 to 4.02) 0.299
Platelet
≤ Normal level ref. – ref. –

> Normal level 1.88 (1.00 to 3.52) 0.049 1.85 (0.76 to 4.52) 0.176
Tumor size group <0.001 0.181
<40 ref. – ref. –

40–<70 4.84 (1.94 to 12.10) <0.001 1.41 (0.42 to 4.69) 0.576
70–<100 12.73 (4.44 to 36.51) <0.001 5.48 (0.81 to 36.84) 0.080
≥100 19.98 (5.76 to 69.30) <0.001 7.76 (0.84 to 71.25) 0.070

T stage <0.001 0.015
T1 ref. – ref. –

T2 2.62 (1.16 to 5.90) 0.021 0.29 (0.08 to 1.05) 0.059
T3 5.65 (2.59 to 12.32) <0.001 0.04 (0.00 to 0.40) 0.006

N stage
N0 ref. – ref. –

N1 6.05 (2.60 to 14.11) <0.001 0.20 (0.03 to 1.30) 0.091
Clinical stage
Stage I–II: T1-2N0M0 ref. – ref. –

Stage III: T1-2N1M0, T3N0-1M0 5.90 (3.05 to 11.41) <0.001 66.14 (6.38 to 685.77) <0.001
WHO/ISUP nuclear grade
Low ref. –

High 1.86 (0.99 to 3.49) 0.052
Grow pattern 0.345
Outside ref. –

Middle 1.00 (0.48 to 2.09) 0.992
Inside 1.68 (0.74 to 3.82) 0.216

Necrosis
No ref. –

Yes 1.83 (0.81 to 4.14) 0.145
Calcification
No ref. – ref. –

Yes 2.34 (1.20 to 4.56) 0.013 1.98 (0.84 to 4.66) 0.117
Surgery type
Partial nephrectomy ref. –

Radical nephrectomy 1.35 (0.71 to 2.59) 0.359
Adjuvant therapy
No ref. –

Yes 1.16 (0.49 to 2.77) 0.732
RFs weighted sum 2.72 (1.95 to 3.78) <0.001 1.95 (1.00 to 3.80) 0.049
Frontiers in Oncology | www.frontiersin.org
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(RFs-weighted sum), and final model (age, clinical stage, KPS
score, and RFs-weighted sum). The ROC analysis of the models
is shown in Figure 6. It was found that the C-index of the final
model was significantly larger than the clinical-only model
(DeLong test, p = 0.008), but not significant compared to the
RFs-only model (p = 0.402). However, no significance was found
among the paired comparisons of models in the validation set (all
p > 0.05).

The decision curve analysis is shown in Figure 7. The net
benefit was higher in the final model than in the clinical
variables-only model all the time and also higher than that of
the RFs-only model after a 0.4 risk-threshold. The NRI from the
clinical variables-only model to the final model was 18.03% (Z =
1.80, p = 0.072), marginally significant; and the IDI was 19.08%
(Z = 6.39, p < 0.001).
DISCUSSION

In this retrospective analysis, we developed a radiomics
nomogram that incorporates three clinical factors and RFs-
Frontiers in Oncology | www.frontiersin.org 7
weighted sum for noninvasive, individualized prediction of PFS
in patients with clinical stage I–III ccRCC, which can enable
physicians to select reasonable treatment tactics and
individualized monitoring protocols to improve clinical
outcomes. To the best of our knowledge, this is the first
prediction model developed to predict PFS of resectable ccRCC
using CT-based radiomics. Through cross-validation and
calibration, the RFs selection of this study ensures reliability
and avoids over-fitting of the model (16). There were 41
progressive cases in the training set used for modeling, and the
nomogram contains 4 factors. The variable selection is consistent
with the 10–15 EPV (Event per Variable) criteria proposed by
Peduzzi et al. (17), indicating that the model is reliable. The
proposed radiomics nomogram demonstrated favorable
discrimination in both the training set (C-index, 0.836) and
validation set (C-index, 0.706), with high sensitivity, specificity,
and accuracy.

Many factors, including clinical, anatomical, pathological,
and molecular factors and treatment methods, are related to
the prognosis of RCC. Early treatment, being asymptomatic, and
a higher KPS score (>80) are very important for prolonging the
A

