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Purpose: A combined model was established based on the MRI-radiomics of pre- and
mid-treatment to assess the risk of disease progression or death in locally advanced
nasopharyngeal carcinoma.

Materials and Methods: A total of 243 patients were analyzed. We extracted 10,400
radiomics features from the primary nasopharyngeal tumors and largest metastatic lymph
nodes on the axial contrast-enhanced T1 weighted and T2 weighted in pre- and mid-
treatment MRI, respectively. We used the SMOTE algorithm, center and scale and box-
cox, Pearson correlation coefficient, and LASSO regression to construct the pre- andmid-
treatment MRI-radiomics prediction model, respectively, and the risk scores named P
score and M score were calculated. Finally, univariate and multivariate analyses were used
for P score, M score, and clinical data to build the combined model and grouped the
patients into two risk levels, namely, high and low.

Result: A combined model of pre- and mid-treatment MRI-radiomics successfully
categorized patients into high- and low-risk groups. The log-rank test showed that the
high- and low-risk groups had good prognostic performance in PFS (P<0.0001, HR:
19.71, 95% CI: 12.77–30.41), which was better than TNM stage (P=0.004, HR:1.913,
95% CI:1.250–2.926), and also had an excellent predictive effect in LRFS, DMFS, and OS.

Conclusion: Risk grouping of LA-NPC using a combined model of pre- and mid-
treatment MRI-radiomics can better predict disease progression or death.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) is epithelial carcinoma
originating from the inner layer of the nasopharyngeal mucosa.
In 2018, there were 129,000 new cases of NPC in the world
(1). The TNM stage system is widely used in risk stratification
and therapeutic decision in NPC, and about 70% are diagnosed
with locally advanced stage (2). Concurrent chemoradiotherapy
with or without induction chemotherapy is the standard
treatment with locally advanced nasopharyngeal carcinoma
(LA-NPC). However, it is worth noting that there are still
significant differences in clinical outcomes among the
same TNM stage and similar treatment in LA-NPC; metastasis
and recurrence, especially the former, are the considerable
causes of treatment failure (3). The 5-year progression-free
survival (PFS) for stage III and IVa in NPC were 68.7–87%
and 50.4–68%, and the 5-year overall survival (OS) were 75.5–
91.4% and 58.3–75%, respectively (4–6). Therefore, developing
individualized methods to predict the effect in LA-NPC
is necessary.

Radiomics is an algorithm that could automatically extract
high-dimensional quantitative features from medical images.
These features are extracted from the whole tumor in different
ways. They can provide comprehensive information about tumor
phenotype, tumor microenvironment, and response to treatment
to characterize tumor heterogeneity (7, 8). Magnetic resonance
imaging (MRI) was the preferred imaging modality for diagnosis
and local stage of NPC (9). Previous studies had shown that MRI-
radiomics is an independent risk factor for distant metastasis, local
recurrence, and PFS in NPC (10–12). Most of these studies focus
on primary tumors of the nasopharynx. A recent study showed
that primary tumors and metastatic lymph nodes have different
biological characteristics (13). Therefore, it is necessary to consider
adding metastatic lymph node information to radiomics based on
primary nasopharyngeal tumors.

Due to individualized differences, different NPCs have different
responses to chemoradiotherapy, leading to differences in tumor
cell populations (i.e., differences in tumor heterogeneity).
Currently, there is no literature report on constructing an MRI-
radiomics model during chemoradiotherapy to predict LA-NPC.
This study aims to screen features associated with PFS labeling
in pre- and mid-treatment MRI-radiomics, respectively, to
construct a model to predict disease progression or death in
LA-NPC (stage III–IVa).
MATERIAL AND METHOD

Patient
This retrospective study was approved by the institutional review
board of our institution. Informed consent from patients was
exempted due to the retrospective nature of this study. The
experiment included newly diagnosed LA-NPC (stage III-IVa)
in Sichuan Cancer Hospital from January 2015 to December 2016.
The inclusion criteria were as follows: (1) histologically confirmed
LA-NPC (restage according to AJCC 8th edition) and at least one
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metastatic lymph node. Previous studies associated with head and
neck cancer have shown that the radiomics features of increasing
the region of interest (ROI) of the lymph nodes provide a better
predictive power than those from primary tumors alone (14, 15).
According to the definition of Ho et al. (16), the diagnostic criteria
of N + include central necrosis, extracapsular spread, the shortest
diameter of cervical lymph nodes >10 mm, and the shortest
diameter of retropharyngeal lymph nodes >5 mm. (2) pre- and
mid-treatment (20 times of radiotherapy) MRI examination of
nasopharynx and neck, MRI sequence included axial contrast-
enhanced T1 weighted imaging (CET1WI), and axial T2 weighted
imaging (T2WI); (3) radical chemoradiotherapy were completed;
(4) have available clinical data. The exclusion criteria were
(1) motion artifacts, blurring, and in-continuity in MRI images;
(2) history of anticancer therapy before baseline MRI scans, such
as radiotherapy, chemotherapy, immunotherapy, and surgery;
(3) patients with distant metastasis; (4) recurrence or
complicated with other malignant tumors; (5) incomplete
radiotherapy planning records. Finally, a total of 243 patients
were included in further analysis.

