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Drug resistance continues to be one of the major challenges to cure cancer. As research in
this field evolves, it has been proposed that numerous bioactive molecules might be
involved in the resistance of cancer cells to certain chemotherapeutics. One well-known
group of lipids that play a major role in drug resistance are the sphingolipids. Sphingolipids
are essential components of the lipid raft domains of the plasma membrane and this
structural function is important for apoptosis and/or cell proliferation. Dysregulation of
sphingolipids, including ceramide, sphingomyelin or sphingosine 1-phosphate, has been
linked to drug resistance in different types of cancer, including breast, melanoma or colon
cancer. Sphingolipid metabolism is complex, involving several lipid catabolism with the
participation of key enzymes such as glucosylceramide synthase (GCS) and sphingosine
kinase 1 (SPHK1). With an overview of the latest available data on this topic and its
implications in cancer therapy, this review focuses on the main enzymes implicated in
sphingolipids metabolism and their intermediate metabolites involved in cancer
drug resistance.

Keywords: glucosylceramide synthase (GCS), sphingosine kinase 1 (SPHK1), sphingomyelinase (SMase), acid
ceramidase (AC), cancer, shingolipids
1 INTRODUCTION

Cancer incidence and mortality are growing fast worldwide, with a higher frequency in countries
with higher socioeconomic development, as life expectancy continues to rise. However, in countries
with stronger health care systems, cancer mortality is decreasing due to early detection and
treatment. For several decades, cancer has been the second leading cause of death globally where
lung cancer is at the top of the list as the leading cause of cancer deaths. Nevertheless, the most
commonly diagnosed types of cancer vary among countries depending on the degree of
socioeconomic development and life style factors (1).

Despite the rapid advance of cancer therapies, treatment-resistant relapse remains a major
challenge in cancer treatment. Treatment resistance can be classified as intrinsic or acquired
resistance, depending on its origin. Intrinsic resistance arises from the administration of
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chemotherapy treatment, and it is due to preexisting factors of the
tumor, so the tumor cannot respond to the initial treatment. On
the other hand, acquired resistance appears during or after the
administration of treatment and is usually the main contributing
factor for relapse. Some theories explain this resistance as
sporadic genetic mutations maintained by Darwinian selection
through the exposure to the chemotherapeutic agent (2, 3). There
are several mechanisms by which tumoral cells acquire this
resistance to treatment: inactivation of the drug, multi-drug
resistance (MDR) mechanisms, cell death inhibition increasing
resistance to apoptosis, changes in cell metabolism, epigenetics
modulation, increased DNA repair and gene mutation or
amplification that cause the resistance to the chemotherapy (4).

Sphingolipids were named by Thudichum JL in 1884 because
of their enigmatic nature (5). It is now known that sphingolipids
are a family of bioactive membrane lipids that contribute to the
regulation of the fluidity of the plasmatic membrane. The sub-
domain structure of the lipid bilayers forms lipid rafts, which act
as first and/or second messengers in different pathways as they
function as bio-effector molecules (6). The enzymes involved in
the sphingolipids’ metabolism have been studied during the last
decade and have been directly linked to the control of cell growth,
proliferation and apoptosis, among other cellular functions.
Table 1 summarizes the functions and characteristics of the
main enzymes of sphingolipids’ metabolism involved in cancer.
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This review focuses on the importance of these enzymes with a
specific focus on their response to drug therapy.
2 CELLULAR FUNCTIONS OF
SPHINGOLIPIDS

The first sphingolipid that was identified was sphingosine, whose
involvement has been described in the cytoskeleton, endocytosis,
cell cycle and apoptosis regulation (45). However, the
sphingolipids that have been most frequently implicated in
cancer are ceramide and sphingosine 1-phosphate (S1P).
Ceramide functions in the cell differ depending on the
subcellular location where ceramide is accumulated. For
example, when ceramide is generated in the plasma membrane,
it is involved in growth inhibition, oxidative stress-mediated cell
death, and lipid raft functions (46, 47); whereas when it is located
in the lysosomes, ceramide mediates cell-stress responses such as
cell senescence and apoptosis (48–50). In contrast, S1P plays a
role in cell survival and proliferation, cell migration and
invasion, autophagy and inflammation (51, 52). Furthermore,
glucosylceramide, a derivative from ceramide, regulates the post-
Golgi trafficking, as the enzyme that catalyzes the step from
ceramide to glucosylceramide located in the Golgi apparatus
(53). Figure 1 represents the structure of these sphingolipids and
TABLE 1 | Functions and characteristics of the main enzymes in sphingolipids’ metabolism involved in cancer.

