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Over 90% of potential anti-cancer drug candidates results in translational failures in clinical
trials. The main reason for this failure can be attributed to the non-accurate pre-clinical
models that are being currently used for drug development and in personalised therapies.
To ensure that the assessment of drug efficacy and their mechanism of action have clinical
translatability, the complexity of the tumor microenvironment needs to be properly
modelled. 3D culture models are emerging as a powerful research tool that
recapitulates in vivo characteristics. Technological advancements in this field show
promising application in improving drug discovery, pre-clinical validation, and precision
medicine. In this review, we discuss the significance of the tumor microenvironment and
its impact on therapy success, the current developments of 3D culture, and the
opportunities that advancements that in vitro technologies can provide to improve
cancer therapeutics.

Keywords: 3D culture systems, personalised medicine, drug resistance prevention, tumor microenvironment, 3D
bioprinting, extracellular matrix, microfluidics
INTRODUCTION

Uncontrolled division of neoplastic cells results in the development of a tumour mass composed of a
large variety of cellular and non-cellular components, including the heterogeneous population of
cancer cells, infiltrating and resident normal cells, extracellular matrix (ECM) proteins and secreted
factors. This complex and highly heterogeneous conglomerate of multiple cell types and extracellular
components inside of the tumour mass is known as the tumour microenvironment (TME) (1). The
interacting networks established in the TME among cancer cells and the other cell types are the key
contributors to the hallmarks of cancer and determine the aggressiveness of the tumour (2–4).
Furthermore, this tumour heterogeneity within the TME widely contributes to the extent of patient
responses to anti-cancer therapies (5). Resembling the network and the heterogeneity involved in
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every type of cancer is considered one of the most challenging
practices among oncology researchers globally. However,
understanding the molecular features in the TME of each cancer
is fundamental for the successful development of clinically
translatable anti-cancer drugs.
MODELLING THE PHYSIOLOGY OF TME
FOR DRUG TESTING

The complexity within the TME is propagated by the
heterogeneous nature of different tumor entities; that is each
individual tumor harbors its own unique intricacies comprised
of structural, cellular, genetic, and molecular composition. Our
continuous effort to improve our understanding of oncology has
led to the development of more effective diagnostic and
therapeutic approaches. However, we are also simultaneously
unravelling the anomalous disease complexities within cancer
that challenges clinical success. In a comprehensive survey of
clinical success rates by Hay et al., oncology drugs were found to
have only a 6.7% success rate of being approved (6), with other
studies estimating as low as 3.4% (7). There are various reasons
that contribute to this high rate of failure including 1) inadequate
Frontiers in Oncology | www.frontiersin.org 2
efficacy from poor biodistribution and metabolism of the drug –
unsatisfactory therapeutic index; 2) safety concerns associated
with significant side effects and off-target toxicities; 3) financial
or commercial issues such as insufficient funding or patient
recruitment and retention (8–11). Ineffectiveness of therapies is
the most common factor (57%) attributed to failure during clinical
development (10, 11). Unfortunately, most experimental drugs
that were designed through using pre-clinical models to
therapeutically target known molecular components are poorly
translated to clinical practice.

During the pre-clinical phase, the most commonly employed
cancer models are 2D cell cultures before transitioning to in vivo
mice models (Figure 1) (12). Drug testing in animals prior to
clinical trials have been a mainstay for determining drug efficacy
and toxicity; however, there are also various issues associated with
animal models, from increased costs, logistic demand, limited
bioavailability, and an increasing ethical concern (13–15).
Although these models have provided us with better insights
into tumor biology and have made a significant impact on
approaches to cancer healthcare, they do not accurately
recapitulate the complex TME and molecular features within a
human tumor (16, 17). The dismal results of clinical translatability
of drugs developed from pre-clinical models highlight the
limitations of our current understanding (16). Currently, one of
FIGURE 1 | Advantages and disadvantages of drug development using different pre-clinical models and clinical trials. The physical features when using a pre-clinical
model is crucial to ensure physiological relevance. 2D cell cultures is a widely adopted and well-established model that has been used consistently in drug discovery
and high throughput screening. However, cancer cells cultured in 2D do not recapitulate the biology of an in vivo tumor and thus has very poor performance for clinical
prediction. As such, the use of more complex models such as 3D cell culture and mice models has been more representative of clinical cases compared to 2D cell
culture. However, the standardized implementation of these models for applications in high content screening and personalised medicine remains a challenge.
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the major obstacles for delivering better cancer patient cares is
associated with accurate diagnosis and prediction to therapeutic
responses (18). As such, the importance of developing more
accurate, cost-effective, and efficient pre-clinical technologies for
better in vitro and in vivo models are crucial to creating more
efficacious therapies, predicting therapeutic outcomes, and
guiding clinical practice.

