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Purpose: Tumor microenvironment immune types (TMITs) are closely related to the
efficacy of immunotherapy. We aimed to assess the predictive ability of 18F-
fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG
PET/CT)-based radiomics of TMITs in treatment-naive patients with non-small cell lung
cancer (NSCLC).

Methods: A retrospective analysis was performed in 103 patients with NSCLC who
underwent 18F-FDG PET/CT scans. The patients were randomly assigned into a training
set (n = 71) and a validation set (n = 32). Tumor specimens were analyzed by
immunohistochemistry for the expression of programmed death-ligand 1 (PD-L1),
programmed death-1 (PD-1), and CD8+ tumor-infiltrating lymphocytes (TILs) and
categorized into four TMITs according to their expression of PD-L1 and CD8+ TILs.
LIFEx package was used to extract radiomic features. The optimal features were selected
using the least absolute shrinkage and selection operator (LASSO) algorithm, and a
radiomics signature score (rad-score) was developed. We constructed a combined model
based on the clinical variables and radiomics signature and compared the predictive
performance of models using receiver operating characteristic (ROC) curves.

Results: Four radiomic features (GLRLM_LRHGE, GLZLM_SZE, SUVmax,
NGLDM_Contrast) were selected to build the rad-score. The rad-score showed a
significant ability to discriminate between TMITs in both sets (p < 0.001, p < 0.019),
with an area under the ROC curve (AUC) of 0.800 [95% CI (0.688–0.885)] in the training
set and that of 0.794 [95% CI (0.615–0.916)] in the validation set, while the AUC values of
clinical variables were 0.738 and 0.699, respectively. When clinical variables and
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radiomics signature were combined, the complex model showed better performance in
predicting TMIT-I tumors, with the AUC values increased to 0.838 [95% CI (0.731–0.914)]
in the training set and 0.811 [95% CI (0.634–0.927)] in the validation set.

Conclusion: The FDG-PET/CT-based radiomic features showed good performance in
predicting TMIT-I tumors in NSCLC, providing a promising approach for the choice of
immunotherapy in a clinical setting.
Keywords: radiomics, tumor microenvironment immune types, non-small cell lung cancer, 18F-FDG PET/CT, PD-L1
INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths in the
United States (1). Among the common subtypes of lung cancer,
non-small cell lung cancer (NSCLC) represents approximately
85% of lung cancer cases. Most of the patients with NSCLC are
already at an advanced stage upon diagnosis, whose 5-year
survival rate is below 5% (2). Recently, immune checkpoint
inhibitors targeting the programmed death-1 (PD-1)/
programmed death-ligand 1 (PD-L1) axis have become
standard treatments for patients with advanced NSCLC.
Biomarkers, including the tumor proportion score of PD-L1,
are being tested in clinical trials for its ability to identify patients
who are most likely to benefit from immunotherapy (3).
However, the predictive ability of PD-L1 expression is still
under debate (4), since the majority of patients with PD-L1-
positive tumors did not respond to PD-1/PD-L1 blockade. In
addition to cancer cells, tumor immune microenvironment also
plays a critical role in immunotherapy. Recent studies have
demonstrated that tumor tissue dampened the host immune
response by upregulation of PD-L1, which subsequently ligated
to PD-1 on the antigen-specific CD8+ T cells (5). Therefore,
without the preexistence of CD8+ tumor-infiltrating lymphocytes
(TILs), blockade of PD-L1 or PD-1 is unlikely to achieve any
antitumor efficacy. Tumor immune microenvironment could be
classified into four types according to the status of PD-L1 expression
and CD8+ TIL abundance (6, 7), while the tumors with tumor
microenvironment immune type I (TMIT-I), i.e., with high PD-L1
expression and presence of CD8+ TILs, are more likely to benefit
from anti-PD-L1/PD-1 therapies (6). An accurate identification of
the TMIT-I subset not only canmaximize the therapeutic efficacy of
anti-PD-1/PD-L1 therapy but also can minimize the adverse effects
of treatments. However, to date, there are no noninvasive methods
to specifically identify the TMITs of NSCLC tumors.