Enzyme Cancer Characteristics and functions Reference

Acid ceramidase Melanoma Modulates transition from proliferative to invasive phenotype
↑AC in proliferative melanoma cells
↓AC sensitizes cells to doxorubicin and dacarbazine

(7–10)

Prostate ↑AC in 60% of prostate cancers
↓AC sensitizes cells to doxorubicin, etoposide, cisplatin and gemcitabine

(11, 12)

Glioblastoma ↑AC in radioresistant tumors
↑AC increases survival of GSCs

(13, 14)

HNSCC ↓AC sensitizes cells to FasL gene therapy (15)
Breast Implicated in resistance (16, 17)
AML Induces apoptosis (18, 19)

Sphingomyelinases Glioblastoma ↑aSMase sensitizes cells to gemcitabine and doxorubicin
↑aSMase does not sensitize cells to temozolomide

(20, 21)

Melanoma ↓aSMase increases resistance to cisplatin
↑aSMase sensitizes cells to radiotherapy

(22, 23)

Colon Cisplatin translocates aSMase and induces apoptosis (24)
Ovarian Cisplatin translocates aSMase and induces apoptosis

↓aSMase increases resistance to paclitaxel
(25, 26)

NSCLC Dysfunctional activity in cisplatin-resistant cells (27)
Glycosyl ceramide
synthases

Breast ↑GCS in adriamycin-resistant cells
↑GCS increases proliferation

(28, 29)

Colon ↓GCS sensitizes cells to temozolomide (30)
Glioblastoma ↓GCS sensitizes cells to paclitaxel (31)

Sphingosine kinase Prostate ↑SPHK1 in chemoresistant cells
↓SPHK1 sensitizes to camptothecin and docetaxel

(32, 33)

Breast ERpositive
subtype

Increases proliferation and survival
↑SPHK1 promotes endocrine resistance
↑SPHK1 in doxorubicinresistant cells

(34–37)

ERnegative
subtype

↓SPHK2 sensitizes cells to doxorubicin and etoposide (38)

Glioblastoma ↑SPHK1 in glioblastoma cells
↓SPHK1 sensitizes cells to temozolomide

(39–42)

CML ↑SPHK1 increases resistance to imatinib through PP2A (43, 44)
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some of the main cellular processes in which they are involved
in cancer.
3 SPHINGOLIPIDS’ METABOLISM

It has been reported that sphingolipids metabolism has a unique
metabolic entry point and a unique metabolic exit point. The first
one is through the enzyme SPT (serine palmitoyl transferase),
which forms the sphingolipid ceramide by the condensation of
serine and palmitate in the synthesis pathway. The exit point is
mediated by S1P lyase (SGPL), an enzyme that breaks down S1P
into different non-sphingolipid molecules. Ceramide has a
central position in both the catabolism and anabolism of
sphingolipids. For this reason, it is considered as a metabolic
hub in the sphingolipids’ metabolism pathway.

Specifically, the synthesis of ceramide starts with the condensation
of serine and palmitoyl CoA by SPT, resulting in 3-keto-
dihydrosphingosine, which then results in dihydrosphingosine by
the action of 3-ketosphinganine reductase (KDSR) and it is later
acetylated into dihydroceramide by ceramide synthases (CerS 1-6).
Finally, the desaturation of dihydroceramide by dihydroceramide
desaturase (DES) results in ceramide, which can be glycosylated by
glucosylceramide synthase (GCS) to form glucosylceramide or,
alternatively, it can form galactosylceramide by the action of
galactosyltransferase (CGT) or it can acquire a phosphocholine
headgroup by sphingomyelin synthases (SMS) to eventually form
sphingomyelin. The phosphorylation of ceramide by ceramide kinase
(CK) results in ceramide 1-phosphate (C1P) (54–56).

The catalysis of ceramide is performed by specific hydrolases.
Ceramidase (CDase) breaks down ceramide and generates
sphingosine, which can be recycled back into ceramide by CerS
1-6 or phosphorylated by a sphingosine kinase (SPHK1/2) to
form S1P. Moreover, S1P can generate sphingosine by
sphingosine phosphatase 1/2 (SGPP1/2) or it can exit the
sphingolipids metabolic pathway through S1P cleavage by
SGPL, obtaining ethanolamine-1-phosphate and hexadecenal.
In addition, other hydrolases can produce ceramide, such as
sphingomyelinase (SMase) which breaks down sphingomyelin
Frontiers in Oncology | www.frontiersin.org 3
(54). Figure 2 illustrates the main metabolic pathways of
sphingolipids metabolism.
4 ENZYMES INVOLVED IN
SPHINGOLIPIDS’ METABOLISM AND
DRUG RESISTANCE

4.1 Glucosylceramide Synthase (GCS)
GCS, encoded by the UGCG (UDP-glucose ceramide
glucosyltransferase) gene, is the enzyme that transfers an UDP-
glucose molecule to ceramide thus generating glucosylceramide,
the precursor for all complex glycosphingolipids (54).
Glycosylated sphingolipids cluster in the plasma membrane
forming glycosphingolipid-enriched microdomains (GEMs),
which are functional clusters that membrane proteins use as
signaling platforms (57). Besides the plasma membrane, these
GEMs can be found in the membranes of some subcellular
organelles, such as mitochondria and are involved in the
regulation of diverse cell functions including apoptosis (58).

Overexpression of GCS was reported in various cancers, such
as breast and colon cancer (7). Moreover, drug resistant cancer
cells from ovarian cancer, cervical cancer, melanoma, colon
cancer and leukemia have shown GCS overexpression (11, 13,
59). Likewise, while doxorubicin exerts its action as an
intercalating DNA agent and generates free radicals to damage
growing cells, it also upregulates GCS expression and leads to
drug resistance in cells through the modulation of the Sp1
transcription factor (15). Hence, efforts are being made to find
a GCS inhibitor to downregulate GCS expression or inhibit its
catalytic function.