Bridging the Pre-Clinical Gap:
3D Culture Models
Many researchers use 2D cell cultures as the in vitro pre-clinical
model for testing anti-tumor drugs before proceeding with in vivo
trials (13). This is primarily due to the convenience, simplicity and
cost-effectiveness of using a 2D cell culture as a model (Figure 2).
Frontiers in Oncology | www.frontiersin.org 3
However, it is evident that results attained from 2D in vitromodels
have almost no clinical translatability to human tumors (13). The
2D monolayer cultures have been optimized to grow on rigid
plastic surfaces and thus fail to capture the crucial elements that
make up the complex 3D tissue architecture of the TME, which
ultimately affects the cellular response of cells to drugs and the off-
target effects. While 2D cultures are still predominantly used for
drug discovery due to its simplicity and compatibility with high-
content screening platforms, 3D culture systems have numerous
advantages over 2D cell culture. Thus the transition to 3D
preclinical models have become more appealing as improvement
in tissue engineering technology has made 3D cell culture more
adaptable and tunable over the microenvironmental factors to
better reflect the functional pathology of in vivo tumors.
FIGURE 2 | Physiological differences between 2D cell culture and 3D cell culture. Cells develop as a 2D monolayer adopt an apical-basal polarity when plated on a
culture flask or a petri dish. The environment that cells are exposed to within the culture flask is a poor representation and does not accurately recapitulate
physiological conditions. Comparatively, 3D cultures provide greater biological relevance and cellular response to perturbations are more reflective of in vivo.
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The emergence of 3D cell culture models as research tools
plays a vital role during early pre-clinical drug development.
Recently there has been a paradigm shift in the way researchers
study the TME; 3D models are able to better mimic the in vivo
microenvironment compared to 2D cell culture and their
applications are simpler, more efficient, versatile, and cost-
effective compared to using animal models (13). Currently,
intense efforts are taken to generate new cell lines that
represent the vast heterogeneity of tumors. Three-dimensional
cultures offer a higher chance to represent the genomic diversity
and allow testing of new drugs targeting specific signaling
pathways. Additionally, 3D culture is a more efficient way to
generate new patient-derived cell lines that fail to grow in 2D.
For example, in breast cancer and melanoma, tumor circulating
cells derived from patients are successfully grown under hypoxia
conditions in suspension cultures (19, 20). And in prostate
cancer, organoid models from patient-derived xenografts can
be also used to assay drug sensitivity (21).

Furthermore, cells embedded within a 3D matrix self-assemble
to form structures more similar to their organisation in vivo and
enable better intercellular contact and communication. Recent
advancement in 3D culture has led to the development of new
technologies that can generate more complex 3D cell models that
aim to bridge the gap between 2D cell culture and animal models.
The improved biological relevance of 3D models is due to several
key features: dimensionality, presence of ECM, and concentration
gradients (Figure 2).
Frontiers in Oncology | www.frontiersin.org 4
3D Cultures – Dimensionality
3D culture models cultivate a more relevant pathophysiological
microenvironment that allows cells to aggregate, proliferate, and
display phenotypes as they do within the body. The complex
cellular interactions between other cells and the 3D matrix are
crucial for maintaining regular cell structure, function and
mobility. Since cell migration occurs in three dimensions the
matrix provides a topology that mimics the 3D architecture of a
tissue, allowing cells attach and interact with their surrounding
environment (22). The dynamic tensile forces from the matrix
play a crucial role in cell migration and are involved in activating
pathological mechanisms associated with invasion, ECM
remodeling, and metastasis (23, 24). Kock et al. had conducted
a study investigating the biomechanical tractions utilized by
various carcinoma cells to invade through a collagen gel.
Interestingly, the level of matrix contraction was not associated
with invasiveness, but rather the cellular adoption of an
elongated spindle-like morphology and the complexity of the
collagen deformation (24). Furthermore, fibroblasts were
reported to migrate more rapidly on a 3D matrix and
maintained a more spindle-like characteristic compared to
those that were cultured in 2D (25). Contrarily, cells grown on
a 2D plane have much less physical hindrance as they move
across a planar surface that is only impeded by surface inhibition
(23). As such, 3D cultures have been used to elucidate the
mechanisms that drive cancer invasion and metastasis. For
example, matrix degradation and ECM remodeling are key
FIGURE 3 | Advantages and disadvantages of various 3D culture approaches. The key features of 3D culturing aim to improve the biomimicry and predictive value
of pre-clinical models. Suspension cultures and scaffold-based approaches are easier to implement in the lab and upscale for high-throughput. Advancements in
microfabrication technology such as microfluidic chips and 3D bioprinting have resulted in more complex and physiologically-relevant models that can be generated.
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factors involved in invasive malignancy and have been studied in
ex vivo models to identify potential targets for cancer therapies,
such as inhibiting matrix metalloproteinases and invadopodia
formation (26–28).