Medical imaging allows a noninvasive evaluation of tumor and
its microenvironment, as well as a longitudinal assessment of
tumor progression. 18F-fluorodeoxyglucose positron emission
tomography/computed tomography (18F-FDG-PET/CT) is one
of the most commonly used diagnostic imaging modalities in
oncology (8). 18F-FDG PET monitors the metabolism of glucose
that is actively entrapped as nutrients in neoplastic tissues and
tumor-associated activated immune cells (9). Therefore, 18F-FDG
PET signals depicting the glucose metabolism are closely related to
the characteristics of tumor immune microenvironment. Previous
studies have shown a direct association between the maximum
2

standardized uptake value (SUVmax) of 18F-FDG-PET and the
expression of tumor-related immunity markers within the tumor
immune microenvironment (10, 11). However, the SUVmax does
not account for the spatial heterogeneity in the metabolism and
biological features of tumor. Its predictive value on patients treated
with immune checkpoint inhibitors remains weak. Tumor
heterogeneity poses a significant challenge to personalized
cancer medicine. The heterogeneity in the tumor uptake of FDG
is of clinical importance as evidenced by a number of clinical trials
(12). However, little attention is paid to the association between
tumor immune microenvironment and the intratumoral
heterogeneity of 18F-FDG uptake. Radiomics is a rapidly
evolving field of research that is focused on the extraction and
quantification of patterns within medical images (13). Unlike
biopsies that only take a snapshot within a small tumor portion,
radiomics captures heterogeneity across the entire tumor volume.

This retrospective study was conducted to establish a correlation
between the intratumoral heterogeneity of 18F-FDG PET signals
and tumor immune phenotype in a cohort of treatment-naive
NSCLC patients. We hypothesized that radiomic features would
provide insights into TMIT categorization and help optimize patient
selection for immunotherapy.
MATERIALS AND METHODS

Patients
With approval from the institutional review board, we
retrospectively analyzed consecutive patients who had been
diagnosed pathologically with NSCLC between December 2014
and December 2017 at our institution. Enrollment eligibility:
patients histologically confirmed to present NSCLC and
underwent initial 18F-FDG PET/CT scan within 30 days of
surgery or biopsy; tumor size ≥1 cm in diameter. Exclusion
criteria: patients who received antitumor therapy before surgery
or biopsy due to the concern of therapy-induced alteration in
PD-L1 expression. Patients without available tumor specimens
for immunohistochemistry were also excluded.

Immunohistochemistry Analysis
Immunohistochemistry was performed using protocols
described in a previous study (14). In brief, 4-µm continuous
sections were prepared from formalin-fixed, paraffin-embedded
(FFPE) tissue blocks. Slides were autostained by the Leica Bond-
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Max automation (www.leica-microsystems.com) with primary
antibodies against CD8 (ZA-0508, ZSGB-BIO), PD-1 [Abcam,
EPR4877(2), ab137132], and PD-L1 (ZA-0629, ZSGB-BIO). The
analysis of Immunohistochemistry results was performed as our
previous study (15). The PD-L1 immunostaining results were
classified into two groups based on staining intensity and
proportion of tumor cell positivity. Staining intensity was
scored as 0-3: 0, negative staining; 1, weak staining; 2,
moderate staining; and 3, strong staining (more intense than
alveolar macrophages). Cases with more than 5% of tumor cells
and staining intensity ≥2 were defined as positive. Cases with
staining intensity <2 or with positive staining in less than 5% of
tumor cells were defined as negative. The expressions of PD-1
and CD8+ TILs were evaluated according to the average number
of positively stained cells in three randomly selected high-power
fields (HPFs) in each case. The numbers of CD8+ TILs were
classified into two groups based on the median value (n=99):
CD8+ TILs- (n ≤ 99) and CD8+ TILs+ (n > 99).

Four TMITs were classified as reported (6): TMIT-I (PD-L1+,
CD8+ TILs+), TMIT-II (PD-L1-, CD8+ TILs-), TMIT-III
(PD-L1+, CD8+ TILs-), and TMIT-IV (PD-L1-, CD8+ TILs+).