4.1.1 Breast Cancer
GCS overexpression is related to increased cellular proliferation
(18) and poor prognosis in breast cancer patients (12). The most
interesting feature of this enzyme is its functional connection
with the ATP binding cassette subfamily B member 1 (ABCB1)
gene, which encodes the ABCB1 protein, also called
December 2021 | Volume 11 | Article 807636
FIGURE 1 | Structure and functions of sphingolipids in cancer. Sphingosine, ceramide and S1P structures with the principal carbon chain and the main chemist
groups highlighted. Ceramide functions are divided by the location in the cell.
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P-glycoprotein 1 (P-gp). Silencing of the UGCG gene by the
promoter CpG island methylation shows an inverse correlation
with drug resistance in ductal breast cancer cells (60). This means
that the demethylation of the CpG island in the UGCG promoter
could increase the generation of multidrug-resistant clones.

Liu et al. demonstrated that GCS upregulates ABCB1 expression
andmodulates cancer drug resistance (59). In addition, studies from
Frontiers in Oncology | www.frontiersin.org 4
Zhang et al. revealed that in turn, ABCB1 can regulate GCS
expression (61). Liu et al. also showed that silencing of GCS
downregulates ABCB1 expression and sensitizes multidrug-
resistant cells to chemotherapy through Src and b-catenin
signaling (59). There is also evidence that GCS overexpression in
breast cancer leads to AKT activation (p-AKT), which induces
ABCB1 expression. At present, p-AKT is known to phosphorylate
FIGURE 2 | Sphingolipid metabolism. The synthesis of ceramide starts with the condensation of serine and palmitoyl CoA (the active form of palmitate) by serine
palmitoyltransferase (SPT), resulting in 3-keto-dihydrosphingosine (also called 3-ketosphinganine). Subsequently, dihydrosphingosine (or sphinganine) is formed after
the reduction of 3-keto-dihydrosphingosine by 3-ketosphinganine reductase (KDSR). Next, dihydrosphingosine is acetylated by a (dihydro-)ceramide synthase
(referred to simply as ceramide synthase, CerS 1-6) to form dihydroceramide. Finally, desaturation of dihydroceramide by dihydroceramide desaturase (DES) results
in ceramide. Ceramide can then be glycosylated by glucosylceramide synthase (GCS) to form glucosylceramide, or it can also form galactosylceramide by
galactosyltransferase (CGT). On the other hand, ceramide can also acquire a phosphocholine headgroup due to the action of the sphingomyelin synthases (SMS) to
eventually form sphingomyelin. Alternatively, ceramide kinase (CK) catalyzes the phosphorylation of ceramide to form ceramide 1-phosphate (C1P). Ceramidase
(CDase) breaks down ceramide and generates sphingosine, which can be recycled back into ceramide by CerS 1-6 or phosphorylated by a sphingosine kinase
(SPHK1/2) to form sphingosine-1-phosphate (S1P). In addition, S1P can be dephosphorylated by sphingosine phosphatase (SGPP1/2) to generate sphingosine
again or it is cleaved by S1P lyase (SGPL) to obtain ethanolamine-1-phosphate and hexadecenal. On the other hand, the breakdown of sphingomyelin by
sphingomyelinase (SMase), the breakdown of glucosyl/galactosylceramide by glucosyl/galactosylceramidase (GCDase) and the dephosphorylation of C1P by
ceramide 1-phosphatase (C1PP) generate ceramide.
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GSK-3b, the enzyme that phosphorylates b-catenin so it can exit the
nucleus, hence this finding could validate the previous theory (18).
Morad and Cabot suggested that ABCB1 is also located in the Golgi
membrane acting as a flippase, and it is responsible for the transfer
of glucosylceramide from the cytosol to the Golgi lumen, therefore
promoting ceramide clearance (62). However, a different study
revealed that flippase activity of ABCB1 is only needed for
neutral, and not acidic, glycosphingolipids generation. There are
also other studies which postulate that glucosylceramides regulate
their own entrance to the Golgi apparatus, depending on the length
of their ceramides’ chains, hence the flippase activity of ABCB1
would not be necessary or it would be an alternative mechanism to
ceramide regulation (63). Further studies in this field are required to
decipher the role of ABCB1 in the Golgi membrane and its
connection with GCS (8) (Figure 3).

Although, it has been demonstrated that the GCS role in drug
resistance is usually through ABCB1 overexpression, Liu et al.
described that GCS is overexpressed in adriamycin-resistant
MCF-7 breast cancer cells and that the multidrug resistance in
these cells is independent from ABCB1 (59). Thus, it is possible
that multidrug resistance in some cancer models is also derived
from other unidentified proteins that are able to interact with
GCS (9).

4.1.2 GCS in Other Cancer Types
Inhibition of GCS in doxorubicin-resistant cells and
temozolomide/paclitaxel-resistant cells is sensitized to treatment
in colon cancer cells (64) and glioblastoma cells (10), respectively.
In chronic myeloid leukemia (CML) cells, GCS can increase the
expression of ABCB1 through NF-kb signaling, a different
Frontiers in Oncology | www.frontiersin.org 5
mechanism than the one described in breast cancer (65).
Moreover, in a murine melanoma model, inhibition of GCS in
intrinsically chemoresistant cancer stem cells sensitized them to
some genotoxic drugs (66).

