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Objectives: To investigate the role of hepatocyte growth factor (HGF)/c-Met signaling in
oral malignant transformation.

Methods: We used immunohistochemistry to investigate HGF and c-Met expression in
53 oral squamous cell carcinoma (OSCC) specimens and 21 adjacent nontumor
specimens and evaluated the associations between HGF and c-Met expression and
clinicopathological parameters. Additionally, HGF-overexpression transgenic (HGF-Tg)
and wild-type (Wt) mice were treated with 4-nitroquinoline-1-oxide (4NQO) to induce oral
carcinogenesis for 16 weeks. At 16, 20, and 24 weeks, tongue lesions were collected for
clinical observation; estimation of HGF, c-Met, and PCNA expression; apoptosis (TUNEL)
assays; and RNA sequencing (RNA-seq).

Results: HGF and c-Met were positively expressed in 92.5% and 64% of OSCC
samples, respectively. High HGF expression was significantly associated with smaller
tumor size (p = 0.006) and inferior TNM stage (p = 0.032). No correlation between HGF
and c-Met levels and other clinical parameters or prognosis was noted. In addition, HGF
and c-Met expression was elevated in 4NQO-induced lesions of Wt mice. Compared with
Wt mice, HGF-Tg mice have lower tumor incidence, number, volume, and lesion grade. In
addition, the percentage of PCNA-positive cells in Wt mice was significantly higher than
that in HGF-Tg mice at different time points. At 16 weeks, HGF-Tg mice exhibited less
apoptotic cells compared with Wt mice (p < 0.000), and these levels gradually increased
December 2021 | Volume 11 | Article 7564791

https://www.frontiersin.org/articles/10.3389/fonc.2021.756479/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756479/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756479/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.756479/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:xinhongwang2020@163.com
https://doi.org/10.3389/fonc.2021.756479
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.756479
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.756479&domain=pdf&date_stamp=2021-12-14


He et al. HGF in Oral Tumorigenesis

Frontiers in Oncology | www.frontiersin.org
until the levels were greater than that of Wt mice at 24 weeks (p < 0.000). RNA-seq data
revealed that 140 genes were upregulated and 137 genes were downregulated in HGF-Tg
mice. KEGG enrichment analysis showed that upregulated differentially expressed genes
(DEGs) are highly correlated with oxidative and metabolic signaling and that
downregulated DEGs are related to MAPK and PI3K-AKT signaling.

Conclusions: HGF and c-Met expression is upregulated in OSCC tissues and is
associated with the occurrence and development of OSCC. HGF overexpression in
normal oral epithelial tissue can inhibit 4NQO-induced tumorigenesis potentially through
inhibiting proliferation and accelerating apoptosis via MAPK and PI3K-AKT signaling.
Keywords: OSCC, HGF, c-Met, 4NQO, transgenic mouse, tumorigenesis
INTRODUCTION

Oral squamous cell carcinoma (OSCC) is one of the most
common malignant neoplasms with a high morbidity and
mortality (1, 2). The development of OSCC is a multistep
process that requires the accumulation of multiple genetic
changes as a consequence of a patient’s genetic predisposition
and long-term exposure to carcinogens, including tobacco,
cigarette smoke, and alcohol (3). The features of aggressive
invasion and high metastasis and recurrence rate lead to a
poor prognosis for OSCC (4). Despite advances in current
combination therapy, including surgery, radiotherapy, and
chemotherapy, the 5-year survival rate remains less than 50%,
and the patient’s quality of life is seriously affected (5). However,
early detection and diagnosis followed by appropriate treatment
can greatly improve survival. Over the past few decades,
numerous studies have been devoted to the discovery of
promising tumor molecular markers to help the diagnosis,
classification, prognosis, and treatment of cancer.

Hepatocyte growth factor (HGF) is a multifunctional cytokine
secreted primarily by mesenchymal cells that contributes to cell
proliferation, motility, survival, and morphogenesis (6, 7). HGF
binding to mesenchymal–epithelial transition factor (c-Met),
known as its unique high-affinity receptor and expressed on
epithelial cells, plays an important role in embryogenesis,
organogenesis, tissue repair, and wound healing (8, 9). However,
studies have confirmed that the HGF/c-Met signaling pathway is
abnormally activated in various types of cancer, such as lung cancer,
breast cancer, gastric cancer, and head and neck squamous cell
carcinoma (HNSCC), and is involved in the oncogenesis, invasion,
and angiogenesis of tumors (10, 11). Therefore, HGF/c-Met
signaling has become one of the most popular targets for tumor
treatment. A variety of targeted drugs targeting this signaling
pathway have been developed, and most of them have entered the
stage of preclinical research and clinical trials (12). Seiwert et al.
showed that the proportion of HGF-positive expression was 59%,
and Met overexpression was noted in greater than 80% of 97
HNSCC tissues (13). In addition, serum HGF levels in HNSCC
patients were significantly greater than that in healthy people and
declined after initial treatment (14). Several studies have suggested
that HGF/c-Met signaling is related to OSCC progression (15, 16).
In vitro, HGF promoted migration and invasion, whereas c-Met
2

inhibitors inhibited migration and viability and promoted apoptosis
in OSCC cell lines by activating AKT, ERK1/2, and NF-ĸB
signaling (17).