18F-FDG PET/CT Acquisition Protocol and
Image Analysis
18F-FDG was intravenously administered at a dose of 3.7 MBq/
kg after fasting for at least 6 h. The blood glucose concentration
was lower than 11 mmol/L before injecting 18F-FDG. PET/CT
imaging was performed on a PET/CT scanner (Discovery 690
PET/CT, GE) at 60 ± 5 min after FDG administration. Whole-
body images were obtained from the base of the skull to mid-
thigh by means of an integrated PET/CT tomography (5–7 bed
positions with 2 min per bed position). A low-dose helical CT
scan (120 kV; 120 mA; slice thickness, 3.75 mm) was performed
for anatomical correlation and attenuation correction.
Reconstructed images were then displayed on a GE ADW4.5
workstation. Tumor mass was identified as the volume with
elevated 18F-FDG uptake compared to normal lung parenchyma
or other mediastinal structures. SUVmax was defined as the
highest pixel value of PET imaging. Tumor burden was
calculated by drawing a three-dimensional volume of interest
(VOI) on the volume of tumor-related metabolic activity and
applying a percentage threshold at 30% of SUVmax.

Radiomic Feature Extraction
The feature extraction was performed as previously described
(16). Briefly, LIFEx package (version 5.10, http://www.lifexsoft.
org) was used to extract the texture features of 18F-FDG PET/CT
images of lesions in the same VOI. The 18F-FDG PET/CT images
of the patient in the DICOM format were imported into the
software. Two experienced PET/CT diagnostic physicians
semiautomatically delineated the VOI of the target lesion using
a threshold at 30% of SUVmax. The interobserver reliability
between the two physicians was analyzed. Then, the software
program automatically calculates and extracts 52 PET radiomic
features and 51 CT radiomic features, which are provided in
Supplemental Table 1.
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Radiomic Feature Selection and
Model Establishment
Radiomic features with significant differences among different
TMITs were selected in the training set using the Mann–
Whitney U test with a p-value <0.05. The least absolute
shrinkage and selection operator (LASSO) algorithm with 10-
fold cross-validation was then used to select the optimal
predictive features in the training set. The selected features
with non-zero coefficients at the minimum of lambda were
selected to construct a radiomics signature score (rad-score).
Finally, rad-score and clinical variables were combined to establish a
complex model using multivariate logistic regression analysis.

Model performance was tested in the validation set. Briefly,
receiver operating characteristic (ROC) curve and area under the
ROC curve (AUC) were used to evaluate the model performance
in the training and validation sets. A nomogram was developed
to display the prediction results for each patient using the rad-
score and clinical variables, and calibration curves were plotted
to improve the nomogram’s prediction accuracy. Furthermore,
decision curve analysis (DCA) was performed to evaluate the
clinical usefulness of the combined model by quantifying the net
benefits at different threshold probabilities.

Statistical Analysis
All statistical tests were performed using SPSS statistical package
(version 22.0, IBM, Armonk, NY, USA), MedCalc (MedCalc
Software bvba, Ostend, West Flanders, Belgium), and R version
3.6.2 (http://www.r-project.org).

Feature reliability was analyzed using an intraclass correlation
coefficient (ICC), where ICC ≥0.75 is generally considered to
indicate good repeatability of the measured results. Mann–
Whitney U test and Fisher’s exact test were used to test the
differences between continuous variables or categorical variables,
respectively. Relations between two variable distributions were
analyzed with the Spearman rank correlation coefficient (rho).

R package “glmnet” was used to perform LASSO binary
logistic regression analysis, “rms” package to create the
nomogram and calibration curve, “rmda” package to plot the
DCA, “ggplot” package to plot the bar graph, and the “pROC”
package to analyze ROC curves. A p-value <0.05 was considered
statistically significant.
RESULTS

Patient Characteristics
In total, 103 patients were eligible for the retrospective analysis.
The median age of the patients was 59 years old (range: 33–78
years old). The patients were randomly assigned to training or
validation set at a ratio of 7 to 3, with 71 cases in the training set
and 32 in the validation set. The baseline characteristics of the
patients are summarized in Table 1.