Pre-treatment clinical characteristics were collected through
the Health Information System (HIS) of Sichuan Cancer
Hospital. The characteristics include age, sex, cigarette
smoking, alcohol consumption, family history, WHO type,
platelet count (PLT), neutrophil count, lymphocyte count,
monocyte count, platelet-to-lymphocyte ratio (PLR),
neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-
monocyte ratio (LMR), hemoglobin (HB), C-reactive protein
(CRP) , a lanine aminotransferase (ALT) , aspar tate
aminotransferase (AST), lactate dehydrogenase (LDH), alkaline
phosphatase (ALP), serum albumin, cumulative dose of
radiotherapy, image-guided radiotherapy (IGRT), TNM stage,
induction chemotherapy, targeted therapy.

Treatment
The treatment regimen was concurrent chemoradiotherapy ±
induction chemotherapy. The chemotherapy regimen was
platinum-based single or dual drug (cisplatin ± paclitaxel),
beginning on the first day of radiotherapy. Gross tumor
volume (GTV), included both primary nasopharyngeal tumor
(GTVnx) and metastatic lymph nodes (GTVln) as demonstrated
by clinical, endoscopic, and imaging data. All ROI segmentations
were firstly manually performed by a radiation oncologist who
had 3 years of experience in NPC radiotherapy and then
validated by a senior radiation oncologist who had 10 years of
experience. GTV was planned to receive a total dose of 66–76 Gy
with conventional fractionation (2.1–2.25 Gy per fraction, five
fractions per week). Some patients were treated with anti-EGFR
monoclonal antibodies during radiotherapy simultaneously.
Nasopharynx and neck MRI were reexamined at 20 times
of radiotherapy.

Follow-Up and Survival Endpoint
MRI scan showed soft tissue swelling or space-occupying and
then by histopathology to determine local recurrence. Distant
metastasis was diagnosed synthetically by clinical symptoms,
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physical examination, imaging data, and histopathology. The
main endpoint was PFS, while loco-recurrence-free survival
(LRFS), distant metastasis-free survival (DMFS), and OS were
secondary endpoints. PFS was defined as the time during the
tumor progressing (for any aspect) or at death (for any reason)
and the first MRI scan. LRFS was defined as the time between
the first local recurrence and the first MRI scan. DMFS was
defined as the time between the first distant metastasis and the
first MRI scan. OS was defined as the time between the death of
any cause and the first MRI scan.

MRI Check
The MRI equipment was Siemens Magnetom Avanto-1.5T/
Magnetom Skyra-3T. Some scanning parameters were as
follows: T2WI sequence of Magnetom Avanto-1.5T scan was
repetition time (TR): 4,890 ms; echo time (TE): 80 ms; field of
view (FOV): 340×340 mm; matrix: 320×320 mm; thickness: 3
mm; gap: 3.6 mm. CET1WI sequence was TR: 695 ms; TE: 12 ms;
FOV: 300×320; matrix: 320×280; thickness: 3 mm; gap: 3.6 mm.
T2WI sequence of Magnetom Skyra-3T scan was TR: 5,290 ms;
TE: 85 ms; FOV: 340×340 mm; matrix: 320×320 mm; thickness:
3 mm; gap: 3.6 mm. CET1WI sequence was TR: 769 ms; TE: 12
ms; FOV: 300×320 mm; matrix: 320×280; thickness: 3 mm; gap:
3.6 mm. CET1WI was treated with gadolinium meglumine at a
dose of 0.2 mmol/kg.
Frontiers in Oncology | www.frontiersin.org 3
Image Acquisition and Segmentation
The MRI image was exported through PACS and saved in
DICOM format. The saved image was then imported into the
MIM planning system for ROI drawing. To ensure the accuracy
of the sketch, we used manual segmentation to outline the masses
on the CET1WI and T2WI sequence of the primary
nasopharyngeal tumor and metastatic lymph nodes in pre- and
mid-treatment (as shown in Figure 1). The resulting 3D mass
area was ROI. In this study, the metastatic lymph nodes with the
largest short diameter were selected as the target lesions for
GTVln, which is consistent with the study of Bologna (17).