However, recent studies have found that the HGF/c-
Met pathway plays a multifunctional role in regulating
physiological and pathological processes, including cancer.
Finisguerra et al. demonstrated that HGF/c-Met-dependent
nitric oxide released by neutrophils can kill tumor cells and
protect the tissues around tumors, inhibiting tumor growth and
metastasis. However, this signaling pathway can promote the
development of Met-addicted tumors, indicating that the HGF/
c-Met pathway plays a double-edged role in cancer (18).
Moreover, Met deficiency in immune cells can promote tumor
progression, and the therapeutic benefit of Met kinase inhibitors
is partly weakened by the inhibition of antitumor neutrophils,
which require HGF/c-Met activation. Additionally, Dong et al.
recently discovered that pulp stem cells overexpressing HGF
have dual effects in rheumatoid arthritis (RA). In the early stage
before RA induction, HGF inhibited the progression of RA due
to its immunosuppressive effect. However, in the late stage, HGF
promoted synovitis by producing pathogenic interleukin-6 (IL-
6), accelerated proliferation and induced apoptosis resistance
(19). Therefore, the HGF/c-Met pathway may have different
effects at different stages of disease development.

Previous studies explored the function and role of HGF/c-Met
in OSCC mainly through in vitro cell experiments. Moreover,
they observed the effects of HGF/c-Met signaling on the
proliferation, metastasis, and angiogenesis of OSCC cell lines
in vitro; however, only a few studies have explored the function
and role of this pathway in carcinogenesis that refers to the
transformation of a normal cell into a tumoral neoplastic cell.
Abnormally activated HGF/c-Met signaling in OSCC can
promote the development of tumor cells. However, according
to the latest research hypothesis, its role in the stage of oral
carcinogenesis may be different.

In this study, we aimed to explore the role of HGF/c-Met
signaling in the malignant stage of the oral mucosal epithelium by
establishing tongue cancer models of HGF transgenic mice (HGF-
Tg) and wild-type (Wt) mice induced by chemical carcinogens
(4NQO). In addition, we examined HGF and c-Met expression in
53 OSCC tissues and evaluated the correlation between HGF and
c-Met expression and clinicopathological parameters.
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MATERIALS AND METHODS

Patients
This study was approved by the human ethics research committee
of Stomatological Hospital Affiliated to Guangzhou Medical
University (KY2019025), and informed consent was obtained
from all participants. In total, 74 paraffin-embedded tissue
samples, including 53 OSCC tissues and 21 adjacent nontumor
tissues from 2002 to 2006, with complete clinicopathological data of
patients were provided by Stomatological Hospital Affiliated to
Wuhan University. Follow-up ranged from 3 to 99 months. These
patients had no other malignancies in the 5-year period before
therapy, and none received treatment including chemotherapy and
radiotherapy before surgery or biopsy. In addition, distant
metastasis was not noted in any case. The recorded
clinicopathologic parameters included sex, age, tumor size, tumor
site, tumor grade, lymph node metastasis, and TNM stage. TNM
staging of OSCC was determined by two pathologists according to
the eighth edition of the AJCC Cancer Staging Manual. The overall
survival (OS) value was from the date offirst diagnosis (by biopsy or
surgery) to the time of death or the last follow-up. The detailed
clinical information of the patients is listed in Table 1.

Animals
This research protocol was approved by the Ethics Committee
for Animal Research (No. 2016-067) in accordance with the
Ethical Principal in Animal Experimentation by Guangzhou
Medical University. The generation of HGF high expression
transgenic mice (HGF-Tg, n = 50, female) and genotyping
followed previously used protocols (20). C57BL/6 mice (Wt,
n = 54, female) were purchased from Guangdong Experimental
Animal Center. The experiments were performed under
controlled conditions, including a 24-h light/dark cycle, and
the mice were maintained in a room with a relative humidity
level of 30%–50% and a temperature of 18–25°C. The mice were
fed standard mouse chow.

4NQO-Induced Tumorigenesis
The carcinogen 4NQO (Sigma-Aldrich, St. Louis, MO, USA) was
prepared at a concentration of 5 mg/ml in propylene glycol and
stored at 4°C. The 4NQO stock solution was diluted to a
concentration of 50 µg/ml in drinking water, and the water
was replaced once weekly. Six- to eight-week-old HGF-Tg mice
and Wt mice were randomly divided into a control group (n =
18) and a 4NQO group (n = 86), respectively. The experimental
group was drinking water containing 4NQO continually for 16
weeks, whereas the control group contained no 4NQO and the
same volume of propylene glycol. Mice were sacrificed after 16,
20, or 24 weeks or when the body weight loss was ≥1/3 (21). The
death time of naturally dead mice was recorded throughout the
experiment, and the remaining surviving mice were sacrificed at
28 weeks. All mice were carefully inspected daily and weighed
weekly. The experimental process is shown in Figure 1.