Feature Reliability
Feature extraction was performed by two physicians to ensure
the validity and reproducibility of the procedure. After
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examining the inter-set differences with Manny–Whitney U-test,
as well as the interobserver reliability with ICC, it was concluded
that none of the features was significantly different from each
other (p > 0.05), suggesting that all the features were reliable and
reproducible (ICC > 0.75).

Correlations Between Radiomic Features
and Immune Variables
By Mann–Whitney U test, 51 radiomic features were
significantly different between PD-L1+ and PD-L1- patients
(p < 0.05) (Supplemental Table 2). ROC for these indices
showed moderate ability for predicting PD-L1 expression
(AUC < 0.710), and the preferable features in differentiating
PD-L1 status include SUVmax (AUC = 0.704) among the basic
features and GLRLM_LRHGE (AUC = 0.702) and
GLRLM_HGRE (AUC = 0.700) among the texture features.

Thirty-seven radiomic features correlated with CD8+ TILs in
NSCLC (rho = -0.289 to 0.310, p < 0.05), among which
NGLDM_Contrast has a strong correlation with CD8+ TILs
with the largest linear correlation coefficient (rho = 0.310, p =
0.001; Supplemental Table 3).
Frontiers in Oncology | www.frontiersin.org 4
In addition, PD-1+ TILs correlated with abundant radiomics
indices, including 40 PET features and 28 CT features (rho = -0.317
to 0.356, p < 0.05; Supplemental Table 3). The strongest correlation
was between SUVpeak (1 ml) and PD-1 expression (rho = 0.356,
p < 0.001; Supplemental Table 4).

Feature Extraction
To avoid model overfitting, radiomic features with p-values <0.05
were first selected by the Mann–Whitney U test. Seventy-three
features (42 PET features, 31 CT features) were found significantly
different among TMIT groups in the training set. All of these
features showed moderate power for predicting the TMIT-I
tumors (Figure 1).

Construction of the Radiomics Signature
and Complex Model
LASSO algorithm and 10-fold cross-validation were used to
extract the optimal subset of radiomic features from the 73
features above. Four radiomic features were then selected to
build the radiomics signature score based on the 71 patients in
the training set (Figure 2) as follows: GLRLM_LRHGE,
A B

FIGURE 1 | (A) The performance of radiomic features for the evaluation of tumor microenvironment immune type (TMIT)-I tumors. All the features showed moderate
power for predicting the TMIT-I tumors, and PET features have better ability than CT features with higher area under the receiver operating characteristic (ROC) curve
(AUC). Panel (B) was the ROC curve of the optimal PET (GLZLM_SZE) and CT (Conventional_HUmax) features to distinguish TMIT-I from other groups.
TABLE 1 | Demographic and clinical data of all patients.

Variables All patients (n = 103) Training set (n = 71) Validation set (n = 32) p

Age (years) Range 59 (33–78) 56 (33–78) 63 (49–76) 0.03
Gender Male 57 35 22 0.09

Female 46 36 10
Smoking Smoker 45 26 19 0.03

Non-smoker 58 45 13
Histology SCC 28 17 11 0.208

No-SCC 75 54 21
Stage I 37 23 14 0.20

II 24 16 8
III 30 23 7
IV 12 9 3

SUVmax Range 9.49 (0.88–23.5) 9.61 (0.88–23.5) 9.00 (1.19–21.0) 0.932
No
vember 2021 | Volume 11 | Article 7
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GLZLM_SZE, SUVmax, and NGLDM_Contrast. The first three
were PET features, and the last one was a CT feature. A rad-score
for each patient was calculated using the following formula:

Rad − score = GLZLM _ SZE � 0:6929504962 +
GLRLM_LRHGE� 0:0001966283þ SUVmax

� 0:0707030000 + NGLDM_Contrast
� 0:0086261012 − 2:5406198360  

(1)

The median and the range for the four selected radiomic
features and the calculated rad-score are shown in Table 2. The
rad-score and the four selected features were significantly
Frontiers in Oncology | www.frontiersin.org 5
different among the TMITs in both the training and the
validation sets (p < 0.05). The rad-score for each patient in the
two sets was displayed as a bar graph in Figure 3.