4.2 Sphingosine Kinase (SPHK)
SPHK is a conserved family of lipid kinases and the enzymes
responsible for the phosphorylation of sphingosine to generate
S1P, maintaining the ceramide-S1P rheostat (67). There are two
mammalian SPHK isoenzymes: SPHK1 and SPHK2; which have
different locations in the cell and have different substrate
specificities, kinetic properties and tissue expression (14, 16,
17). Regarding their structure, both isoenzymes have five
conserved domains of ~50% identity (19). Accordingly, it is
thought that some of the differences in the physiological effects
between the two enzymes are due to the fact that SPHK2 has an
extended NH2 terminus where a putative BH3 binding domain is
located (68). Upon the first apoptosis stimulus, the BH3 domain
is responsible to orchestrate apoptosis. The subcellular location
of these isoenzymes is variable since it depends on the
pathological state and tissue type. Usually, SPHK1 is found in
the cell cytoplasm, whereas SPHK2 can be found either in the
nucleus or in the cytoplasm (67, 69). Although only these two
isoforms have been identified in human tissues, some studies
suggest the presence of additional uncharacterized isoforms (67,
70). SPHK plays a pivotal role by regulating cell growth and
acting as an oncogene in tumorigenesis (71–74). Furthermore, it
has been shown that both isoenzymes exert important functions
in angiogenesis, a crucial step in the metastatic spread
process (16).
FIGURE 3 | Effect of the enzyme GCS in drug resistance. Overexpressed GCS leads to increased concentrations of glycosphingolipids in the membrane, which may
mediate the phosphorylation of Src (p-Src) and AKT (p-AKT) and their activation. Then, GSK-3b phosphorylated by p-Src or p-AKT becomes inactive and cannot
phosphorylate b-catenin. Consequently, b-catenin cannot exit the nucleus and thus, b-catenin levels in the nucleus increase. b-catenin within the nucleus might bind
in a transcriptional complex with Tcf4 (T-cell factor 4). This b-catenin/Tcf4 complex would then be able to bind a LEF (lymphoid enhancer factor) motive in ABCB1
(ATP-binding cassette subfamily B member 1) gene promoter, resulting in its transcription and increasing ABCB1 expression, thus leading to anticancer drug efflux
and multidrug resistance. Likewise, it has been described that ABCB1 is located in the Golgi membrane and promotes the transfer of glucosylceramide from the
cytosol to the Golgi, helping with the ceramide clearance from cytosol. However, further studies are required to validate this ABCB1 function. Green arrows show
induction of expression and red arrows show inhibition.
December 2021 | Volume 11 | Article 807636
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SPHK mRNA is overexpressed in some cancer tissues,
including breast, colon, lung, ovary, stomach, uterus and
kidney (75). In addition, the SPHK protein is overexpressed in
prostate cancer and glioblastoma (76, 77). A study in the model
organism Dictyostelium discoideum (a eukaryote species that
belongs to the phylum Amoebozoa) showed that SPHK activity
regulated the sensitivity to cisplatin, but not doxorubicin,
etoposide and 5-fluoruracil, indicating the anti-cancer drug
specificity. Overexpression of SPHKs sgkA and sgkB
(homologous to human SPHK1, SPHK2, respectively) was
observed to result in increased resistance to cisplatin (78).
Similarly, it is expected that both SPHK1 and SPHK2 would
provide cancer resistance in humans. Some examples based on
cancer types are shown in the following sections.

4.2.1 Prostate Cancer
Chemoresistant prostate cancer cells have high levels of SPHK1
(76). Pchejetski et al. proposed that SPHK1 activity is a
chemotherapy sensor, since prostate cancer cells sensitive to
the chemotherapeutic drug camptothecin reduced SPHK1 levels
after treatment (20). In contrast, cells resistant to camptothecin
did not significantly change SPHK1 levels after the treatment
(20). Supporting this finding, Akao et al. demonstrated that
SPHK1 activity in chemoresistant prostate cancer cells was
significantly increased by treatment with camptothecin in a
concentration-dependent manner and that this increment of
the activity was due to increased protein and mRNA levels
(76). Likewise, Pchejetski et al. also revealed that the inhibition
of SPHK1 sensitized prostate cells not only to camptothecin but
also to docetaxel (20). Since then, other studies have shown the
sensitization to docetaxel by SPHK1 inhibition in docetaxel-
resistant prostate cancer cells (22, 24). For example, Alshaker et
al. showed that the SPHK inhibitor RAD001 sensitizes docetaxel-
resistant cells to the docetaxel treatment both in vitro and in vivo
(22). Additional in vivo studies are needed to demonstrate the
potential of SPHK inhibitors in prostate cancer.

4.2.2 Breast Cancer
It has been demonstrated that SPHK increases proliferation and
survival in estrogen receptor (ER)-positive breast cancers, and it
is associated with poor prognosis in the ER-negative subtype (25,
27). Moreover, overexpression of SPHK in MCF-7 cell line (ER-
positive) promotes resistance to hormone therapy. A remarkable
finding is that SPHK1 and SPHK2 expression among the
different breast cancer subtypes is highly variable, making it
difficult to generalize about the implication of these enzymes in
breast cancer (69).