Clinical Analysis
The mouse tongue was collected and photographed by stereo
light microscopy. The number of tongue tumors larger than
Frontiers in Oncology | www.frontiersin.org 3
0.5 mm was recorded. The volume of exophytic tumors was
calculated using the formula 0.5 × (L × S2), where L is the longest
diameter and S is the shortest diameter. The tumor volume of
each mouse was the sum of all tumor volumes (22). To reduce
the experimental error, photographing and recording the
dimensions of the tumor were performed by Xiaoxi He.

Histopathological Analysis
The tongues were fixed in 10% formalin, embedded in paraffin,
sectioned into 4-µm sections, and stained with hematoxylin and
eosin (H&E). The sections were examined by two pathologists at
our institution and classified as follows: (a) normal epithelia, (b)
mild dysplasia, (c) moderate dysplasia, (d) severe dysplasia, and
(e) oral cancer, including extraneous papillary tumors (23, 24).

Immunohistochemistry
IHC was performed using the streptavidin-peroxidase (SP)
method as previously reported (25). In short, after fixation
with 10% formalin for at least 24 h, the paraffin-embedded
tissue was sliced into 4-µm sections. The sections were
deparaffinized and rehydrated with xylene and ethanol.
Antigen recovery was performed in a pressure cooker for
10 min in citrate buffer (pH = 6.0). Then, endogenous
peroxidase activity was blocked with 3% H2O2 for 15 min.
After blocking with 5% bovine serum albumin (BSA) for
30 min, sections was incubated overnight at 4℃ with the
following antibodies: HGF for mouse paraffin sections (1:100,
Bioss, #bs-1025R, Beijing, China), HGF for human paraffin
sections (1:200, Proteintech, #26881-1-AP, Chicago, IL, United
States), Met for mouse paraffin sections (1:100, Bioss, #bs-0668R,
Beijing, China), Met for human paraffin sections (1:200,
Proteintech, #25869-1-AP, Chicago, IL, United States), and
PCNA (1:100, Proteintech, #24036-1-AP, Chicago, IL, United
States). The tissue sections were then washed, incubated with the
secondary antibody labeled with horseradish peroxidase (1:100,
Beyotime, #A0208, Shanghai, China) for 1 h at room
temperature and developed using DAB (SignalStain® DAB
Substrate Kit, #8059, Cell Signaling, Boston, MA, USA).
Finally, the nuclei were counterstained with hematoxylin.
Negative controls by omitting the primary antibody and
positive controls were done for all tissues.

Each section was independently evaluated by two
pathologists. The average percentage of PCNA-positive cells
was measured in ≥5 random fields at ×400 magnification in
each section. Only distinct nuclear staining was considered
positive. The images were obtained using a Nikon microscope,
and Image-Pro Plus software was used to count the number of
positive cells. The HGF and c-Met staining scores were
multiplied by the staining intensity (0, no staining; 1, light
yellow; 2, moderate yellow brown; 3, strong brown staining)
and the proportion of positive cells (0, negative; 1, 1%–25%; 2,
26%–50%; 3, >50%) (17, 26). The scores ranged from 0 to 9.

TUNEL Assay
TUNEL staining was performed on 4-µm sections according to
the manufacturer’s protocol (KeyGEN, #KGA704, Beijing,
China). In brief, the sections were deparaffinized followed by
December 2021 | Volume 11 | Article 756479
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antigen retrieval, labeled with biotin-dUTP for 30 min at room
temperature, and incubated with streptavidin-HRP solution for
30 min in the dark at room temperature. The sections were then
washed and developed using DAB. Finally, the nucleus was dyed
with hematoxylin. A nucleus with positive expression appeared
brownish yellow, and a nucleus with negative expression
appeared blue. Apoptosis was evaluated by counting the
proportion of TUNEL-positive cells in ≥5 images randomly
selected at ×400 magnification.