With multivariate logistic regression analysis (using backward
stepwise elimination method), the combined model was
constructed based on the clinical variables (age, gender,
smoking history, stage) and radiomics signature. The formula
was as follows:

Model − score = 1:668� rad − score + 1:481� smoking

− 0:121 (2)
TABLE 2 | The differences of four selected radiomic features and the calculated rad-score between TMITs.

Variables Training set (n = 71) p Validation set (n = 32) p

TMIT-I (n = 18) TMIT-II~IV (n = 53) TMIT-I (n = 7) TMIT-II~IV (n = 25)

Rad-Score -0.645 (-1.67 to 0.64) -1.328 (-2.47 to -0.08) 0.000157 -0.734 (-1.223 to 0.123) -1.286 (-2.39 to 0.289) 0.018895
PET features
SUVmax 12.65 (5.10–23.50) 8.03 (0.875–19.50) 0.000634 13.70 (8.01–19.40) 8.13 (1.19–21.00) 0.024031
GLRLM_LRHGE 617 (85.90–2,680) 242 (18.50–1,440) 0.000750 664.0 (254–1,180) 276 (25.8–1770) 0.030368
GLZLM_SZE 0.697 (0.514–0.797) 0.548 (0.001–0.872) 0.000438 0.707 (0.421–0.763) 0.535 (0.017–0.791) 0.040220
CT feature
NGLDM_Contrast 37.40 (0–72.80) 15.10 (0–62.60) 0.009743 30.7 (14.6–61.6) 21.30 (0–78.4) 0.171421
November 2021 | Volume 11 | Artic
TMIT, tumor microenvironment immune type.
A

B

FIGURE 2 | The least absolute shrinkage and selection operator (LASSO) algorithm and 10-fold cross-validation were used to extract the optimal subset of radiomic
features. (A) Tuning parameter (lambda, l) selection in the LASSO model used 10-fold cross validation for the training set. The mean deviance (goodness-of-fit statistics,
red dots) was plotted vs. log (l), error bars displaying the range of standard error. Dotted vertical lines were drawn at the point of minimum deviance and at the point
where maximum l was obtained among errors smaller than the standard error of minimum deviance. (B) LASSO coefficient profiles of the 73 texture features.
le 769272
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Performance of the Radiomics Signature
and Clinical Features
We evaluated the models based on radiomics signature, clinical
variables (smoking history), and the complex model in terms of
their ability to predict TMIT-I tumors. The complex model had
good predictive ability, and its AUCs in differentiating TMIT
groups were 0.838 [95% CI (0.731–0.914)] in the training set and
0.811 [95% CI (0.634–0.927)] in the validation set. The predictive
abilities of the four models, including sensitivity and specificity,
were shown in Table 3. The differences of AUC values in
different variables were shown in Figure 4. Notably, the AUCs
of the complex model and smoking history were significantly
different in the training set and validation set (p = 0.0156, p =
0.0250). The AUC values of the complex model and radiomics
signature were not significantly different in either the training set
or the validation set (p > 0.05).

Individualized Nomogram Construction
and Validation
Given that the complex model based on both rad-score and
clinical variables had better ability to predict TMIT-I tumors, we
created a nomogram representing the individualized predictions
based on the training set, which visualized the prediction result
and the proportion of each factor (Figure 5A) . The calibration
curves of the nomogram in the training and validation sets were
presented in Figures 5B, C and showed good agreement between
the predicted and observed values in the training set. DCA for
the combined model (Figure 6) showed that prediction of
Frontiers in Oncology | www.frontiersin.org 6
TMIT-I tumors with the complex model added more benefit to
SUVmax and the clinical variable (smoking history) in the
training set. Figure 7 showed that a representative patient with
a TMIT-I type exhibited a hypermetabolic and heterogeneous
tumor on 18F-FDG PET, characterized by high expression of PD-
L1 and high density of PD-1, CD8+ TILs.
DISCUSSION