On the other hand, doxorubicin-resistant breast cancer cell
lines showed a high expression of SPHK1 and its inhibition with
fingolimod (immunosuppressive drug) caused a decrease in
proliferation (21). Antoon et al. disclosed that ER-negative
resistant breast cancer cells overexpressed SPHK; and specific
inhibition of SPHK2 by ABC294640 decreased the growth of
chemoresistant breast cancer cells in vivo enhancing doxorubicin
and etoposide-induced apoptosis when using combined therapy
(79). Some of these inhibitors are currently under clinical trials as
described below.
Frontiers in Oncology | www.frontiersin.org 6
4.2.3 Glioblastoma
SPHK has been found overexpressed in glioblastoma cells and its
overexpression has been correlated with poor prognosis (77).
Several studies illustrated that the inhibition of SPHK1 results in
a decrease in cell viability following the temozolomide treatment
in temozolomide-resistant glioblastoma cells (23, 80, 81).
Furthermore, there is also data that supports the therapeutic
value of SPHK inhibitors as radiosensitizers (26).

4.2.4 Chronic Myeloid Leukemia
Interestingly, resistance to tyrosine kinase inhibitors (such as
imatinib) used for the treatment of chronic myeloid leukemia
(CML) has been linked to alterations of sphingolipid metabolism
and signaling. Overexpression of SPHK1 has been described to
mediate imatinib resistance in CML patient-derived cells (82).
The mechanism by which SPHK1 mediates imatinib resistance
in CML cells is thought to take place through the modulation of
the protein phosphatase 2 (PP2A). Inhibition of PP2A by SPHK1
might attenuate ubiquitination and proteasomal degradation of
BCR-ABL, the mutated tyrosine kinase, enhancing its stability
and resulting in subsequent drug resistance (83). Other studies
revealed that SPHK1 overexpression in CML imatinib-resistant
cells is regulated by signaling through PI3K, AKT2 and mTOR,
with AKT playing a major role in the modulation of this
resistance (84). Recently, Sun and Wang showed that a
combined therapy of SPHK inhibitors and all-trans retinoic
acid (ATRA), which has been described as limited to a
treatment for CML, exert synergistic effects to inhibit
proliferation in CML cells (85). Thus, the study of SPHK
inhibitors might be important for CML treatment.

4.3 Acid Ceramidase (AC)
Ceramidases (CDases) are the enzymes responsible for the
breakdown of ceramide to generate sphingosine. Human CDases
can be classified into 5 different types, depending on their cellular
location, primary structure and optimal pH needed for their
catalytic activity: the 3 main ones are alkaline, neutral and acid
CDases (86, 87). In particular, acid CDase (AC), encoded by the
ASAH1 gene, is a 50 kDa enzyme which belongs to the N-terminal
nucleophile superfamily of hydrolases. AC is the only CDase that
requires an additional protein to reach its optimal activity,
saposin-D, a lysosomal protein which helps to present ceramide
as a substrate to AC (88).

AC is overexpressed in some human cancers. For example,
overexpression of AC has been demonstrated in melanoma (89)
and prostate cancer (28) cell lines and biopsies as well as in head
and neck squamous cell carcinoma (HNSCC) (90, 91),
glioblastoma (92) and acute myeloid leukemia (AML) (93).
Since AC upregulation has been linked to apoptosis resistance
(29, 94), it is expected that the drugs able to decrease AC would be
an efficient tool to sensitize resistant cells. The AC characterization
is accordingly shown for the following cancer models.

4.3.1 Melanoma
Themost abundant skin cells (fibroblasts and keratinocytes) express
low levels of AC. However, the number of cells with high levels of
AC increase during cancer progression, as melanocytes start
December 2021 | Volume 11 | Article 807636
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growing uncontrollably (89). The phenotype-switching model is a
model of tumor progression that describes cancer development,
resistance to therapy and metastasis; it is considered as one of the
origins of intratumoral heterogeneity, a feature highly associated
with therapy resistance. It states the existence of two different
phenotypes: the proliferative phenotype, that is less invasive, and
the invasive phenotype, which is less proliferative (30, 31, 95).
Studies in melanoma cells revealed that lysosomal AC and the
sphingolipid metabolism drive the transition between the
proliferative and the invasive phenotype (96). AC expression is
higher in proliferative melanoma cells compared with other skin
cells (89). Interestingly, in metastatic melanoma, it has been
described that downregulation of AC, but not neutral or alkaline
CDases, increases ceramide levels in the cell and confers the cells
sensitization to dacarbazine (97), the main chemotherapeutic drug
(DNA-alkylating agent) used for this type of cancer before immune
checkpoint inhibitors or BRAF inhibitors became available for
clinical use (98). Recently, it has been reported that AC ablation
restores melanoma sensitivity to doxorubicin, a different
chemotherapeutic agent used for melanoma treatment that affects
sphingolipids’ metabolism, since it forces cells treated with
doxorubicin to undergo apoptosis. It is thought that this
restoration of doxorubicin sensitivity is due to the increase of
ceramide accumulation subsequent to AC inhibition (99). Overall,
AC inhibition or downregulation could represent an interesting
approach to sensitize melanoma cells to some cancer drugs.