3D Cultures – Extracellular Matrix
The ECM has been well established to influence cell behaviour
and response to external factors (29, 30). Cellular phenotypes
and functions are dictated by a complex network of signaling that
occurs within the context of the microenvironment through cell-
cell communications, cell-ECM interactions, soluble factors, and
small molecules (29). The importance of these dynamic
interactions between cells and its surrounding ECM becomes
apparent as cells grown in 3D adopt physical and genetic
properties more akin to in vivo, such as morphology,
phenotype, and expression profiles; whereas 2D monolayers have
more vastly different characteristics forced by the unnatural plastic
environment (31–33). Additionally, the biomechanical properties of
the ECM can modify the signal transductions that occurs within the
microenvironment via the spatial organisation of cells, stiffness of
the matrices, and physical constraints to hinder cell mobility (29,
34). During tumorigenesis, the stiffness of the ECM causes
compressive stress that increases the mechanical pressure as the
tumor grows and expand. This increased ECM resistance promotes
cell-ECM and cell-cell within the tumor communications that can
induce hyperactivated mechanotransduction pathways such as
RHO/ROCK (35). Consequently, this upregulation of ROCK can
increase cancer cell proliferation, migration, epithelial-
mesenchymal transition (EMT), and cancer-associated fibroblast
(CAF) reprogramming to promote tumor progression (35, 36).
Within the ECM various molecules can also regulate the behaviour,
differentiation, migration, and phenotypic fates of cells (37). These
can include: glycoproteins such as laminin and fibronectin that
connects structural molecules together or with cells to orchestrate
cell attachment and migration through the ECM; ECM fibres such
as collagen and elastin to provide structural elements of tensile
strength and elasticity; and proteoglycans such as hyaluronic acid,
keratan sulphate, and chondroitin sulphate, that can regulate
structural and adhesive properties of the ECM, angiogenesis, and
sequester growth factors (37, 38). Additionally, drug sensitivity in
cells can be variable based on cell-ECM interactions and spatial
positioning of cells relative to the ECM (30, 39, 40). Changes in
ECM composition and its biophysical properties do not only alter
cell phenotype but can also regulate the cellular response to drugs,
such as promoting acquired resistance or reducing drug
accumulation within the tumor (41, 42).

3D Cultures – Concentration Gradient
Soluble metabolites, oxygen concentration, and pH throughout the
TME can strongly affect the tumor pathophysiology and the efficacy
of therapies (39–41). These components exist as a gradient within
the tumor; peripheral cells in closer proximity to blood vessels have
more access to soluble constituents and oxygen, which decreases as
it diffuses through the ECM to the tumor core. The concentration
gradients of growth factors, nutrients, wastes, and gases compounds
to the intratumoral heterogeneity and influences the signaling
within the microenvironment including cell function,
Frontiers in Oncology | www.frontiersin.org 5
proliferation, morphogenesis, and chemotaxis (30). As such, cells
grown in larger 3D aggregates also mimic the in vivo condition by
existing in various proliferative states based on nutritional access
that is restricted by the concentration gradient. From the peripheral
to the core of the spheroid is composed of the outer proliferative
zone, semi-peripheral quiescent zone, and the central necrotic zone,
where each region is in different cell cycle stages (34). This difference
in cell cycle stage amongst cancer cells in 3D cultures also
contributes to the variable sensitivity of drugs and tumor
recurrence from quiescent cells (32, 34). Since blood vessels are
unevenly distributed throughout the tumor, regions with low or
absent vasculature are hypoxic and acidic and contain high
interstitial oncotic pressure (43). In the context of
pharmacokinetic, the concentration gradient limits the penetrance
of drugs through the tumor and attains a dosage sufficient to exert
their therapeutic effects on all the cancer cells (44). In addition, the
half-life of drugs also determine the distribution of the agent
throughout the tumor; drugs with a long half-life will have more
uniform distribution across the tumor even if the rate of the
diffusion is low, whereas drugs with a short half-life will have a
nonuniform distribution (45). Most research also focuses on the role
of mechanisms of action for drugs or therapy resistance, however
the physiochemistry of drugs is often neglected (44). As a result, the
impeded distribution and diffusion of pharmaceutical agents
through the tumor still remains one of the major challenges in
anti-cancer treatments. This important, yet often overlooked, the
property makes 3D cultures a more accurate model to study the
impact of pharmacokinetics and even bacterial biodiversity (46)
from concentration gradients (47); compared to cells in 2D cultures
which are all homogenously exposed to nutrients and agents (30).

3D Cultures – Microbiome
The clinical research on the association of microbiota and cancer
started in 1868 by William Busch. After centuries of research,
increasing evidence implicates that microbiota influences the
TME, tumor metabolism, and tumor immunotherapy response
(48). For instance, gut microbiota dysbiosis may induce breast
tumorigenesis (49). The influence of microbiota in
tumourigenesis and tumor progression may differentially
impact different types of tumors, as it has been demonstrated
the existence of tumour type-specific intracellular bacteria (50).
This tumour microbiome diversity, specificity and relevancy
provide both challenges and possibilities for tumour treatment
(51). Modelling the interactions of microbiota and tumour offers
an efficient method to understand the inner correlations and
evaluate the microbiota-target drugs.