RNA Sequencing
High-throughput sequencing was conducted by Origingene
(Shanghai, China). In short, Trizol reagent (Invitrogen,
Carlsbad, CA, USA) was used to extract total RNA from the
tongue tumor samples of Wt and HGF-Tg mice at 24 weeks (n =
4). The RNA amount and purity were detected using a NanoDrop
spectrophotometer (NanoDrop 2000, Wilmington, DE, United
States), and the RNA concentration was determined using a
Qubit. The RNA integrity was assessed by Agilent 2100 with
RIN number >7.0. RNA-Seq libraries were prepared using a
TruSeq™ RNA sample preparation Kit (Illumina) and
Frontiers in Oncology | www.frontiersin.org 4
sequenced using an Illumina HiSeq X-Ten (LC Bio, China)
following the vendor’s recommended protocol. Cutadapt was
used to remove the reads that contained adaptor
contamination, low-quality bases, and undetermined bases.
Then, sequence quality was verified using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). RNA-Seq read
data were mapped to the reference genome of mouse species
(GRCm38) using HISAT2 software. The mapped reads of each
sample were assembled using StringTie (27). Then, the
transcriptomes from all samples were merged to reconstruct a
comprehensive transcriptome using Perl scripts. After the final
transcriptome was generated, StringTie and Ballgown were used
to estimate the expression levels of all transcripts (27, 28).
Differentially expressed genes (DEGs) were examined using the
R/Bioconductor package edgeR and established based on a log2-
fold change and p-value (|log2(FC)| ≥ 1.00; p < 0.05). Gene set
pathway analysis was performed using DAVID bioinformatics
tools. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis was performed by setting all the KEGG
pathway genes as background genes. The enrichment p-value
calculation was performed with the Fisher’s exact test.
FIGURE 1 | Representation of experimental design. After 4NQO treatment for 16 weeks, mice were sacrificed at 16, 20, 24, and 28 weeks.
TABLE 1 | Association of HGF and Met expression with clinicopathologic parameters in OSCC patients.

Clinicopathologic parameters No. HGF expression P1 Met expression P2

low high low high

Gender 0.899 0.774
Male 29 8 21 17 12
Female 24 7 17 15 9

Age (years) 0.831 0.533
<60 33 9 24 21 12
≥60 20 6 14 11 9

Tumour site 0.403 0.453
Tongue 40 13 27 23 17
Non-tongue 13 2 11 9 4

Tumour size 0.006** 0.528
≤2cm 23 2 21 15 8
>2cm 30 13 17 17 13

TNM stage 0.032* 0.389
I 19 2 17 10 9
II–IV 34 13 21 22 12

Grade 0.572 0.958
Well 25 8 17 15 10
Moderate/poor 28 7 21 17 11

Lymph node met-astasis 0.831 0.965
No 33 9 24 20 13
Yes 20 6 14 12 8
D
ecember 2021 | Volume 11 | Article 7
*p < 0.05, **p < 0.01. The value was statistically significant(highlighted in bold).
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Real-Time Quantitative PCR Analysis
Eleven DEGs involved in the PI3K-AKT and MAPK pathways
were verified by Q-PCR. Total RNA was extracted using an RNA
Extraction Kit (19221ES50, YEASEN, China). The quantity and
quality of extracted RNA were analyzed with 1.8 to 2.0 of the
OD260/280 using a spectrophotometer (Nanodrop 2000,
Thermo Fisher Scientific, USA). Double-stranded cDNA was
synthesized using a PrimeScript RT kit (Cat No. AG11706,
ACCURATE BIOLOGY, China ) accord ing to the
manufacturer’s instructions. Q-PCR was performed using
SYBR Premix ExTaq™ II (Cat No. AG11718, ACCURATE
BIOLOGY, China). The 2−ddCT method was used to quantify
the relative expression of each mRNA, and GAPDH served
as an internal reference gene. All experiments were
conducted in triplicate. The primer sequences are shown in
Supplementary Table 1.

Statistical Analysis
The data were analyzed using SPSS 17.0 software and GraphPad
Prism 6.0. According to the IHC score of HGF and c-Met
expression, OSCC patients were divided into a low group (0–4)
and a high group (>4). The chi-square test was used to evaluate
the significance of the association between HGF expression and
clinicopathological parameters. Kaplan–Meier analysis and log-
Frontiers in Oncology | www.frontiersin.org 5
rank tests were performed to estimate cumulative survival.
Statistical significance among two or more groups was tested
by unpaired Student’s t-test and Mann–Whitney test. p < 0.05
was considered a significant difference.
RESULTS

HGF and c-Met expression in
OSCC Specimens
Tissue samples from 53 OSCC patients were immunohis-
tochemically stained for HGF and c-Met expression. HGF
protein was expressed in cytoplasm, cell membrane, and
nucleus, and Met protein was mainly expressed in cytoplasm
andmembrane. Immunostaining for HGF and c-Met was negative
or extremely weak in the normal oral mucosa but positive in
92.5% (49/53) and 64% (34/53) of OSCC samples, respectively.
Compared with adjacent nontumor tissues, HGF and c-Met
expression were relatively higher in tumor tissues (Figure 2A).