4.3.2 Prostate Cancer
It has been shown that AC is overexpressed in 60% of prostate
cancer tumors (28). This overexpression is linked to prostate
cancer progression, and it modulates sphingolipid levels in
prostate cancer cells, resulting in higher levels of very long
chain ceramides. In addition, higher levels of AC made the
cells more resistant to apoptosis following treatment with
doxorubicin, etoposide, cisplatin or gemcitabine, known
chemotherapeutics used to treat prostate cancer. Accordingly,
downregulation of AC reversed the resistance to these therapies.
For this reason, the combination of current chemotherapy and
AC inhibitors is proposed as an efficient way to improve prostate
cancer treatment (94). In this sense, Kus et al. demonstrated the
induction of apoptosis in prostate cancer cells by using a
ceramidase inhibitor, ceranib-2 (100). Besides its role in
chemotherapy resistance, AC overexpression has also been
linked to resistance to radiotherapy in prostate cancer (101,
102). This is important because resistance to radiotherapy is an
undeveloped field of exploration and in the case of prostate
cancer - in which it is relatively easy for cells to acquire resistance
to androgens – the treatment with radiotherapy acquires an
essential role.

4.3.3 AC in Other Cancer Types
The implication of AC in treatment resistance in breast cancer,
AML, HNSCC and glioblastoma has also been explored.
In glioblastoma, it has been demonstrated that AC levels are
higher in radioresistant tumors, suggesting that AC may confer
radio resistance (103). In this particular type of cancer, AC has
been directly linked to the increase in the survival of glioblastoma
Frontiers in Oncology | www.frontiersin.org 7
stem-like cells (GSCs), that are usually more resistant to
anticancer therapies (92). In HNSCC, it has been shown in
both in vitro and in vivo techniques that the use of an AC
inhibitor (LCL 204) sensitizes the tumor to FasL gene therapy.
For this reason, the combination of FasL gene therapy with LCL
204 may become an effective new treatment for HNSCC tumors
(90). With a proteomics/bioinformatics approach, Yang et al.
found that AC, among other proteins, was associated with breast
cancer drug resistance (32, 39). Finally, inhibition of AC in AML
has been shown to increase ceramide levels and induce apoptosis
(93, 104). Hence, AC can be considered as a potential target for
several cancer models of a particularly aggressive nature such as
HNSCC, melanoma or glioblastoma therapy.

4.4 Sphingomyelinases (SMases)
SMases are the enzymes that carry out the hydrolysis of
sphingomyelin (SM) to generate ceramide. In 1999, Samet and
Barenholz (33) proposed a classification of eukaryote SMases
into 5 categories, which differed based on cation dependency, pH
cation optima and intracellular location: acid sphingomyelinase
(aSMase), secretory sphingomyelinase (sSMase), Mg+2 -dependent
neutral sphingomyelinases (nSMase), Mg+2 -independent neutral
sphingomyelinases and alkaline sphingomyelinases (bSMases)
(33, 105, 106). At present, they are usually labelled by their
optimal pH (54): aSMases, located in the lysosome and lipid
rafts; nSMases, located in the plasma membrane; and bSMases,
located in the endoplasmic reticulum (34). Most SMase studies
focus on aSMase, encoded by the SMPD1 (sphingomyelin
phosphodiesterase 1) gene (35), which produces a protein with
different molecular weights (from 58kDa to 75kDa), depending
on the tissue of origin (36, 105). It has been estimated that
around 70% of all cellular aSMase are located in lipid rafts, which
constitute an important group of the plasma membranes’
structures involved in the regulation of various cellular
processes. Specifically, aSMase could be involved in the
increase of membrane fluidity because its activity results in
cholesterol release from the membranes (37).

The action of SMases has been found to be an essential step
for the efficacy of chemotherapy and radiotherapy (38, 40, 41).
For example, Santana et al. discovered that aSMase-deficient
human lymphoblasts and mice specimens cannot induce
apoptosis after ionizing radiation treatment (42). Moreover,
many studies have linked this enzyme with drug resistance in
glioblastoma (107), melanoma (43), colon cancer (44), ovarian
cancer (108) and non-small cell lung cancer (NSCLC) (109).
Thus, the potential role of this enzyme not only in chemo- but
radio resistance might situate aSMase as a central axis in therapy
resistance. These studies are summarized in the next sections.
The role of SMases in different cancer models is shown below.

4.4.1 Glioblastoma
In glioblastoma, some studies showed that aSMase overexpression
sensitized glioma cells to gemcitabine and doxorubicin, two
chemotherapeutics used for glioblastoma treatment (107).
Paradoxically, Gramatzki et al. detected opposite results several
years later with a different chemotherapeutic, demonstrating that
the overexpression of aSMase did not sensitize glioblastoma cells
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to radiation or chemotherapy with temozolomide, the current
chemotherapeutic considered as standard (110). Nevertheless,
Gramatzki et al. also found in the same study that increased
levels of ceramide by aSMase-independent pathways decreased the
survival of temozolomide-resistant glioma cell lines (110). A
different study showed that aSMase, but not nSMase, hydrolyzed
sphingomyelin to generate ceramide and induced apoptosis in
p53-deficient glioblastoma cells; while in p53 wild-type
glioblastoma cells, p53 expression upregulated AC and blocked
the ceramide response, thus allowing the cells to evade apoptosis.
Therefore, p53 status might be important for the response to
treatment in glioma cells (111). The exact mechanism of p53-
ceramide interaction is still not fully understood, but it is known
that SMases can regulate apoptosis in glioma cells with differential
responses, somehow related to p53 expression and p53
downstream targets (112). Figure 4 represents how the SMase
expression modulates the response to chemotherapy.