Image Preprocessing
The uAI Research Portal (Version: 430 sp1) was used to image
preprocessing. We processed the image by several filters, including
Box Mean, Additive Gaussian Noise, Binomial Blur, Curvature
Flow, Box Sigma, Laplacian of Gaussian (LoG),Wavelet, Normalize,
Laplacian Sharpening, Discrete Gaussian, Mean, Speckle Noise,
Recursive Gaussian, Shot Noise/Poisson Noise filter. In our study,
four different LoG filtered images were obtained through different
combinations. After three times of wavelet decomposition, the
wavelet images of eight various frequency bands were finally
obtained, and normalize filter adjusted all MRI images to 255
gray levels in order to standardize the scanning parameters and
machinery differences reflected on the images.
 

A  

HGF  E  

DCB  

FIGURE 1 | Sketch of ROI. (A–D) are CET1WI sequences; from left to right, they are GTVnx and GTVln in pre-treatment, GTVnx and GTVln in mid-treatment. (E–H)
are T2WI sequences; from left to right, they are GTVnx and GTVln in pre-treatment, GTVnx and GTVln in mid-treatment.
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Radiomics Feature Extraction
The uAI Research Portal was also used for feature extraction.
Features of different categories were considered: 14 shape
features, 18 first-order statistics features, 21 features computed
on gray level co-occurrence matrix (GLCM), 16 features
computed on gray level run-length matrix (GLRLM), 16
features computed on gray level size zone matrix (GLSZM), 14
features computed on gray level dependence matrix (GLDM),
and 5 features computed on gray level dependence matrix
(GLDM), a total of 104 radiomics features. The original and
filtered image generated 25 groups, so each ROI extracted a total
of 2,600 features. Finally, from each image type (CET1WI or
T2WI), 2,600 radiomics features were extracted from both the
primary tumors and the largest affected lymph node on pre- and
mid-treatment, for a total of 20,800 features, namely, 10,400 for
pre- and mid-treatment, respectively. Excel S1 and S2 of
Supplementary Materials shown the all radiomics feature in
pre- and mid-treatment.

Radiomics Feature Selection, Model
Building, and Validation
To avoid the influence of class imbalance (85 cases of progress/
death vs 158 cases of disease-free survival) on the model building,
we used a SMOTE algorithm to oversample the original dataset
of pre- and mid-treatment, respectively. After amplification, the
dataset was randomly divided into a training dataset (476/595)
and a test dataset (119/595) according to 4:1. The model building
was based on the training dataset, after being preprocessed by
center and scale and Box-cox; the feature with no difference
between categories was removed. The Pearson correlation
coefficient was used to remove redundant features. LASSO
regression was used for a further selection of the remaining
features, which is consistent with most previous studies (10–12,
18, 19). Then, 20 MRI-radiomics that were most closely related
to PFS tags were selected, and the importance of features in the
model was sorted. Finally, we selected the top five features
respectively to create a radiomics model of pre- and mid-
treatment. At the same time, the prediction ability of the
model was tested in the training, test, and original dataset by
ROC curve and confusion matrix. Eventually, we received the
radiomics risk score of pre-treatment named P score and mid-
treatment named M score.

Final Model Development and
Risk Stratification
The clinical information, P score, and M score were analyzed by
Cox univariate analysis, and we selected the variables with P < 0.05
(bilateral test) to Cox multivariate analysis. According to the
results of multiple factors, we chose the variables with P < 0.05
(bilateral test) to train a multivariate Cox proportional hazard
regression model, and the predicted values of linear predictive
variables of PFS were obtained. The higher the predictive value,
the greater the risk of progress/death. The median of the predictive
value was used as the threshold for risk stratification. Finally, we
compared the Kaplan-Meier survival curves between different risk
groups and TNM stages at different clinical endpoints.
Frontiers in Oncology | www.frontiersin.org 4
Statistical Analysis
All statistical analyses were conducted using SPSS (version 26.0),
GraphPad Prism (version 8), and R software (version 3.5.2).
LASSO logistic regression was completed by the “glment”
package. The Kaplan–Meier survival analyses were presented by
GraphPad Prism. P < 0.05 was considered as statistically significant.
RESULT

A total of 243 patients were included for the final analysis. The
median follow-up period was 52.7 months (range 10.6–72
months). The specific clinical data were shown in Table 1.