Compared to the 2D cell models, the 3D culture can replicate the
mechanical cues of solid tumors and the chemical gradience (pH,
hypoxia, lactate, etc.), which influence the microbiota proliferation,
distribution, movement, variety, and metabolism. This, in turn,
could affect the metabolite levels in the TME, for instance, by
regulating the gene expression (52). Stem-cell derived organoids,
relying on 3D culture, have become indispensable tools to
investigate the host-microbiota interactions (53). For instance,
intestinal organoids usually form luminal structures within the
hydrogel’s matrix where the bacteria of interest can be
microinjected (54). As such, stomach organoids were modelled
November 2021 | Volume 11 | Article 782766
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with Helicobacter Pylori (55). The organ-on-chip approach could
also mimic the complexity of 3D tissues or tumors, which attracts
more attention to the study of microbiome and disease, an example
of this approach has been applied to the gut-microbiome on a chip
(56, 57). The bidirectional interactions of drugs with local
microbiota manipulate the host response to chemotherapeutic
drugs (49, 51, 58, 59), which potentially highlights the importance
of 3D cultured models in pharmomicrobiomics. In addition, with
the fast development of engineered microbial therapies, 3D cultures
become a good candidate for more reliable screening, enabling
parallel and long-term monitoring (60).
APPROACHES TO 3D CULTURE MODELS

Anti-cancer drug screening and the development of new
personalised therapies are primarily conducted in 2D cultures
of cancer cell lines (30). Researchers have generated the Cancer
Cell Line Encyclopedia to help provide predictive modelling of
anticancer drug sensitivity (61, 62). 2D cultures are a mainstay in
biological research and have provided us with a deeper insight
and understanding of cancer mechanisms, biomarker discovery,
and stratification of tumour profiles. From a drug-development
perspective, the improvement of more predictive preclinical
models is essential to permit the earlier dismissal of drug
candidates from clinical trials and reduce pharmaceutical
cost – the development of a new drug is estimated to be
$2.6billion (63). The disparate response to therapies observed
in 2D cultures and in mouse models becomes evident in clinical
trials, in which oncology drugs are known to have as low as 3.4%
success rate (7). For example, the drug Palifosfamide was a DNA
alkylating agent used as a first-line treatment for metastatic soft
tissue sarcoma that had failed in Phase III PICASSO 3 trial due to
not being able to meet its primary endpoint of progression-free
survival in patients (NCT01168791). Within the lab,
Palifosfamide demonstrated cytotoxicity in sarcoma cell lines
with an IC50 range of 0.5-1.5ug/mL and treatment in xenograft
SCID mice resulted in tumour growth inhibition and improved
event-free survival (64).

Recapitulation of the fundamental tissue environment within
the human body is essential for the proper evaluation of drug
effectiveness. From both the cellular populations to the acellular
compositions, such as the ECM, pre-clinical models aim to
replicate both pathophysiological and healthy bodily functions.
Mimicking the complexities of all the biological processes in a
single model is highly challenging. Therefore, researchers are
developing new techniques to make 3D culture more applicable
and easier to implement (Figure 3). As such, 3D cell cultures are
becoming more convenient and accessible while allowing
researchers to improve upon the traditional in vitro 2D cultures,
aiming to model more native-like interactions of tissues to study
their mechanisms.

Suspension Cultures
Spheroids are grown as aggregates in suspension and have been
applied in various cell types, such as cancer cells, hepatocytes,
and stem cells (65). Additionally, they can be grown as a
Frontiers in Oncology | www.frontiersin.org 6
monoculture or together as a co-culture with other cell types
to provide more physiologically relevant interactions. In a study
by Courau et al., colon cancer cells were co-cultured with T cells
and NK cells to evaluate tumour-lymphocyte communication
and test immunomodulatory antibodies (66). Spheroids are able
to recapitulate the in vivo characteristics of intercellular
communications, cell-ECM interaction, and behaviour. The
size of spheroids are dictated by the initial seeding cell
number; thus it is crucial to optimize the culture conditions to
ensure that the spheroids do not become too large and suffer
from hypoxia and necrosis from poor nutrient diffusion (30).
Spheroids can be generated through 1) hanging drop; 2); low
adhesion plates 3) magnetic levitation.

The hanging drop technique is one of the earliest methods of
developing 3D cell culture (67). This technique uses specialized
hanging drop plates that contain a bottomless well where the
droplet of media forms. Cells aggregate within the small droplet
of culture media to generate the spheroid over several days. Co-
culturing can be conducted by adding cells during the initial
dispensing or from consecutive addition of the cells (65).
However, transfer of the spheroids from the hanging drop
plate to another non-attachment plate will be necessary if
growing larger spheroids or downstream assays. The hanging
drop technique is relatively facile and efficient and has been
adapted for use in various cell lines for toxicity testing and drug
screening (68, 69). This technique has very high reproducibility
with consistent size spheroids (70).

Low adhesion plates have a low attachment coating on the
surface of the wells that reduces cell adherence and promotes cell
aggregation into spheroids. The coating can include the non-
adherent poly-HEMA or agarose (30). Larger volumes of media
can also be used in the low adhesion plate allowing a more
efficient generation of tumour spheroids. Furthermore, low
adhesion plates are designed for high-throughput screening,
allowing 3D cell culturing and assaying within the same, unlike
the hanging drop technique (65).

Magnetic levitation generates spheroids through the use of
magnetic nanoparticles. Cells are incubated with the nanoparticles
for several hours to overnight and are then loaded in a low
adhesion plate. The low adhesion plate minimizes cell adhesion
to the plate while the application of a magnetic field above the
plate incites cells to aggregate and produce the spheroids, which
can be maintained without requiring a continuous magnetic force.
The spheroids can then be subsequently manipulated using other
magnetic tools, such as to accelerate cell migration (71). Magnetic
levitation can be scalable for use in high throughput screening and
drug discovery (72).