To further understand the role of HGF and c-Met in OSCC
progression, we analyzed the associations between tissue HGF
and c-Met levels and clinicopathological features. As shown in
Table 1, high HGF expression was correlated with smaller tumor
size (p < 0.006) and inferior TNM stage (p < 0.032), and no
B

A

C

FIGURE 2 | HGF and c-Met immunostaining in human normal oral mucosa, paracancerous tissue, and OSCC tissue. ×200 (A). The 5-year overall survival rate of
OSCC patients (p > 0.05). Kaplan–Meier analysis (B, C).
December 2021 | Volume 11 | Article 756479
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significant relationship was found between HGF expression and
sex, age, grade, lymph node metastasis, or any other
clinicopathological parameters. However, no significant
correlation was noted between c-Met expression levels and
clinical parameters. In addition, HGF and c-Met expression
was not significantly associated with overall survival (OS) in
patients with OSCC (Figures 2B, C).

Expression of HGF and Its Receptor c-Met
in Tumors Induced by 4NQO
Similar to human OSCC tissues, HGF was not expressed or
was weakly expressed in normal oral mucosa of the Wt-control
group but was upregulated in epithelial dysplasia and tumor
tissues in the Wt-4NQO group (Figure 3A, left panels). As a
unique receptor of HGF, we evaluated c-Met staining by
immunohistochemistry in different groups. We found that c-
Met expression was also upregulated during carcinogenesis but
was slightly positively expressed in the normal tongue epithelium
Frontiers in Oncology | www.frontiersin.org 6
(Figure 3B, left panels). From 16 to 24 weeks, the epithelial
lesions of 4NQO-treated mice gradually deteriorated from mild
dysplasia to invasive carcinoma. In this process, we found that
HGF expression was gradually weakened in the Wt-4NQO
group, but the result was not statistically significant (data not
shown). In addition, we did not observe a difference in c-Met
expression between dysplasia and tumor tissue in Wt mice
(Figure 3B, left panels).

Compared with Wt mice, HGF staining was significantly
stronger in normal epithelial tissue of Tg mice (Figure 3A).
HGF was mainly overexpressed in normal oral epithelium of
HGF-Tg mice, while it was upregulated in both epithelium and
connective tissues of 4NQO-treated Tg and Wt mice
(Figure 3A). However, c-Met was slightly positively expressed
in the normal epithelium of both Wt and HGF-Tg mice
(Figure 3B). In an oral carcinogenesis model induced by
4NQO, HGF and c-Met proteins maintained high levels
compared to Wt mice from 16 to 24 weeks (Figures 3C, D).
B

A

DC

FIGURE 3 | HGF and c-Met immunostaining in mouse tongue lesions of different groups. Representative IHC images of HGF (A) and c-Met (B).×200. IHC scores of HGF
(C) and c-Met (D). 4NQO group, 16 w: n = 8; 20 w: n = 7 (Tg) and n = 8 (Wt); 24 w: n = 6 (Tg) and n = 9 (Wt). Mean ± SEM. Mann–Whitney test. *p < 0.05, **p < 0.01.
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HGF-Tg Mice Were Less Susceptible to
Oral Cancer Induced by 4NQO
As shown in Figure 4A, the surface of normal tongue mucosa
was pink and soft, the lingual papillae were evenly distributed,
and there were no white patches or tumor formation. After
drinking 4NQO water for 16 weeks, the lingual papilla
disappeared regionally, and white patches of different sizes
emerged. Over time, the tongue surface showed several
leukoplakia and developed into papillary tumors.
Frontiers in Oncology | www.frontiersin.org 7
Wt mice began to develop tumors 12–16 weeks after 4NQO
induction, whereas HGF-Tg mice started to develop tumors at
16–20 weeks. The incidence of tumors in Tg mice was always
lower than that in Wt mice (Figure 4B, left panels). The tumor
number on the tongue surface of HGF-Tg mice was significantly
less than that in Wt mice (Figure 4B, middle). At week 24, most
4NQO-treated mice showed typical pathological features of
tongue tumors, with the tumor volume of the HGF-Tg group
being significantly smaller (Figure 4B, right panels).
B

A

DC

FIGURE 4 | Induction of mouse tongue tumorigenesis by 4NQO. Representative images of mouse tongue (A). Tumor incidence, numbers, and volume in mice.
Student’s t-test (B). The body weights of control and 4NQO-treated mice. Wt mice exhibited significantly reduced body weight compared with HGF-Tg mice treated
with 4NQO. Student’s t-test (D). Kaplan–Meier survival analysis (E). 4NQO group, 16 w: n = 8; 20 w: n = 7 (Tg) and n = 8 (Wt); 24 w: n = 6 (Tg) and n = 9 (Wt);
28 w: n = 20. Control group, n = 3 (16/20/24 w). Mean ± SEM. *p < 0.05, **p < 0.01.
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Throughout the 28-week experimental period, we noticed
that both HGF-Tg mice and Wt mice exposed to 4NQO began to
lose weight at 12 weeks, but the weight of Wt mice decreased
more seriously than HGF-Tg mice (Figure 4C). In addition, the
survival rate of HGF-Tg mice was significantly greater than that
of Wt mice (p < 0.033, Figure 4D).