Establishment and Validation of
Pre-Treatment MRI-Radiomics
Prediction Model
In the pre-treatment prediction model, there were 243 samples in
the original dataset, which were expanded to 595 samples by
SMOTE algorithm. After randomly grouping according to 4:1,
there were 476 samples in the training dataset and 119 samples in
the test dataset. Top five of 20 radiomics features were selected,
including three from primary nasopharynx tumors and two from
metastatic lymph nodes. Supplementary Figure S1 shown the 20
radiomics feature in pre-treatment. Then the pre-treatment
radiomics model to predict PFS in LA-NPC was established by
logistic regression. The AUC value of the pre-treatment
prediction model in the training dataset was 0.8003 (95%
CI:0.7613–0.8392). The average AUC value of five times 10-
fold cross-validation in the training dataset was 0.7905 (95% CI:
0.7506–0.8304). The AUC value in the original dataset was 0.773
(95% CI: 0.7126–0.8334). The AUC value in the test dataset was
0.8527 (95% CI: 0.7843–0.921). The ROC curve was shown
in Figure 2.

The results of the confusion matrix (Figure 3) of the three
datasets (training dataset, original dataset, and test dataset) in
this study were as follows: the accuracy, precision, sensitivity,
specificity, and F1 values of the training dataset were 0.725,
0.704, 0.618, 0.805, and 0.658, respectively. In the original
dataset, they were 0.728, 0.614, 0.600, 0.797, and 0.607,
respectively. In the test dataset, they were 0.790, 0.795, 0.686,
0.868 0.737, respectively. Finally, according to the weighted
coefficient of logistic regression analysis, we obtained a formula
for calculating the risk value of each LA-NPC patient:

Logit(P score) = −0:5747

+ 0:7722 ∗ normalize _ firstorder _Mean _ PGTVlnT1

+1:0464 ∗ boxmean _ glcm _ClusterShade _ PGTVnxT1

+0:9113 ∗ Log _ firstorder _ Log − sigma − 2 −mm − 3D −

Maximum_PGTVlnT1

+0:6325 ∗ normalize _ gldm_DependenceVariance _

PGTVnxT2

+0:7434*wavelet _ glszm _wavelet −HHH −

SmallAreaEmphasis _ PGTVnxT2
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Establishment and Validation of
Mid-Treatment MRI-Radiomics
Prediction Model
In the mid-treatment prediction model, the original dataset after
oversampling and grouping showed 476 samples in the training
dataset and 119 samples in the test dataset. Five radiomics
features were selected, including three from primary
nasopharyngeal tumor and two from metastatic lymph nodes.
Supplementary Figure S2 shown the 20 radiomics feature in
mid-treatment.

Then the mid-treatment radiomics model to predict PFS in
LA-NPC was established by logistic regression. The AUC value
of this model in the training dataset was 0.9253 (95% CI: 0.9025–
0.9482). The average AUC value of five times 10-fold cross-
validation in the training dataset was 0.9205 (95% CI: 0.8967–
0.9442), and the AUC value in the original dataset was 0.8884
(95% CI: 0.8467–0.93). The AUC value in the test dataset was
0.8849 (95% CI: 0.8286–0.9413) (Figure 4).

The results of the confusion matrix (Figure 5) of the three
datasets (training dataset, original dataset, and test dataset) in
this study were as follows: the accuracy, precision, sensitivity,
specificity and F1 values in the training dataset were 0.851, 0.867,
0.770, 0.912, 0.816, respectively; in the original dataset, they were
0.798, 0.714, 0.706, 0.848, 0.710, respectively; and in the test
dataset were 0.773, 0.740, 0.725, 0.809, 0.733, respectively.

Finally, according to the weighted coefficient of logistic
regression analysis, we obtained a formula for calculating the
risk value of each LA-NPC patient:

Logit   (M score) = −0:9557
− 1:5915*shotnoise _ shape _ SurfaceVolumeRatio _MGTVnxT1

−0:2544*wavelet _ gldm _wavelet −HLH −

LargeDependenceHighGrayLevelEmphasis _MGTVlnT1

−0:5678*wavelet _ firstorder _wavelet − LHL −Mean _MGTVnxT1

−0:9758*normalize _ glszm _HighGrayLevelZoneEmphasis _MGTVlnT1

+1:3875*normalize _ gldm _ LargeDependenceLowGrayLevelEmphasis

_MGTVnxT1

Final Model Development and Risk
Stratification
In univariate Cox analysis, age, alkaline phosphatase, T stage,
TNM stage, P score, M score were significantly correlated with
PFS. Subsequent multivariate Cox analysis showed that P score
(HR: 13.515, 95% CI: 5.185–35.230) and M score (HR: 17.604,
95% CI: 8.113–38.195) were independent risk factors for PFS, as
shown in Table 2.