The past decade was marked by a revolution in the treatment of
NSCLC, including the variety of immunotherapy strategies
targeting the tumor immune microenvironment (17–19).
Biomarkers, such as TMIT-I, can identify the patient population
that are more likely to respond to the immunotherapy (6).
Consequently, novel approaches to assess the tumor immune
microenvironment are of particular interest in clinical practice.
We strived to address this need by proposing an 18F-FDG-PET/
CT-based radiomics to assess TMITs, especially TMIT-I tumors in
pretreatment NSCLC patients. To the best of our knowledge, this
is the first attempt to identify this type of immune “hot” tumors
using PET/CT-based radiomics in pretreatment NSCLC patients.

Among the selected features in our work, numerous indices,
including basic and texture features, were associated with PD-L1/
PD-1 expression and CD8+ TILs. The metabolic characteristics
of PD-L1/PD-1 expression in lung cancer were revealed in the
previous study (10, 11). It seems that PD-L1-positive cells take
up more glucose. Tumor microenvironment with high PD-L1
TABLE 3 | Predictive performance of variables in the training and validation sets.

Variables Training set Validation set

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

Model-score 0.838 (0.731–0.914) 72.22% 88.68% 0.811 (0.634–0.927) 85.71% 76.00%
Rad-Score 0.800 (0.688–0.885) 66.67% 81.13% 0.794 (0.615–0.916) 100% 56.00%
Smoking 0.738 (0.621–0.836) 72.22% 75.47% 0.699 (0.481–0.824) 85.71% 48.00%
SUVmax 0.771 (0.656–0.862) 72.22% 73.58% 0.783 (0.602–0.908) 85.71% 72.00%
Novem
ber 2021 | Volume 11
FIGURE 3 | Rad-score of patients in the cohort of patients with non-small cell lung cancer (NSCLC). Generally, rad-scores in the tumor microenvironment immune
type (TMIT)-I tumors were higher than other TMIT-II~IV.
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expression is often accompanied with dysfunctional anti-tumor
immune responses, and therefore can foster immune tolerance
that is favorable for tumor progression (20). However, the
molecular mechanism between glucose metabolism and PD-L1
expression has not been fully revealed. Chang et al. (21) reported
that PD-L1 expression maintained Akt/mammalian target of
rapamycin (mTOR) signaling, which in turn promoted
metabolic pathway through the translation of glycolysis enzymes.
It might partly explain that the PD-L1/PD-1-positive tumors were
more heterogeneous with more 18F-FDG involvement in tumor
cells. Moreover, the PD-L1 protein expression has been noted to be
heterogeneous within different intertumoral regions, and the
distribution of expression was frequently present near stromal
tumor interfaces (22). Some tumors may display heterogeneous
PD-L1 expression at different biopsied sites, which may partly
explain the reason of mixed response to anti-PD-L1/PD-1 therapy
(23, 24). On the other hand, the distribution of PD-L1 expression
may cause different metabolic distributions of tumor cells. As is
well known, the heterogeneity of image voxel intensities can be
quantified by different image processing and analysis methods,
including texture analysis, thus texture features describe the
uniformity and heterogeneity of the PET images. These
metabolic patterns could be representative of the intratumoral
heterogeneous expression of PD-L1/PD-1.

Previously, quantitative CT radiomic features were extracted
to predict PD-L1 expression in advanced-stage lung
adenocarcinoma, yet their ability to predict PD-L1 positivity
was weak (AUC = 0.661) (25). Recently, radiomics models of
PET/CT demonstrated good performance in classifying a group
of patients with PD-L1 expression, either ≥1% or ≥50%; however,
TILs were not included in their research (26). Meanwhile, Jiang
et al. (26) found that the performance of PET features was still
unsatisfying, although the radiomics-based signatures from CT
data achieved significant and robust individualized estimation of
specific PD-L1 status. In this study, we used 18F-FDG-PET/CT-
Frontiers in Oncology | www.frontiersin.org 7
based radiomics to analyze the correlation between radiomic
features and PD-L1 expression. Among the numerous
parameters, GLRLM_LRHGE derived from the PET images is
the preferable feature to discriminate the PD-L1 status and
achieved a moderate performance of predicting PD-L1.
GLRLM reflects the comprehensive information of the image
gray scale with respect to direction, adjacent interval, and
variation amplitude (27), which is a set of statistical features
extracted from medical images and frequently applied in
radiomics (28, 29). Long-Run High Gray-level Emphasis
(LRHGE) is the distribution of the long homogeneous runs
with high gray levels. This may reflect that intertumoral
regions with high PD-L1 expression are associated with high
gray levels (or high metabolic distribution) on PET images.