H&E staining directly revealed dynamic histopathological
changes in carcinogenesis induced by 4NQO compared with
normal epithelial tissue (Figure 5A). At the 16th week, the
tongue epithelium of Tg mice showed mild and moderate
dysplasia, while the Wt mice had papillary tumors. At 24
weeks, invasive tumors were noted in the Wt group, but the
basement membrane of the tumor in transgenic mice remained
intact. The grade of dysplasia lesions and neoplasm incidence in
HGF-Tg mice treated with 4NQO were significantly lower than
those in Wt mice (p < 0.05, Figure 5B). Histopathological
analysis further confirmed that HGF-Tg mice were less
sensitive to 4NQO-induced oral tumorigenesis.

Overexpression of HGF Affects
Cellular Proliferation and Apoptosis
in Tumor Tissue
To further observe the pathological changes of tongue lesions of
Tg mice and Wt mice, we used IHC to detect PCNA and TUNEL
analysis for apoptosis (Figure 6). During 4NQO-induced
carcinogenesis, PCNA-positive cells increased continuously in
Frontiers in Oncology | www.frontiersin.org 8
the process of transforming from mild dysplasia to cancerous
tissue. Moreover, the proportion of proliferating cells in Wt mice
was relatively greater than that in Tg mice treated with 4NQO
from 16 to 24 weeks (p < 0.05) (Figures 6A, C), suggesting that
HGF may inhibit cell proliferation during tumorigenesis.

Additionally, the number of apoptotic cells in lesions of
4NQO-treated Wt mice gradually declined from 16 to 24 weeks,
whereas that in Tg mice increased during the experiment. At 16
weeks, the number of TUNEL-positive cells in the Tg-4NQO
group was significantly lower than that in the Wt-4NQO group.
However, at 24 weeks, the number was significantly greater than
that in the Wt-4NQO group (Figures 6B, D).

Downregulation of MAPK and PI3K-AKT
Signaling Potentially Affects
Tumorigenesis in HGF-Tg Mice
To further explore the downstream molecular mechanism of HGF
overexpression, we performed RNA-seq using tongue tumor
tissues harvested from Wt and HGF-Tg mice. As indicated in
the heatmap generated for DE genes (Figure 7A), 140 upregulated
DEGs and 137 downregulated DEGs were identified from our
RNA-seq data. To determine pathways regulated by HGF
overexpression, KEGG analysis was performed, and the data are
presented as a bubble plot. KEGG analysis showed that the
upregulated DEGs were generally enriched in signaling
pathways, such as oxidative phosphorylation (p = 0.00064);
B

A

FIGURE 5 | Representative HE sections of mice tongue, including dysplastic tissues and carcinoma. With the exception of the left image of Wt mice at 24 weeks,
which was magnified at ×50, the remaining images were magnified at ×100 (A). Quantification of histopathological grading of tongue. Chi-square test (B). 4NQO
group, 16 w: n = 8; 20 w: n = 7 (Tg) and n = 8 (Wt); 24 w: n = 6 (Tg) and n = 9 (Wt). *p < 0.05, **p < 0.01.
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metabolic pathways (p = 0.00084); starch and sucrose metabolism
(p = 0.001); and the citrate cycle (TCA cycle) (p = 0.019)
(Figure 7B). The downregulated DEGs were significantly
enriched in MAPK signaling (p = 0.0055) and the PI3K-AKT
pathway (p = 0.018) (Figure 7C). We further analyzed the
expression pattern of DEGs associated with MAPK and PI3K-
Akt signaling that are most related to proliferation and apoptosis.
Q-PCR results showed that the mRNA expression of DEGs (Atf2,
Cacna1d, Flna, Pdgfrb, Rapgef2, Bcl2L1, and Ptk2) in HGF-Tgmice
was significantly decreased compared with that in Wt mice, which
was consistent with the RNA-seq data (Figure 7D). Therefore, our
data suggested that inhibition of the MAPK and PI3K-AKT
pathways may play a role in the progression of tongue tumor of
HGF-Tg mice.
DISCUSSION

It has been extensively reported that HGF and Met overexpression,
geneamplification,ormutation is found innumerous tumors (12,29).
Frontiers in Oncology | www.frontiersin.org 9
Similarly, in this study, we showed that HGF and c-Met were
upregulated in OSCC and adjacent nontumor tissues. In addition,
compared with normal epithelium, HGF and its receptor c-Met were
positively expressed in dysplastic and tumor tissues in an oral cancer
model ofWtmice.Moreover, we investigated the correlation between
HGF/c-Met signalingandHNSCC,and its associationwith survival of
HNSCCpatients usingdataobtained fromTheCancerGenomeAtlas
(TCGA) (SupplementaryMaterials). It showed thatHGFexpression
increased in HNSCC patients with no statistical significance
(Supplementary Figure A,a), but c-Met was significantly
overexpressed compared with normal counterpart (Supplementary
Figure B,a). The data suggested that HGF/c-Met signaling is closely
correlated with the progression of OSCC.