Hydrogel Scaffold Models
Biomimetic scaffolds that model the ECM have been developed
over the past few decades to develop microenvironments that can
overcome the limitations of traditional 2D cell cultures. In
particular, hydrogels have gained interest as physical support
that provides the architecture, topology, and biomechanical
properties which enables more in vivo-like cellular behaviour
and communication. Hydrogels can be used to generate various
natural and synthetic ECMs that simulate the microenvironment
November 2021 | Volume 11 | Article 782766
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and stiffness of most soft tissues (29). The internal structures of
hydrogels consist of networks of cross-linked polymers that can
be moulded through mild gelation conditions that have minimal
cytotoxicity (13). Furthermore, hydrogels can be chemically
modified to tailor matrix stiffness and viscoelasticity (73–75).
Integrin interaction (76, 77), growth factor binding (78), and the
3D organisation of the cells (79) can be tuned through the
decoration of hydrogel with a variety of peptides (80, 81).
ECM remodeling and cell migration can be facilitated through
the inclusion of degradable MMP cleavage sites (76, 77), while
the synthetic ECM environment can be enriched with matrix
proteins including collagens (82), laminins (83), and fibronectin
(84), as well as critical matrix molecules such as hyaluronic acid
(hyaluronan) (85). This customizability allows hydrogels to have
extensive application and versatility in biological research by
offering a range of physical and biochemical characteristics.

Natural hydrogels are derived from sources that are inherently
biocompatible (29). Various ECM constituents have been derived
from materials such as collagen, fibrin, hyaluronic acid, alginate,
and the commercial product Matrigel, a reconstituted basement
membrane extracted from murine sarcoma cells (86). These
hydrogels have various endogenous factors that promote
bioactivity and sustain natural cell function, proliferation, and
differentiation. For example, collagen is a widely used ECM that
orchestrate controlled cell migration, proliferation, and response
to therapies through alteration in stiffness and collagen
concentration (87, 88). A study from Puls et al. had studied the
progression of metastasis in pancreatic cancer using 3D matrices
created with type I collagen and found that exposure to fibrillar
collagen induced EMT (89). Increased density of collagen fibril
resulted in closer arrangements of cell clusters and matrix stiffness
(89). Alginate is also a natural polymer derived from brown algae
that can gelate via ionic crosslinking of the polysaccharide
backbone by divalent cations, such as calcium, magnesium, or
barium (73, 90). The stiffness of alginate hydrogel can be modified
based on the level of cross-linking that is dictated by the
concentration of the crosslinking agent. Importantly, alginate
gels are inert as they do not contain any mammalian cell
adhesion ligands, and with their low protein adsorption, makes
them ideal as a matrix for the encapsulation of cells and tissue
(91). Additionally, alginate gels under neutral pH and room
temperature, resulting in minimal cellular disruption under
gelation conditions (90). Alginate can be biofunctionalized with
the addition of adhesive and hydrolytic moieties and has been
used as a matrix for various biomedical applications (92–94). A
key advantage of alginate matrices is that cells can be easily
recovered by dissolving the alginate with a chelating agent, such
as sodium citrate. Recently, alginate matrices have been proposed
for drug screening in breast cancer tumoroids derived from tumour
pieces that retain luminal mechanics (95). Hyaluronic acid is
another natural hydrogel that has major biomedical applications
due to its high moisture retention and viscoelasticity (96).
Hyaluronic acid is a non-immunogenic polysaccharide that is
found ubiquitously in the ECM in epithelial and connective
tissues and is involved in wound healing, inflammation, and
embryonic development (96). It can be modified with functional
Frontiers in Oncology | www.frontiersin.org 7
groups allowing for a diverse range of applications in regenerative
medicine, oncology, and bioengineering (97–101). However, some
drawbacks of natural hydrogels can include poor control over the
gelation condition, uncontrolled polymer network structures, lower
mechanical integrity, and lower experimental reproducibility due to
batch-to-batch variations (65, 86).

Synthetic hydrogels are inert scaffolds that permit a higher
degree of modification for desired biological or physical
conditions, such as biodegradability, porosity, functionalization
with adhesive peptide sequences, growth factors or cleavage sites
(29, 30). Compared to natural hydrogels, synthetic gels are
cheaper and add improved experimental reproducibility as it
has a lower batch to batch variation during manufacturing and
can be adapted to suit the research need. However, the
disadvantage of most synthetic hydrogels is that they act as a
minimalistic matrix and have a less complex microenvironment
due to the lack of endogenous factors that are generally present
in natural hydrogels (29). As such adhesive moieties and catalytic
sites need to be crosslinked into the synthetic scaffold to improve
their biofunctionality, such as peptides that can mimic
fibronectin or laminin-integrin binding (102, 103). Various
non-natural sources can be derived to produce these matrices,
such as polyethylene glycol (PEG) (104, 105), polyvinyl alcohol,
and polylactic acid (PA) (30, 106). PEG has been used for various
3D culturing and tissue engineering applications. For example,
PEG has been cultured with breast cancer cells and CAFs to
evaluate drug resistance through pathways associated with
tumour-stromal interactions (107, 108). In another study,
Caiazzo et al. found that PEG can facilitate pluripotency by
manipulating the microenvironment of the matrix to create a
“reprogramming niche” that promotes MET and increased
epigenetic remodeling capable of shifting the somatic cell fate
(109). Biomechanical strain and tension induced by the matrix
have been reported to modulate the epigenetic and
transcriptomic state of cells as a response to their surrounding
environment (110–112).