B

FIGURE 2 | Surv_cutpoint function and survival analysis of PFS in the training set. (A) RFs-weighted sum. (B) Age.
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survival of patients with RCC (18). Inflammatory cells (19–21),
the TNM classification, and the histological factors included
tumor nuclear grade, subtype, sarcomatoid features,
microvascular invasion, tumor necrosis, and collection system
invasion play a very important role in the tumor prognosis
(22, 23). Many molecular factors such as CAIX, VEGF, HIF,
Ki67, p53, p21, cell cycle PTEN, E-cadherin, CD44, and CXCR4,
Frontiers in Oncology | www.frontiersin.org 8
as well as other cell cycle and proliferation markers, may be
associated with the prognosis of RCC (24–27). Partial
nephrectomy is associated with improved survival of early
RCC (28). Park et al. (29) reviewed preoperative laboratory
data in 747 RCC patients and revealed that clinical
information supporting aggressive ccRCC included an older
age, larger size, lower hemoglobin, albumin, and calcium, as
well as higher platelet and neutrophil. However, few radiologic
parameters have been reported as prognostic factors of ccRCC in
contrast to pathological markers. We enrolled these variables in
this study; univariate Cox regression analysis showed that age,
KPS score, neutrophils, tumor size, T stage, N stage, clinical
stage, and calcification were associated with PFS, which was
consistent with previous studies. However, affected by the RFs
weighted sum, the clinical factors of the final model were only
age, KPS score, and clinical stage. While RCC can be seen in all
age groups, the median age of onset is 64 years, with a high
incidence ranging from 50 to 70 years old. The mean age of
A

B

FIGURE 3 | Kaplan–Meier survival analysis of PFS in the training set. (A) Clinical stage. (B) KPS score.
TABLE 4 | Final model by training set.

Parameters HR (95% CI) p

Age, years 1.01 (0.99 to 1.04) 0.221
Clinical stage
Stage I–II: T1-2N0M0 ref. –

Stage III: T1-2N1M0, T3N0-1M0 3.79 (1.85 to 7.76) <0.001
KPS ranking
Score ≥80 ref. –

Score <80 3.14 (1.26 to 7.86) 0.014
RFs weighted sum 2.48 (1.75 to 3.53) <0.001
TABLE 5 | C-index and diagnostic index of final model in both dataset.

Data set C-index (95% CI) p Sensitivity Specificity Youden Accuracy PPV NPV PLR NLR

Training (n = 125) 0.836 (0.763 to 0.909) <0.001 0.76 0.77 0.53 0.77 0.62 0.87 3.34 0.32
Validation (n = 50) 0.706 (0.511 to 0.901) 0.033 0.58 0.74 0.32 0.70 0.41 0.85 2.22 0.57
January
 2022 | V
olume 11
 | Article 74
PPV, Positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio.
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FIGURE 5 | A nomogram for PFS was established that included age, clinical stage, KPS score, and RFs-weighted sum.
A

B

FIGURE 4 | ROC results of the final model of the training set (A) and
validation set (B).
Frontiers in Oncology | www.frontiersin.org 9
A

B

FIGURE 6 | ROC results of the clinical variables-only model, RFs only model,
and final model of the training set (A) and validation set (B).
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patients in this study was 52 years, which is lower than that
reported in the literature, and this may be related to the small
sample size, patient race, and the relatively early disease stage.

Various scoring systems have been developed to predict
the risk of postoperative recurrence in patients with RCC. The
response evaluation criteria in solid tumors (RECIST) is the most
commonly used prognostic evaluation method for tumors (30).
However, it is impossible to predict the treatment effect before
treatment. Other systems include the University of California,
Los Angeles Integrated Staging System (UISS) (31), the Stage Size
Grade and Necrosis (SSIGN) model (32), the Leibovich scoring
system (33), the Kattan Nomogram (34), and the Karakiewic
prognostic model (35). However, some of the parameters used in
the model such as tumor necrosis and clinical presentation are
subject to inter-observer variability. Different observation end
points of different models result in different accuracy results in
different studies, and ethnic differences and tumor diversity also
limit the use of some systems; in various external validation
samples, the results are not consistent (36, 37). Hence, further
research and validation are needed.

RFs contain information about tumor heterogeneity and can
reflect tumor phenotypes. Our study has filled a gap in the
literature on PFS risk of stage I–III RCC in the setting of
radiomics. In the recent literature, Radiomics nomogram has
demonstrated excellent efficacy in differential diagnosis, nuclear
grading, prognosis, and gene expression of RCC (38–43). Among
the 6 RFs selected in this study, there were 3 features from the
corticomedullary phase, suggesting that the corticomedullary
phase may contain more abundant information to predict PFS.
The results showed that RFs-weighted sum was an important
Frontiers in Oncology | www.frontiersin.org 10
factor that improved the diagnostic efficiency of the clinical
variables-only model. The decision curve analysis revealed that
using the radiomics nomogram to predict PFS in patients with
stage I–III ccRCC presents more notable benefits than solely
relying on clinical variables-only model.

There are several limitations to our study. First, owing to the
limitation of the retrospective study and small number of cases,
the follow-up time we used was at least 5 years. It would be more
interesting to enroll patients without recurrence evidence for
more than 5 or 10 years. Second, as a single-center study, the
patient population was relatively homogeneous and small.
During the 5-year recruiting period, there a large proportion of
patients with stage I–II in this study (training set: 84%,
verification set: 90%). A large-scale independent prospective
multicenter study is needed to evaluate the generalizability of
the results, and further work would focus on it.

In conclusion, this study presented a CT-based radiomics
nomogram that showed satisfactory performance in predicting
PFS in patients with stage I–III ccRCC, as a non-invasive and
quantitative method that can be used as an efficient tool to
complement individualized treatment.
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