4.4.2 Melanoma
Studies of the role of SMase in melanoma cells show that cells
with low aSMase expression exhibit higher resistance to cisplatin,
probably because of their lower levels of ceramide (43).
Furthermore, aSMase expression is also linked to radiotherapy
resistance, since overexpression of aSMase in mice with
melanoma sensitized the tumors to irradiation. Regarding this
matter, some studies suggest that a lower pH of some solid
tumors may increase the activity of aSMase and, consequently,
radiosensitivity (113). Likewise, it has been demonstrated that
downregulation of nSMase2 contributes to immune escape and is
associated with poor prognosis in human melanoma. Recently, it
has been suggested that nSMase2 overexpression might be useful
to overcome resistance to anti-PD-1 (114) (Figure 4). This has
clinical relevance since immunotherapy has been revealed as an
effective alternative therapy in approximately 20% of metastatic
melanoma patients.
Frontiers in Oncology | www.frontiersin.org 8
4.4.3 Colon Cancer
As mentioned earlier, aSMase is mainly located in the plasma
membrane lipid rafts. Lacour et al. proposed a molecular
mechanism of cisplatin-induced cytotoxicity involving aSMase in
human colon cancer cells (44). This study suggested that treatment
with cisplatin induces a translocation of aSMase to the extracellular
surface of the plasma membrane. Subsequently, ceramide
production is activated and the TNFRSF6 (tumor necrosis factor
receptor superfamily member 6) proapoptotic protein and caspase 8
(Casp8) are redistributed into membrane fractions enriched in
cholesterol and sphingolipids (44) (Figure 4). However, the
detailed molecular mechanism of cisplatin-induced cytotoxicity
and how aSMase is involved still remains unclear. Further
investigation in this field is required to unveil the specific
molecular mechanism in order to design a personalized therapy.

4.4.4 Ovarian Cancer
Maurmann et al. postulate that aSMase activation and increased
TNFRSF6 levels in cisplatin-resistant ovarian cells may suggest a
similar mechanism as the one described by Lacour et al. for
cisplatin-induced cytotoxicity (44, 108). In this study, they also
demonstrated that in cisplatin-resistant cells, the aSMase
activation of TNFRSF6 is dependent on cisplatin concentration
(108). Furthermore, besides the cisplatin resistance, it has also
been described that aSMase inhibition in ovarian cancer cells
increase paclitaxel treatment resistance. It has been reported that
aSMases and nSMases are activated by paclitaxel treatment in
drug-sensitive cells, but are not affected in resistant cells (115)
(Figure 4). Hence for this cancer model, alternative therapies
should cover the targeting of resistant cells.

4.4.5 SMase in Other Cancer Types
There is also evidence of the importance of aSMase in other types
of cancer, such as NSCLC, but further studies are needed to
decipher the role of this enzyme in chemoresistance (109).
FIGURE 4 | Effects of different SMase expressions in chemotherapy response or cellular functions in glioblastoma, melanoma, colon cancer and ovarian cancer.
Green arrows show induction of expression and red arrows show inhibition. aSMase, acid sphingomyelinase; nSMase, neutral sphingomyelinase; AC, acid
ceramidase; DES, dihydroceramide desaturase; CerS, ceramide synthase; Casp8, caspase 8; TNFRSF6, tumor necrosis factor receptor superfamily member 6. All
the figures were created with BioRender.
December 2021 | Volume 11 | Article 807636

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bataller et al. Sphingolipids and Cancer Resistance
5 CLINICAL IMPLICATIONS

Sphingolipids act both as structural components of membranes
and as bio-effector molecules. In the last decade, the study of
sphingolipids has been important for the development of
innovative therapeutic strategies for drug-resistant tumors. The
central axis of sphingolipids´ metabolism is ceramide, which has
been the focus of numerous studies. Ceramide can be generated or
catabolized by many enzymes, leading to different sphingolipids.
AC breaks down ceramide to produce sphingosine, and its
inhibition usually sensitizes drug-resistant cells to treatment.
Similarly, the inhibition of SPHK, that phosphorylates
sphingosine into S1P, and GCS, that generates glucosylceramide
from ceramide, also sensitizes drug-resistant cells. All these
enzymes are involved in the elimination of ceramide by the cell;
hence, lower levels of ceramide are linked to cancer drug
resistance. In contrast, the inhibition of SMases, which generate
ceramide from the sphingomyelin breakdown, leads to increased
drug-resistance in cancer. Taking all of these factors into account,
it seems clear that the regulation of these enzymes affects the levels
of ceramide in the cell, subsequently providing resistance or
sensitization to some chemotherapeutics (15). Many authors
support the idea that, independently of which enzyme is
deregulated, drug resistance is acquired when there are low
levels of ceramide in the cell. For example, doxorubicin
enhances ceramide production inside the cell by activation of
SMases or enzymes of ceramide synthesis, which should drive the
cell to apoptosis (15, 116). However, it has been demonstrated that
ceramide upregulates GCS expression, resulting in a resistant
phenotype (15). Unlike the other three enzymes (AC, SMase
and SPHK), the drug resistance produced by GCS may not only
be related to ceramide generation, since GCS products
(glycosphingolipids) are involved in the increase of multi-drug
resistance through ABCB1 expression. Moreover. GCS expression
which is epigenetically regulated correlates with drug resistance in
breast cancer cells (60). Nevertheless, to our knowledge the
mechanism has not been identified by which SMase, SPHK or
AC modulate their expression levels.