Microfluidics System
The advancement in microfabrication technology has led to the
development of microfluidics systems that provides more dynamic
microenvironments. These systems are designed with specific
structures and scaffolds that can be manufactured through
patterning techniques such as soft lithography, photolithography,
and micro-contact printing (65). Microfluidics permits precise
control over small volumes of fluid through hollow channels that
can be smaller than 1µm in diameter (13). These devices or chips
have been an essential development in microsystems technology
that can generate and manipulate the fluid flow and spatiotemporal
gradients to improve the biological relevance of in vitro models
(113). Nutrients, drugs, and wastes can be readily delivered or
removed via continuous perfusion through the microchannel (114).
Within the microfluidic system, spheroids can be generated at high
throughput and with a precision that are uniform in size for both
monocultures and co-cultures (115–117).

Microfluidic technology has been used to create more cost-
effective and accurate biomedical models to test the
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pharmacokinetics, efficacy, and toxicity of treatments. The
internal dimensions of a microfluidic chip can be composed of
multiple channels – depending on the design and application –
where the size of structures can be between the micrometer to
millimeter range (118). Generally, microfluidic chips are
manufactured using an inert and non-toxic polymer as a base
material, such as poly-dimethylsiloxane (PDMS) (23). The
microfluidics control and miniaturization of the whole system
present several key benefits: 1) high-throughput capabilities; 2)
cost-efficient and low consumption of reagents – within the
nanoliter to picolitre range; 3) fine-tuning of conditions and
automation (118, 119).

A major approach of the microfluidic system is developing
organ-on-chip which is able to create a complex in vitro model
that recapitulates more organ-specific microenvironments.
Organ-on-chip focuses on capturing the critical aspects of the
normal biological functions or disease states of the organ of
interest. This allows researchers to investigate disease
phenotypes and pharmacological responses that are clinically
relevant and provide more accurate predictions of treatment
efficacy (65, 120). Nutrients, growth factors, oxygen, and drugs
can be circulated through the chip as a continuous supply via
dynamic perfusion which can be automated – in addition to
waste removal (12). The controlled fluidic motions can also be
used to mimic various mechanical signals including shear stress;
compressive forces; physiological flow, such as blood flow; and
tissue-specific motions, such as cardiac rhythms and respiratory
(120–122). Consequently, microfluidics chips have been used to
recapitulate aspects of the TME for anti-cancer drug
developments, circulating cancer cell detection in blood
samples, and personalised organ-on-chips (123–126). The
simplest tumour-on-chip models have been applying 3D
spheroids within a microfluidics system (127–129). However,
more sophisticated tumour-on-chips platforms have been
developed that utilizes the dynamic flow of microfluidics. In a
study by Chen et al, an in vitro breast tumour model was created
on a chip to evaluate nanoparticle-based drug delivery systems
(130). This chip included a layer of endothelium that lined a
microvessel wall, the ECM and tumour spheroids to generate a
real-time drug delivery model. Treatments such as doxorubicin –
a standard of care therapy for breast cancer – was loaded in
carbon dots to study the penetrance of the treatment through the
endothelium to the spheroids, where the efficacy and cytotoxicity
of the drug delivery were assessed using in situ assays within the
same system (130). Tumour-on-chips can also contain
engineered vascularization as part of the model using
perfusable system to imitate the flow of blood vessels to more
closely mimic other mechanisms within the TME, including
metastasis, angiogenesis, and drug metabolism (131–134).
Argwal et al. discovered that vascularized in vitro 3D breast
tumors exhibited significantly higher resistance to doxorubicin
compared to avascular 3D tumors (4.7 times) and 2D culture
cells (139.5 times) (135). Interestingly, this high drug resistance
could also be overcome via a nanoparticle-based drug delivery
method (135). The inclusion of vascularization and dynamic
flow has also allowed researchers to study the pathophysiology
Frontiers in Oncology | www.frontiersin.org 8
of blood-based cancer with in vitro models, such as
lymphoma (136).

3D Bioprinting
The development of in vitro 3Dmodels that increase the probability
of preclinical drug research representing patient outcomes in drug
trials, and potentially remove the need for animal studies, may
render preclinical cancer research more cost-effective and
accessible. However, the use of novel 3D models in cancer
research remains restricted by model reproducibility; a
prerequisite for specialized training and limitations relating to
throughput. The development and commercialization of 3D
bioprinting technologies offer an exciting solution to these
challenges. 3D bioprinting is an additive manufacturing process
defined by the creation of a 3D structure through controlled and
typically automated deposition of a biocompatible material or
‘bioink’. This advanced technology is capable of accurately
constructing complex tissue structures that faithfully recapitulate
native in vivo architecture (137). 3D structures can be created
directly from highly viscous or shear-thinning bioinks, where the
bioinks can be mixed with the cell suspension to generate
functionalized cell models. Alternatively, printed bioinks that are
less viscous can be solidified through the addition of other
chemicals, cooling, or exposure to light or heat (138).