In addition, we found that high HGF expression was
associated with smaller tumor size and inferior TNM stage but
was not related to other clinical parameters or OS in OSCC
patients. TCGA data revealed that HGF expression was not
correlated with prognosis of HNSCC patients (Supplementary
Figure A,b). However, Uchida et al. reported no association
between HGF expression in serum and oral cancer tissues and
B

A

DC

FIGURE 6 | Proliferation and apoptosis in tongue lesions. Representative IHC PCNA staining images (A) and percentage of PCNA-positive cells (C). Representative
TUNEL staining images (B) and percentage of TUNEL-positive cells (D). All pictures were obtained at ×400 magnification. 4NQO group, 16 w: n = 8; 20 w: n = 7
(Tg) and n = 8 (Wt); 24 w: n = 6 (Tg) and n = 9 (Wt). Control group, n = 3 (16/20/24 w). Mean ± SEM. Student’s t-test. *p < 0.05, ***p < 0.001.
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tumor size, lymph node status, metastasis and prognosis,
although the serum levels of HGF in OSCC patients were
significantly increased compared with those in healthy people
(30). Chen et al. reported that only HGF expression in the tumor
invasion front, not the tumor center, was correlated with lymph
node status and the clinical stage of OSCC in Taiwan (31). Thus,
a definite conclusion about the correlation between HGF
expression level and clinical parameters and prognosis is
lacking, and more clinical samples are needed.

A meta-analysis showed that c-Met overexpression in HNSCC
was significantly correlated with poor OS and regional lymph
node metastases (32). Another systematic review suggested that c-
Met overexpression as assessed by immunohistochemistry could
represent a promising prognostic biomarker of HNSCC, but the
Frontiers in Oncology | www.frontiersin.org 10
best scoring method remains to be determined (33). However,
consistent with the findings of Sun et al., our study showed no
significant correlation between c-Met expression in OSCC and
clinicopathological variables. Moreover, according to TCGA data,
there was no association between c-Met expression and OS of
HNSCC patients (Supplementary Figure B,b).

In oral cancer models, HGF-Tg mice had a smaller tumor
number and tumor volume and a higher survival rate than Wt
mice. We observed greater HGF expression in dysplastic tissue
compared with tumor tissue from the Wt-4NQO group, but the
data were not statistically significant. At 16, 20, and 24 weeks, the
pathological changes in the tongue in Wt mice were more serious
than those in HGF-Tg mice. Based on our clinical samples and in
vivo evidence, our research supports the view that HGF expression
BA

D

C

FIGURE 7 | RNA sequencing of tongue tumor tissues of Wt and Tg mice at 24 weeks. Heatmap of 277 differentially expressed genes (A). Bubble plot represents
the top 10 KEGG pathways with 140 upregulated DEGs (B) and top 13 KEGG pathways with 137 downregulated DEGs (C). Q-PCR data of DEGs enriched in the
MAPK and PI3K-AKT pathway (D). Mean ± SEM. n = 4. Student’s t-test. *p < 0.05.
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is associated with tumor size and the stage of oral cancer, and HGF
overexpression can slow tongue tumor induction by 4NQO.

Intriguingly, we discovered that activation of the HGF/c-Met
signaling pathway can inhibit the occurrence of oral cancer,
although aberrant HGF and c-Met expression in tumor tissues is
considered to be a promoting factor for the development of
various types of cancer (34). In addition, Liu et al. reported that
HGF can suppress hepatocarcinogenesis induced by
diethylnitrosamine, indicating that HGF has different effects on
the growth of normal hepatocytes and tumor hepatocytes in vivo
(35). Therefore, combined with the latest relevant research
results, we believe that the HGF/c-Met signaling pathway plays
a two-way regulatory role in different cell types or under different
conditions. Abnormal expression of the HGF/c-Met pathway in
tumor tissues can promote tumor progression, whereas HGF
overexpression in normal tissues can inhibit tumorigenesis.

As a multifunctional growth factor, HGF plays an important
role in cell proliferation, survival, motility, and morphogenesis
(36). In this study, PCNA immunostaining was used to assess the
proliferation status of the lesions. The higher the cell
proliferation rate, the higher the risk of cell mutation and
malignant transformation (37). Findings showed that the
HGF-Tg mice had fewer PCNA-positive cells than the Wt
mice treated with 4NQO. Similarly, Tajima et al. demonstrated
that HGF has a strong antiproliferative effect in various tumor
cell lines, including HepG2 hepatocellular carcinoma cells, KB
squamous carcinoma cells, and B6/F1 melanoma cells, in vitro
and in vivo (38). In contrast, Knowles et al. showed that HGF
promotes cell growth in HNSCC cell lines (39). Thus, we
hypothesized that HGF may have multifunctional effects on
cell growth in different cell types. Although the expression of
PCNA is considered a useful marker in evaluating the malignant
degree and progression of tumors (40), due to its long half-life
(approximately 20 h), involvement in other cellular processes
such as DNA repair, epitopic differences and other factors, and
higher values of PCNA positivity might often be detected
(41, 42); thus, there is a need to add other cell proliferation
markers in subsequent studies.