We put P score and M score into multivariate Cox regression
model, and the predicted values of PFS linear predictive variables
were obtained. The median predicted value was used as a threshold
to classify high- and low-risk patients. In terms of prognostic power
for PFS, the high- and low-risk groups (P<0.0001, HR: 19.17, 95%
CI: 12.77–30.41) was significantly prognostic than TNM stage
(P=0.004, HR: 1.913, 95% CI: 1.250–2.926). Similar results could
be found by looking at the Kaplan-Meier curves for LRFS, DMFS,
OS of the high-/low-risk groups and TNM stage, for as far as LRFS
is concerned, the log-rank test showed P < 0.0001 (HR: 44.61, 95%
TABLE 1 | Clinical baseline data of the subjects (N=243).

Clinical features Percentage/mean ± SD/median
(interquartile range)

Age (years) 49.28 ± 10.678

Sex (N/%)

Male 75.3% (183/243)

Female 24.7% (60/243)

Cigarette smoking (N/%)

No 53.1% (129/243)

Yes 46.9% (114/243)

Alcohol consumption (N/%)

No 77.4% (188/243)

Yes 22.6% (55/243)

Family history of cancer (N/%)

No 93.8% (228/243)

Yes 6.2% (15/243)

WHO histological type (N/%)

Type I 0.8% (2/243)

Type II 99.2% (241/243)

Neutrophil count (10^9/L) 3.96 (3.08–4.85)

Lymphocyte count (10^9/L) 1.51 (1.22–1.93)

Monocyte count (10^9/L) 0.36 (0.27–0.45)

PLT (10^9/L) 195 (161–244)

HB (g/L) 140 (130–150)

NLR 2.48 (1.95–3.55)

PLR 131.5 (101.4–164.6)

LMR 4.39 (3.25–5.84)

CRP (mg/L) 3.55 (2.28–5.33)

ALT (U/L) 24 (16–34)

AST (U/L) 23 (19–28)

Albumin (g/L) 43.2 (41.4–45.2)

LDH (U/L) 178 (153-205)

ALP (U/L) 82 (69-99)

T stage

T1 4.1% (10/243)

T2 34.2% (83/243)

T3 29.6% (72/243)

T4 32.1% (78/243)

N stage

N1 11.1% (27/243)

N2 63.8% (155/243)

N3 25.1% (61/243)

TNM stage

III 47.7% (116/243)

IVa 52.3% (127/243)

induction chemotherapy

No 39.1% (95/243)

Yes 60.9% (148/243)

IGRT

No 16.9% (41/243)

Yes 83.1% (202/243)

Targeted therapy

No 92.2% (224/243)

Yes 7.8% (19/243)

Cumulative radiation dose (Gy) 44.60 ± 1.11

Clinical endpoints

None 65.4% (159/243)

Recurrence 14.0% (34/243)

Distant metastasis 18.9% (46/243)

Recurrence and distant metastasis 3.7% (9/243)

Death 21.8% (53/243)
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CI: 22.60–88.05), P=0.6270 (HR: 0.8464, 95% CI: 0.4321–1.658),
respectively; for DMFS concerned, P < 0.0001 (HR: 14.11, 95% CI:
7.864–25.30) and P=0.0788 (HR: 1.700, 95% CI: 0.9536–3.030),
respectively; for OS concerned, P < 0.0001 (HR: 20.18, 95% CI:
11.75–34.66), P=0.0016 (HR: 2.532, 95% CI: 1.478–4.339),
respectively (Figure 6).
DISCUSSION

In recent years, radiomics has developed rapidly in medicine,
and good results have been achieved in predicting the effect of
tumors. MRI is a standard imaging method in NPC, and it has
unique advantages. First of all, MRI can provide superior
anatomical information (such as spatial location) and has good
soft tissue contrast-detection ability. Secondly, different MRI
sequences may be sensitive to critical components of tumor
physiology, such as blood flow and cell density, and MRI also can
Frontiers in Oncology | www.frontiersin.org 6
distinguish regions in the tumor that contain different
environments that may affect local cell phenotypes and
genotypes, such as blood flow changes. Finally, MRI can be the
non-invasive and repeated examination of the tumor to evaluate
the treatment response to be integrated into the treatment
strategy. So, the MRI image was used to establish the LA-NPC
prediction model through radiomics. This study explored the
value of MRI-radiomics features on pre- and mid-treatment in
predicting effect in LA-NPC. The results showed that the M score
and P score were independent prognostic indexes of PFS. Finally,
we put them into the multivariate Cox model to calculate the risk
score. We successfully stratified the risk of the LA-NPC. Through
the Log-rank test, we found that MRI-radiomics showed good
predictive ability in PFS, LRFS, DMFS, and OS.