Bioinks are printable, biocompatible solutions that comprise
the necessary elements of a desired 3D microenvironment.
Bioinks vary greatly in their composition depending on the
printing method and the application. Cells, native proteins,
growth factors, and signaling molecules can be combined with
synthetic compounds that are both printable and biomimetic.
Synthetic molecules can likewise be decorated with peptide
sequence (139), MMP degradable ligands and drug molecules
(140) so that they are more biocompatible, biodegradable or
bioactive. Modifications to the bioink properties and bioprinting
methods can be tuned to tailor to the desired applications and
studies. For example concentrated bioinks may be necessary for
creating dense, stiff structures such as bone biomimetics (141), or
dense tumour microenvironment models (142). However,
concentrated bioinks are highly viscous and result in increased
cell death during printing due to high shear forces. As such, it is
also important to optimize these modifications to ensure
compatibility with the cell types.

Most 3D bioprinting strategies involve droplet, extrusion, and
stereolithographic-based structure creation – for an extensive
review on the methods refer to the reviews (138, 143). Commonly
employed 3D bioprinting processes include 1) droplet-based 3D
bioprinting (DBB), which uses sequential depositions of discrete
bioink droplets to create structures (144); 2) drop-on-demand
bioprinting (DOD), a subcategory of DBB that controls droplet
size and placement by regulating the position and ejection of bioink
from a nozzle (145, 146); and 3) laser-assisted bioprinting, an
alternative DBB technology that propels bioink droplets from an
inverted ‘donor slide’ onto a receiving slide using localized heating
of a substrate sensitive to laser radiation (147, 148).

Each 3D bioprinting strategy has various, often interlinked,
tradeoffs and downstream applications. For instance, extrusion-
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based 3D bioprinters create structures by layering continuous
beads of bioink from nozzles, whereas stereolithographic 3D
bioprinting uses light to cure regions of bioink precursor within
a bath, building a structure layer by layer (143). In this case,
stereolithography limits printing to a single bioink at a time but is
excellent for creating complex networked microarchitecture. For
example, this has been used to create osteoblast and MSC-laden
bone biomimetics (141) and replica microvasculature (149), which
were seeded with invasive cancer cells to simulate metastasis and
investigate cancer cell migration. Furthermore, the placement of
ink on a printing surface is less complex in extrusion printing
compared to droplet-based systems where droplet size, flight and
placement vary with ink properties (150). However, printing with
droplets offers an advantage in throughput and high-resolution
patterning as the same nozzle set of a DOD system simultaneously
creates multiple structures comprising many different bioinks.
Extrusion printing has been used in the creation of large 3D
structures to investigate glioblastoma-macrophage interactions
(151), and meshes of cervical cancer (152), lung adenocarcinoma
(153) and mammary epithelial cells (142) for 3D cancer modelling
and drug screens. Conversely, the throughput advantage offered by
DODbioprinting has been exploited to create arrays of hepatic and
brain cancer cell lines for drug screening (154), and co-culture
patterning of ovarian cancer cells and fibroblasts for investigations
of cell interactions and paracrine signaling (155).

There is currently a matter of contention in 3D bioprinting
created by the conflicting practices of requiring printing processes
to be completed quickly, and simultaneously allowing complex 3D
models sufficient time to develop and mature. Bioprinting exposes
cancer cells to reagents, processes and forces that fall outside their
typical environmental niche. As such, reducing the time for which
cells are exposed to the reagents and forces improves cell viability
and preserves the in vivo biology critical to accurate tumour model
creation (138). However, the biological processes central to the
development of histological micro-architecture are rarely static,
proceed slowly and require time to develop. There is a tendency
within 3D bioprinting to emphasize time reduction and to
prioritize the rapid completion of printing procedures (143). Yet
incorporation of time-related factors and processes will be critical
as our general understanding and mastery of 3D bioprinting
progresses and becomes further integrated into cancer research.

The term ‘4D bioprinting’ has been used to describe 3D
bioprinting strategies that integrate the changing of printed
structures over time (156). These strategies may rely on
organically occurring biological processes such as matrix
deposition, tissue self-organisation and cell differentiation (25).
Brassard et al. relied on biological dynamics to create complex
macro-structures reminiscent of vascular, connective and
gastrointestinal tissues (157). These structures were self-
assembled from concentrated cell solutions printed into an ECM
hydrogel prior to gelation. The creation of in vitro organoids is
critical for translatable studies into cancer cell behaviour and drug
toxicity. Similar concepts are also being embraced to replicate and
investigate the tumourmicroenvironment directly. For example, Yi
et al. created an advanced glioblastoma brain cancer model with
initial depositions of silicone ink, endothelial and tumour cells
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(158). Maturation of the model led to the formation of various
features typical of glioblastoma including necrotic foci and
pseudopalisades within the tumour cell mass, and leaky
endothelial microvessels (159, 160).