Interestingly, NGLDM_Contrast had a strong correlation with
CD8+TILs. NGLDM_Contrast measures the intensity difference
between neighboring regions. Several studies have shown that
preexisting tumoral and peritumoral immune infiltration
correlates with patient response to anti-PD-1 and anti-PD-L1
therapy (30). CD8+ TILs are not evenly distributed within the
tumor, where both T cell-infiltrated and T cell-excluded regions
are present (31). It is likely that the heterogeneous distribution of
CD8+ TILs contributed to the heterogeneity pattern of tumor
metabolism, which was depicted by NGLDM_Contrast.

Rad-signature and complex model showed better predictive
performances for TMIT-I tumors compared to the conventional
features (SUVmax) and clinical variables probably because
SUVmax alone does not accurately recapitulate the spatial
heterogeneity of tumor metabolism (32). Radiomics aims to
extract quantitative information from medical images that are
difficult to be recognized or quantified by human eyes (33). Until
recently, Sun et al. (34) developed a radiomics signature
predictive of immunotherapy response by combining contrast-
enhanced CT images and RNA-seq genomic data. The signature
was able to discriminate inflamed tumors from immune-desert
FIGURE 4 | The differences of area under the receiver operating characteristic (ROC) curve (AUC) values in different variables. There are significant differences in
AUCs between Model-score and smoking in both the training and validation sets.
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tumors, although with a modest AUC value of 0.76. Still, the
ability of the radiomics signature to predict the gene expression
signature of CD8 cells is unsatisfactory in the validation set
(AUC = 0.67), underlying the importance of developing more
and better imaging modality-based radiomics. We assessed the
tumor immune microenvironment with 18F-FDG-PET/CT
radiomics and provided a promising way to predict the tumor
immune phenotype. The nomogram included the radiomics
signature score and clinical variables, which visualized the
prediction results and provided an easy-to-use method for
individualized prediction of TMIT-I tumors. In addition,
radiomics-based signature could provide predicting outcomes
at the time of image acquisition, providing a real-time guidance
for patient stratification and therapeutic efficacy prediction.
Frontiers in Oncology | www.frontiersin.org 8
DCA was used to facilitate the comparison between different
prediction models. The utility of risk models may be evaluated
with cost-effectiveness studies in clinical practice (35). DCA
focuses on net benefit, which combines the number of true
positives and false positives into a single “net” number (36,
37). In the TMIT example, the “net” values were calculated by
subtracting the false positives (inconsistent biopsies showing
other types of TMITs from the true positives TMIT I tumors
confirmed by biopsies).

As seen in Figure 6, the clinical usefulness of each model was
evaluated using DCA method by plotting the “net” benefit of
using the model to stratify patients (y axis) against the
continuum of potential thresholds for the probability of TMIT-
1 tumors (x axis) (38). This study developed and validated a
A