By screening the pre-treatment MRI-radiomics features, we got
20 radiomics features related to PFS in LA-NPC. It is better to
consider that the ratio between the amount of data and the number
of features that can be accommodated by logistic regression is more
A B

DC

FIGURE 2 | Pre-treatment MRI-radiomics model in each dataset predicted the ROC curves of the PFS in LA-NPC. (A) shows the ROC curve of the MRI-radiomics
model in the training dataset of pre-treatment, and (B) shows the average ROC curve of 10-fold cross-validation of the MRI-radiomics model in the training dataset.
(C, D) represent the ROC curve of the MRI-radiomics model in the original dataset and test dataset, respectively.
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A B

DC

FIGURE 4 | Mid-treatment MRI-radiomics model in each dataset predicted the ROC curves of the PFS in LA-NPC. (A) shows the ROC curve of the MRI-radiomics
model in the training dataset of mid-treatment, and (B) shows the average ROC curve of 10-fold cross-validation of the MRI-radiomics model in the training dataset.
(C, D) represent the ROC curve of the MRI-radiomics model in the original dataset and test dataset, respectively.
A B C

FIGURE 3 | Pre-treatment MRI-radiomics model in each dataset predicted the confusion matrix of PFS in LA-NPC. (A–C) represent the confusion matrix of the MRI-
radiomics model of pre-treatment in the training dataset, the original dataset, and the test dataset, respectively.
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than 20:1 (20). We selected the top five features to establish a pre-
treatment prediction model, and the risk score named P score was
calculated (21). In previous studies, an MRI-based model on
primary nasopharyngeal tumors had been proved to be a
significant prognostic biomarker for PFS in LA-NPC (22, 23).
Furthermore, the research by Yang et al. indicated that an MRI-
based model on metastatic lymph nodes is a significant risk factor
for PFS in LA-NPC (24). Thus, MRI-radiomics features from both
metastatic lymph nodes and primary nasopharynx tumors
contribute to PFS prediction in LA-NPC, which is consistent
with our research. As far as we know, there is no related research
on the radiomics features of mid-treatment. Similarly, we
calculated the risk score of mid-treatment named M score. The
MRI-radiomics model of pre- and mid-treatment was internally
validated by 10-fold cross-validation in the training dataset. The
average AUC values were 0.7905 (95% CI: 0.7506–0.8304) and
0.9205 (95% CI: 0.8967–0.9442), respectively, which indicates that
the model has good repeatability. In addition, the two models have
high AUC values in both original and test datasets (Figures 2, 4),
which shows that the model has good generalization ability and
portability. Furthermore, the performance of the two models in the
confusion matrix in different datasets (Figures 3, 5) is
also outstanding.

Comparing the radiomics features included in the two models,
the pre-treatment prediction model had two first-order features
(average eigenvalues and maximum eigenvalues) and three texture
features (GLCM, GLDM, GLSZM); the mid-treatment prediction
model had one shape feature (surface area/volume ratio), one first-
order feature (average eigenvalue), and three texture features
(GLDM, GLSZM). The shape features reflect the volume,
sphere, surface area/volume ratio of the tumor. Previous studies
had found that primary tumor volume is closely related to local
control, distant metastasis, and OS in NPC (25). Zhang et al.
worked on the development and validation of an MRI-based
model (including surface area/volume ratio) for predicting
distant metastasis of NPC. The model has good evaluation
ability in the validation cohort (C index: 0.74, 95% CI: 0.58–
0.85) (11). First-order statistical features are the simplest statistical
Frontiers in Oncology | www.frontiersin.org 8
descriptors, including gray average, maximum, minimum,
variance, percentile, etc. (24). GLCM can reveal the spatial
complexity of tumors and may provide information about
central necrosis or tumor metastasis-dependent factors, such as
yes-related proteins (13). Several studies had shown that GLCM is
closely related to the recurrence, metastasis, and OS of NPC (10–
12, 17, 18, 24, 26). Zhang et al. demonstrated that GLSZM is
associated with the risk of distant metastasis of NPC (10). Farhan
et al. found significant differences between recurrent and non-
recurrent regions in seven features (including GLSZM) in the
radiomics analysis of intratumoral spatial heterogeneity in LA-
NPC (19). GLDM quantifies the dependence between the gray
values of adjacent pixels and the gray values of central pixels
within a certain distance, and its predictive value in NPC had been
confirmed by Zhang et al. (10).