In addition to internal biological drivers, externally controlled
stimuli can be used to modulate cell behaviour and the printed
material surrounding them. The creation of dynamic 3D printed
structures is critical for studying the ECM remodeling integral to
tumour growth, cell metastasis and drug permeability. Studies have
used various stimuli including temperature (161), pH, osmolarity
(162), light (163, 164), humidity, magnetic force (165) and electrical
charge, to affect material stiffness, size, density, binding affinity (166)
and molecular organization (166) of responsive ‘smart’ materials.
Stimuli may cause unidirectional irreversible material responses, or
they may be bidirectional and reversible (161). Responses can also
be stacked, allowing multiple different material states. In an example
of this, Tabriz et al. enabled a multistage crosslinking of printed
alginate structures through the addition of sequential Ca2+ and Ba2+

solutions (167). Each stage further increased the printed structures’
durability, facilitating both the initial printability of the bioink, as
well as its long-term stability under culture conditions. Aside from
material properties, external stimuli can be used to alter the shape of
printed structures. Gladman et al., used anisotropic swelling to
create complex dimensionality, folds and curvature in 3D planar
printed shapes (168). A similar concept was used in a ductal
carcinoma study to create geometric mimicry of mammary ducts
and acini (169). The impact of responsive bioinks on cancer
research is yet to be fully realized. However burgeoning
developments in stimulus-responsive geometry and embracing
temporal biochemical and biophysical dynamics offer the
potential for 3D bioprinted models to be shaped by factors
outside of printing complexity (170).

The ability to create representative in vitromodels is progressing
and our understanding of 3D cellular biology continues to grow. To
leverage the advances made in these areas within cancer research,
the throughput and reproducibility made possible through 3D
bioprinting will be critical. Economically viable cancer research
requires in vitro models that are not only representative of
physiological and pathological conditions, but that can be created
quickly and efficiently. For this to be possible, we require 3D
advanced bioprinting techniques that exploit both intrinsic cell
behaviors and innovative biomaterial developments. Synthesis
within these areas offers interesting future opportunities for
complex 3D model development and the attainment of critical
cancer research goals.
LIMITATIONS OF TECHNOLOGY
IN 3D MODELS

Although 3D culture has been demonstrated to show great promise
as a pre-clinical model, a major drawback of 3D cultures is in their
implementation for high-throughput screening; a vital aspect for
high-content screening and drug development (171, 172). In
particular, three significant technical challenges hamper the
adoption of 3D culture technology for high-throughput screening:
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1) the automation of liquid handling in 3D culture; 2) culture
optimization and assay variability; and 3) automated imaging and
visualization of 3D structures. The automation of liquid handling
can be conducted in suspension cultures such as through the use of
ultra-low-attachment microplates or hanging drop technique (30).
However, the application of automated liquid handling translates
poorly when using hydrogel-based techniques, such as Matrigel.
This is primarily due to the undefined compositions between
batches that impact reproducibility and consistency and require
highly controlled working environments and rapid processing due
to their temperature-sensitive gelation conditions (173).
Additionally, this batch-to-batch variation in natural hydrogels
considerably impacts cell culture conditions and assay quality and
reproducibility; as such it is crucial to ensure consistency between
batches when conducting high-throughput screening, such as ECM
composition and protein content (103). Finally, 3D models permit
co-culturing of multiple cell types and provide a higher
morphological complexity compared to 2D cultures; allowing
improved multiparametric analysis of cell response to drugs. The
additional parameters are particularly valuable as they provide a
more accurate evaluation of the efficacy and mechanisms of
pharmaceutical agents (174). However, this dimensionality also
poses a difficulty in computational image analysis and
visualization. The complex topology and thickness of 3D models
make them it incompatible with most automated imaging systems
due to low light penetration and absorption across the multi-layered
structures (103). As a result, this can introduce an imaging bias in
which only the exterior cells – the layer where cells are exposed to
the highest concentration gradient for nutrients and drugs – are
imaged and the internal cells are excluded. Despite these challenges,
new culture platforms and imaging systems are being developed
that aim to overcome these technical difficulties to create 3D
cultures that are amenable for high-throughput screening. These
developments include using synthetic hydrogels to generate more
consistent 3D cell cultures; automated high-resolution imaging
using light-sheet microscopy; and integrated computational
platforms for data analysis and visualization of 3D cultures
(175–177).

CONCLUSIONS

The improvement in 3D culture technology has led to the
generation of in vitro models that can encompass more
Frontiers in Oncology | www.frontiersin.org 10
physiological and tissue-specific microenvironments with the
aim to overcome the drawbacks observed in other pre-clinical
models and have better predictive value for clinical outcomes. 3D
culture models allow researchers to recreate specific
pathophysiological conditions and tumorigenic processes to
identify potential biomarkers for therapeutic targeting or
assessing cell response to therapies and drug efficacy. Currently,
there has been significant interest in using primary clinical
samples in 3D culture for personalised drug screening platforms
to improve clinical outcomes and reduce side effects (178, 179).
Although there are still practical challenges in the widespread
adoption of 3D cultures, advancements in this field will provide
researchers with a powerful tool to dissect disease mechanisms,
identify new biomarkers, provide valuable data in drug
development, and realize the potential in the next generation of
personalised medicine.
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