In general, although targeting sphingolipids such as ceramide or
glycosphingolipids is a major approach to deal with drug resistance
in cancer, targeting crucial enzymes involved in these pathways
seems to be a promising strategy in this field. These enzymes could
be considered as potential targets to modulate ceramide levels in the
cell and, therefore, resistance to treatment, particularly in drug-
resistant tumors. Further research about the protein levels of these
enzymes should be extended to all cancer types to determine if the
use of the modulators of these enzymes (inhibitors or enhancers)
would be effective either to prevent or to revert resistance to current
conventional treatments. Overall, inhibitors of AC, GCS and SPHK
and enhancers of SMases could be potential targets for the
treatment of drug-resistant tumors in the indicated cancer types.
Some modulators for these enzymes have already been studied and
are currently used for clinical purposes to manage treatment
resistance. Unfortunately, none of these modulators has been
approved for cancer treatment to date, although some of them
are currently under study. For instance, tamoxifen, a classical drug
to treat several cancer types with a complex action mechanism,
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inhibits AC (117). Therefore, for those cancers that are not treated
with tamoxifen, administering this drug in combination with the
standard treatment may prevent resistance to that standard
treatment (62, 117). Likewise, treatment with doxorubicin or
etoposide leads to a significant downregulation of SPHK1 and,
consequently, an accumulation of ceramide within the cell which
confers therapy sensitization to resistant cells (118).

In addition, some sphingolipid-targeting drugs are under study
because of their potential use in cancer treatment in chemoresistant
tumors. This is the case of the SPHK1 inhibitor PF-543 since it has
been demonstrated that its dansylated form (DPF-543) provides
high cytotoxicity. This compound also triggers aSMase activation,
leading to a higher accumulation of ceramides within the cell (119).
Other SPHK inhibitors, such as F-12509, SKI-I and FTY720
(Fingolimod), specifically inhibit SPHK1; ABC294640 (Opaganib)
and K145 specifically inhibit SPHK2; and SKI-II which inhibits both
SPHK1 and SPHK2. The inhibitor ABC294640 has recently reached
phase 2 of clinical trials as a drug for refractory multiple myeloma
patients (NCT02757326, www.clinicaltrials.gov). FTY720 is also
being tested in clinical trials (www.clinicaltrials.gov) for breast
cancer (NCT02490930) and glioma patients (NCT03941743).
Likewise, several AC inhibitors, such as LCL521 and ceranib-2,
have been described to improve chemotherapy effects (120, 121).
Additional research on these molecules is required to evaluate their
potential effects as a cancer therapy. Similarly, some GCS inhibitors,
such as PPMP (D,L-Threo-1-phenyl-2-palmitoylamino-3-
morpholino-1-propanol) and PDMP (D,L-Threo-1-phenyl-2-
decanoylamino-3-morpholino-1-propanol), have been tested in
vitro with promising results. For instance, PPMP increased
sensitivity of chemoresistant HNSCC to cisplatin and PDMP
increased sensitivity of pancreatic cells (122, 123).

Although these compounds reached clinical trials, most of them
did not show sufficient efficacy in patients to continue the study. The
lack of efficacy of these compounds in patients could be explained
by several reasons. First, different enzymes of sphingolipid
metabolism are thought to have redundant functions, meaning
that even if one enzyme is inhibited by one drug, a different enzyme
could perform its function. For example, some studies suggest that
SPHK1 and SPHK2 may have redundant functions and that one
may compensate for the deficiency of the other (16, 17). A second
explanation could be that these compounds that reached clinical
trials present non-specific effects or that the compound is effective at
high doses that are not clinically tolerable in patients (liver toxicity).
A third reason could be the adverse effects that such compounds
cause in patients under study, leading to discontinuation and
definitive transfer to the clinic. Adverse effects may include
hematuria, vomiting, hyperglycemia, personality disorders, fever,
and dizziness. Overall, these compounds remain a promising
strategy to treat chemoresistant tumors once these problems
are overcome.
6 CONCLUSIONS

1. Reliable markers based upon sphingolipid enzymes able to
stratify patients (i.e., responders to cancer therapy versus non-
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responders) into current therapies including immunotherapy
are expected.

2. AC is a promising target and several AC inhibitors are
already under study, although no clinical trials have been
performed with these inhibitors to date.

3. Since SMases need to be overexpressed to potentially reduce
drug resistance, such overexpression has only been reached
by the addition of SMases or genetic modulation, but not
pharmacologically. Additional studies of this enzyme are
needed to test if the overexpression of this enzyme can be
achieved pharmacologically.

4. Research on the characterization of SPHK inhibitors is
growing due to the relation between GCS and multidrug
resistance. However, none of those research projects has
reached clinical trials yet. Further research on GCS and
multidrug resistance relation in different cancer types is
required, since the majority of the studies published to date
have been performed in breast cancer.

5. The most promising drugs to modulate sphingolipids are
SPHK inhibitors, which have been subject to in-depth study.
Currently, some of these inhibitors, such as ABC294640 and
fingolimod are in clinical trials with good results.

6. In the next few years, animal models should reveal whether
the therapeutic exploitation of sphingolipids metabolism
Frontiers in Oncology | www.frontiersin.org 10
modulation will determine future treatments for oncology
patients.
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