We also found that three of the features in the pre-treatment
prediction model came from CET1WI, and two were from
T2WI, while all the features of the mid-treatment prediction
model came from CET1WI. By comparing the accuracy,
precision, sensitivity, specificity, F1 value, and AUC value of
the two models, we noticed that the mid-treatment prediction
model is better than the pre-treatment in training and original
dataset, which may indicate that T2WI mainly reflects the
density and boundary of the tumor. However, CET1WI reflects
the heterogeneity and structure within the tumor (such as tumor
angiogenesis) (27), which is crucial for judging the prognosis.
Zhang et al. also found that the contribution of CET1WI to the
model is more significant than that of T2WI (11), which is
consistent with the results of their another study (the radiomics
prediction based on CET1WI sequence is better than T2WI
sequence or combined with CET1WI and T2W sequence) (28).
Jiang et al. also proposed that using CET1WI to build a model
produces better results than T2WI (29).

The features’ inconsistency between pre- and mid-treatment
prediction model is attributed to LASSO regression. In the
screening radiomics features, LASSO regression will compress
some relatively unimportant features, adjust the coefficients to
zero for insignificant parameters, and rank the importance of
A B C

FIGURE 5 | Mid-treatment MRI-radiomics model in each dataset predicted the confusion matrix of PFS in LA-NPC. (A–C) represent the confusion matrix of the
MRI-radiomics model of mid-treatment in the training dataset, the original dataset, and the test dataset, respectively.
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features, for example, “wavelet_firstorder_wavelet_LHH-
Mean_GTVnxT1” ranks thirteenth in the Pre-treatment
prediction model and sixteenth in the mid-treatment, showing
the features included in the pre-treatment model are not entirely
useless, just their importance has changed. It also indicates that
the tumor cell population has changed after chemoradiotherapy,
leading to changes in heterogeneity within the tumor.

We compared the Kaplan-Meier survival curves between
different risk groups and TNM stages at different clinical
endpoints. The results showed that the high- and low-risk group
had an excellent ability to predict PFS (P<0.0001 HR: 19.17, 95%
CI: 12.77–30.41) was better than the TNM stage (P=0.004, HR:
1.913, 95% CI: 1.250–2.926). The MRI-radiomics model’s ability
to predict the LA-NPC effect is better than the TNM stage had
been confirmed in some studies, consistent with our study (12, 18,
26). Interestingly, we tested the high- and low-risk group at other
endpoints and found that they all performed well in LRFS, DMFS,
and OS, which was similar to some of the results ofMarco Bologna
(26), who used OS as the label for radiomics features screening,
and the final prediction model also had good predictive ability in
LRFS. In the study, our radiomics features were labeled with PFS,
which includes patients with recurrence, metastasis, and death
according to the definition, so the features we screened have
predictive values for different endpoints.

Marius suggested several considerations when conducting
radiomics studies (30). Firstly, in addition to randomized clinical
trials, the class imbalance is common, especially in retrospective
Frontiers in Oncology | www.frontiersin.org 9
studies using routine clinical data. There is little uniformity
between interesting and non-interesting events in the cohort.
For example, in our study, about 35% of patients had events of
interest (progress/death). When evaluating MRI-radiomics
features to predict PFS in NPC, we must take the imbalance
between the percentage of patients with and without interesting
events (35%) into account. The classifier that assigns all the cases
in the sample to the “no event of interest” group seems to have a
65% correct rate. Still, it doesn’t make clinical sense because it
cannot actually distinguish whether interesting events have
occurred by MRI in LA-NPC. Therefore, the overall accuracy
and sensitivity, specificity, AUC value should be reported. Our
study also used a SMOTE algorithm to balance the impact of class
to reduce data imbalance on the research (31). Secondly,
overfitting occurs when a model with many input parameters or
too many degrees of freedom “memorizes” data. In addition to the
features related to disease, the model also contains features
reflecting image noise and random fluctuations. Generally, there
are two processing methods: reducing the number of features, or
performing regularization on the data. Here we compared the
Pearson correlation coefficients to check and avoid collinearity
between variables, and used LASSO regression for feature selection
to avoid overfitting. Besides, the SMOTE algorithm balances the
class distribution by synthesizing a small number of samples,
which reduces the possibility of overfitting.

This study has two main advantages. Firstly, our research is
the only one that demonstrates the predictive effect of the mid-
TABLE 2 | Identification of risk factors of PFS by univariate and multivariate Cox models.