During 4NQO-induced oral carcinogenesis , HGF
overexpression promotes cell apoptosis based on TUNEL results.
Conner et al. discovered that HGF inhibits hepatocarcinogenesis in
transgenic mice and induces apoptosis in transformed rat liver
epithelial cells (43). Furthermore, it has been reported that JNK1
induction, protein kinase C, and matrix metalloproteinase
induction are involved in the apoptotic process induced by HGF
(44). Consistent with our findings, Tulasne et al. revealed that the
HGF/c-Met axis has proapoptotic and antiapoptotic properties in
different cell types or stress conditions, which is important for
maintaining the cell survival/apoptosis balance (45). They
concluded that although HGF/c-Met signaling is involved in
invasive growth and the antiapoptotic response in most tumor
cell types, it can induce apoptosis and prevent malignant
transformation in some cases, such as in some transformed
cell lines.

4NQO is a water-soluble chemical carcinogen that causes
DNAmutations and DNA double-strand breaks while increasing
Frontiers in Oncology | www.frontiersin.org 11
reactive oxygen species (ROS) production and forming large
DNA adducts (46). An increase in intracellular ROS can affect
cell apoptosis, survival, and differentiation via MAPK signaling
consisting of ERK, JNK, and p38 (47, 48). Choi et al.
demonstrated that HGF overexpression can reduce the level of
intracellular ROS and inhibit H2O2-induced apoptosis (3).
Similarly, previous studies have reported that HGF can protect
vascular endothelial cells from oxidative damage induced by
hypoxia/reoxygenation (49, 50). In addition, HGF can reduce
H2O2-induced apoptosis of neural progenitor cells derived from
human embryonic stem cells (51). These studies indicated that
HGF regulates oxidative stress. In our study, RNA-Seq data
showed that upregulated DEGs are highly correlated with
oxidative and metabolic signaling.

Moreover, HGF overexpression in normal tissues can inhibit
cell proliferation and accelerate apoptosis in the progression of
oral cancer potentially by downregulating MAPK and PI3K-AKT
according to KEGG enrichment analysis. As important
intracellular signal transduction pathways, the two signaling
pathways have highly similar physiological functions and
jointly regulate cell growth, development, differentiation, and
apoptosis (52). Although studies have shown that the HGF/c-
Met pathway is abnormally activated in cancer and can promote
tumor proliferation, invasion, metastasis, and angiogenesis by
stimulating the PI3K/AKT, Ras/MAPK, JAK/STAT, SRC, Wnt/
b-catenin, and other signaling pathways (10, 34), our study
suggested that HGF/c-Met signaling may inhibit the
development of tumor cells transformed from normal cells
with high expression of HGF through the regulation of these
two pathways, and thus provides a direction for the mechanism
of our future research.

Nowadays, HGF/c-Met signaling has been recognized as a
promising cancer therapeutic target, and many types of
inhibitors have been developed to eliminate the activation of
this pathway (53). However, the therapeutic effect of a large
number of HGF/c-Met targeted drugs is not satisfactory and
faces great challenges at present (54). This might be due to the
signal pathway having an anticancer effect in the malignant stage
of normal cells, which requires the attention of researchers.

In this study, we used HGF-overexpression transgenic mice
(globally expressed) and tongue tumor models induced by 4NQO
to explore the role of HGF/c-Met signaling in oral tumorigenesis.
A limitation of the research is that we mainly focused on the HGF
protein secreted by oral epithelial tissues, but HGF was
upregulated in both epithelium and stromal tissue of HGF-Tg
and Wt mice with 4NQO treatment. Since HGF is expressed in
multiple cells, multiple tissues, and multiple organs in Tgmice, the
function and role of HGF produced by other cells or tissues could
not be confirmed, which might also affect the malignant
transformation of epithelial tissues. A previous study found that
HGF is commonly secreted by stromal cells and then activates the
Met receptors in tumor cells by paracrine in the tumor
microenvironment, while HGF autocrine by tumor cells rarely
occurs (10). Therefore, the next plan was to adopt the Cre-loxP
methodology to generate transgenic mice with overexpression of
specific cell or tissue expression, and separately culture epithelial
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cells and stromal cells, such as fibroblasts, in order to study its
function and mechanism more accurately.
CONCLUSION

In conclusion, our study found that HGF/c-Met signaling was
closely associated with the occurrence and development of
OSCC, and the overexpression of HGF in normal oral
epithelial tissue can inhibit 4NQO-induced tumorigenesis
probably by reducing cell proliferation and accelerating
apoptosis via MAPK and PI3K-AKT signaling; however, its
function and mechanism of action require further experiments.
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