B

C

FIGURE 5 | Development and performance of a nomogram. (A) Nomogram based on rad-score and clinical factors (smoking history). Calibration curves (B, C) of
the nomogram in the training set. The horizontal axis is the predicted incidence of the tumor microenvironment immune type (TMIT)-I tumors. The vertical axis is the
observed incidence of the TMIT-I tumors. The diagonal line is the reference line, indicating that the predicted value is equal to the actual value. The prediction results
and diagonals were basically coincident, indicating that the prediction results were accurate.
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complex model to identify NSCLC patients with Type-I TMIT.
The novel approach was based on radiomic features, clinical
variable, and 18F-FDG uptake. The 18F-FDG uptake accounted
for intratumoral heterogeneity that correlated with underlying
biological processes. The model described in our study showed
good discriminative ability in both training and validation sets
and exhibited higher predictive accuracy than conventional PET
parameters (e.g., SUVmax). Within the range from 0.15 to 0.4 of
the threshold probabilities, the model obviously showed a higher
curve than that of SUVmax in Figure 6, indicating a much
higher net benefit of our complex model than that of SUVmax.
Therefore, this complex model obtained more true-positive cases
of TMIT-I tumors and avoid more false-negative cases of other
immune types. Considering the low probability of TMIT-I in
clinical practice, it indicates that our DCA curve has a promising
potential for clinical application. We agree that the DCA curve of
the verification set is less optimal than that of the training set,
which may require expansion of sample size and further
optimization of the training model. Nevertheless, the DCA
Frontiers in Oncology | www.frontiersin.org 9
curves demonstrated advantages of complex model over
radiomics, indicating clinical variable is also important.

To the best of our knowledge, there are no consensus cutoff
values of PD-L1 and CD8+ TILs, even though the Food and Drug
Administration (FDA) approved the cutoff of 50% tumor
proportion score for first-line therapy with pembrolizumab
and 1% tumor proportion score for second-line therapy with
pembrolizumab/atezolizumab/bevacizumab (39). For the
expression of PD-L1, we referred to a previous literature with a
relatively large cohort and thus more reliable results (40). Koh
et al. (39) evaluated PD-L1 immunohistochemistry based on the
intensity and proportion of membranous and/or cytoplasmic
staining in tumor cells. For CD8+ TILs, median or mean values
were often used for classification of high or low infiltration (7,
41). Lin et al. (42) transferred continual variables like CD8+ T-
cell infiltrating density and PD-1/PD-L1 mRNA expression level
into categorical variables (high vs. low) with median value as
cutoff point. Similarly, a recent assessment for PD-L1 was
performed by Noh et al. (43), where PD-L1 expression was
A

B

FIGURE 6 | Decision curve analysis (DCA) of each model in predicting tumor microenvironment immune type (TMIT)-I for non-small cell lung cancer (NSCLC). The
vertical axis measures standardized net benefit. The horizontal axis shows the corresponding risk threshold. In the training set (A), the DCA showed that if the
threshold probability is between 0.1 and 0.8, using the complex model (brown line) provided a greater benefit than the clinical model (blue curve) and basic PET
parameter (green curve). In the validation set (B), the DCA showed that if the threshold probability is between 0.1 and 0.5, using the complex model provided a
greater benefit than the clinical model.
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interpreted based on the proportion and intensity (graded as 0–
3) of positive tumor cells. Besides, they utilized mean values as
the cutoff threshold to categorize the CD8 TILs as “high” or
“low.” Based on the above, PD-L1+ was defined as more than 5%
of tumor cells with staining intensity ≥2, and median value >99
was for CD8+ TILs in our study.

Our study has some limitations. First, it was of a single-center
design and the relatively small sample size may influence the
predictive ability of radiomics signature. Therefore, it is necessary
to carry out multicenter studies and test multicenter data to ensure
better robustness of the model. Second, patients with both lung
squamous cell carcinoma and adenocarcinoma were enrolled and
investigated, and the predictive performance of each tumor
subtype should be further validated separately in a larger cohort.
Third, with the development of quantitative imaging methods
along with machine learning, it provides powerful modeling tools
to mine the huge amount of image data available and reveal
underlying complex biological mechanisms (44). Therefore, more
advanced radiomics approaches, such as machine learning and
deep learning, should be established to develop a model with
optimal prediction performance.
Frontiers in Oncology | www.frontiersin.org 10
CONCLUSION

In conclusion, a radiomics signature and complex model were
developed and validated in patients with NSCLC. 18F-FDG-PET/
CT radiomics may provide a noninvasive method for predicting
tumor immune phenotypes, which can assist in clinical practice
to identify candidates for immunotherapy.
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