Univariate Cox regression Multivariate Cox regression

HR (95% CI) Pvalue HR (95% CI) Pvalue

Age (years) 1.028 (1.007–1.050) 0.008 1.011 (0.990–1.033) 0.295
Sex (Female vs Male) 1.530 (0.876–2.672) 0.135 – –

Cigarette smoking (No vs Yes) 1.026 (0.671–1.571) 0.905 – –

Alcohol consumption (No vs Yes) 1.282 (0.794–2.069) 0.309 – –

Family history (No vs Yes) 1.747 (0.843–3.621) 0.133 – –

WHO type (I vs II type) 20.421 (0.002–243908) 0.529 – –

Neutrophil count (10^9/L) 0.957 (0.818–1.119) 0.582 – –

Lymphocyte count (10^9/L) 1.144 (0.849–1.541) 0.377 – –

Monocyte count (10^9/L) 0.847 (0.430–1.669) 0.631 – –

PLT (10^9/L) 1.000 (0.996–1.003) 0.790 – –

HB (g/L) 1.001 (0.989–1.014) 0.837 – –

NLR 0.970 (0.856–1.099) 0.632 – –

PLR 0.999 (0.996–1.002) 0.431 – –

LMR 1.001 (0.984–1.019) 0.871 – –

CRP (mg/L) 1.015 (0.988–1.042) 0.277 – –

ALT (U/L) 0.998 (0.990–1.006) 0.638 – –

AST (U/L) 0.994 (0.975–1.014) 0.556 – –

Albumin (g/L) 1.004 (0.999–1.010) 0.134 – –

LDH (U/L) 1.000 (0.996–1.003) 0.787 – –

ALP (U/L) 1.004 (1.000–1.008) 0.034 1.005 (0.999–1.011) 0.102
T stage 1.349 (1.056–1.723) 0.016 0.946 (0.687–1.303) 0.734
N stage 1.411 (0.978–2.035) 0.066 – –

TNM stage (III vs IVa) 1.915 (1.223–3.000) 0.005 0.697 (0.397–1.225) 0.210
IC (No vs Yes) 0.861 (0.554–1.340) 0.507 – –

IGRT (No vs Yes) 1.035 (0.584–1.837) 0.905 – –

Targeted therapy (No vs Yes) 1.244 (0.574–2.696) 0.580 – –

Cumulative radiation dose (Gy) 0.966 (0.792–1.179) 0.737 – –

P score 24.257 (10.375–56.716) 0.000 13.515 (5.185–35.230) 0.000
M score 23.046 (11.678–45.478) 0.000 17.604 (8.113–38.195) 0.000
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FIGURE 6 | Kaplan-Meier survival curve. Kaplan-Meier survival curves of TNM stages and two risk groups at different clinical endpoints. TNM stages in PFS (A),
LRFS (C), DMFS (E), OS (G) survival curve, high- and low-risk groups in PFS (B), LRFS (D), DMFS (F), OS (H) survival curve. The P-value in the figure is obtained
by the log-rank test.
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treatment radiomics features on PFS in LA-NPC. We found that
the use of radiomics information of mid-treatment can more
comprehensively evaluate the response of LA-NPC to treatment
and better evaluate the prognosis. On the other hand, we
indirectly confirmed that the heterogeneity of tumors would
change during chemoradiotherapy. The Cox model combined
the pre- and mid-treatment radiomics features for risk
stratification and found an excellent predictive effect across
different clinical endpoints. Secondly, it had been proved that
the population of different genomes is one reason for the clinical
heterogeneity of radiotherapy efficacy (32). It is well known that
radiomics is assumed to represent the histological heterogeneity
of solid tumors (33). Although more than 90% of LA-NPC had
positive lymph nodes, previous studies ignored metastatic lymph
nodes (22, 23). We also collected the radiomics features of
primary nasopharyngeal tumors and metastatic lymph nodes
to describe tumor biological characteristics better.

This study also has some limitations. Firstly, this study is a
retrospective study conducted by a single agency in non-endemic
areas of NPC and lacks external validation. It is necessary to
perform a large-sample multicenter prospective validation in
NPC endemic and non-endemic regions to obtain strong
evidence of clinical application. Secondly, the disunity of the
treatment plan will also affect the prediction effect of the model.
Finally, MRI-radiomics models and statistical analysis
algorithms are unfamiliar and complex to the clinic. To solve
this problem, we can set up a website or application, and doctors
can upload images and clinical variables to obtain results.
CONCLUSION

The MRI-radiomics model (pre- and mid-treatment) is a
powerful tool to predict the disease progression/death in LA-
NPC. We calculate the risk score of disease progression/death in
LA-NPC by combining the radiomics characteristics of pre- and
mid-treatment and stratify the patients with high and low risk,
which can not only predict the PFS in LA-NPC but also predict
the LRFS, DMFS, and OS.
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