
Frontiers in Oncology | www.frontiersin.org

Edited by:
Tomoharu Sugie,

Kansai Medical University Hospital,
Japan

Reviewed by:
Fernando Guimarães,

State University of Campinas, Brazil

*Correspondence:
Marina Vitorino

marina.vitorino@hff.min-saude.pt

Specialty section:
This article was submitted to

Breast Cancer,
a section of the journal
Frontiers in Oncology

Received: 15 November 2021
Accepted: 20 December 2021
Published: 28 January 2022

Citation:
Vitorino M, Baptista de Almeida S,

Alpuim Costa D, Faria A, Calhau C and
Azambuja Braga S (2022) Human
Microbiota and Immunotherapy

in Breast Cancer - A Review
of Recent Developments.
Front. Oncol. 11:815772.

doi: 10.3389/fonc.2021.815772

MINI REVIEW
published: 28 January 2022

doi: 10.3389/fonc.2021.815772
Human Microbiota and
Immunotherapy in Breast Cancer -
A Review of Recent Developments
Marina Vitorino1*, Susana Baptista de Almeida1, Diogo Alpuim Costa2,3,4, Ana Faria3,5,
Conceição Calhau3,6 and Sofia Azambuja Braga1,2,3

1 Medical Oncology Department, Hospital Professor Doutor Fernando Fonseca, Amadora, Portugal, 2 Breast Cancer Unit,
CUF Oncologia, Lisbon, Portugal, 3 NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal, 4 Faculdade
de Medicina, Universidade de Lisboa, Lisbon, Portugal, 5 Comprehensive Health Research Centre (CHRC), NOVA Medical
School, Faculdade de Ciências Médicas, Lisbon, Portugal, 6 CINTESIS – Center for Health Technology and Services
Research, NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal

Breast cancer (BC) is the most common malignancy and the second cause of cancer-
specific death in women from high-income countries. Infectious agents are the third most
important risk factor for cancer incidence after tobacco and obesity. Dysbiosis emerged
as a key player that may influence cancer development, treatment, and prognosis through
diverse biological processes. Metastatic BC has a highly variable clinical course, and more
recently, immune checkpoint inhibitors (ICIs) have become an emerging therapy in BC.
Even with standardised treatment protocols, patients do not respond similarly, reflecting
each individual´s heterogeneity, unique BC features, and tumour microenvironment.
However, there is insufficient data regarding predictive factors of response to available
treatments for BC. The microbiota could be a crucial piece of the puzzle to anticipate
better individual BC risk and prognosis, pharmacokinetics, pharmacodynamics, and
clinical efficacy. In recent years, it has been shown that gut microbiota may modulate
cancer treatments’ efficacy and adverse effects, and it is also apparent that both cancer
itself and anticancer therapies interact with gut microbiota bidirectionally. Moreover, it has
been proposed that certain gut microbes may protect the host against inappropriate
inflammation and modulate the immune response. Future clinical research will determine if
microbiota may be a prognostic and predictive factor of response to ICI and/or its side
effects. Also, modulation of microbiota can be used to improve outcomes in BC patients.
In this review, we discuss the potential implications of metabolomics and
pharmacomicrobiomics that might impact BC immunotherapy treatment.
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INTRODUCTION

The human gut microbiota contains ~3x1013 bacteria, most commensals (1). Microbiota plays a
crucial role in balancing inflammation, infection and tolerance towards the commensal microbes
and food antigens (2, 3). Furthermore, new evidence indicates that the microbiota influences
oncogenesis and anticancer treatment outcomes by regulating local and systemic antitumour
immunity (4).
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Immunotherapy is a major emerging treatment for some
haematological and solid tumours, including breast cancer (BC).
Several BC clinical trials showed better outcomes with immune
checkpoint inhibitors (ICI) than conventional chemotherapy.
However, despite the promising data, the patients do not respond
equally to immunotherapy treatments. Besides programmed death
ligand-1 (PD-L1) expression, tumour-infiltrating lymphocytes
(TILs), microsatellite instability (MMRd), and high tumour
mutation burden (TMB), additional biomarkers for BC
immunotherapy are still a significant unmet medical need (5–7).

Among these factors, the human microbiota could be a crucial
piece of the puzzle to anticipate better individual BC predictive
responses to ICI.More recently, studies have been showing the role
of gutmicrobiota inmodulating response and toxicity to ICI (8–10).
This review highlights the relationship within the microbiota-host-
breast cancer triad, exploring the potential implication of
metabolomics and pharmacomicrobiomics that might impact BC
immunotherapy treatment.
HUMANMICROBIOTAAND IMMUNESYSTEM

In a specific biosphere, the set composed of microorganisms,
including bacteria, viruses, fungi, archaea, and protists, is
designated by microbiota. The collective genome of these
biological agents is called the microbiome. There are different
microbiota ecosystems in the human body, such as the
gastrointestinal tract, skin, vaginal mucosa, or the oral cavity,
which account for trillions of microorganisms. The relationship
between these ecological communities and the human body is
ancient and evolved over time to benefit both parties
simultaneously, thus achieving a symbiotic balance (11, 12).

The link between the host’s immune system and microbiota
allows tolerance for commensal bacteria and the recognition of
potentially infectious pathogenic microorganisms. The intestinal
mucosa, below lamina propria, is composed of a layer that, among
conjunctive tissue, possesses Peyer plates and immune cells, such as
T and B lymphocytes and antigen-presenting cells (APC). This set
of lymphoid tissue is named gut-associated lymphoid tissue
(GALT), and it influences local and system immune responses
(13). The communication of host and microbes is in charge of
sensors, known as pattern recognition receptors (PRRs), like Toll-
like receptors (TLR), expressed by intestinal epithelial cells and
innate immune cells. These PRRs recognize microbe- or pathogen-
associated molecular patterns (MAMPs or PAMPs). The
microbiota recognition via these PRRs influences immune
responses, both locally and systemically, and may induce the
memory response, mediated by the transcriptional changes in
genes or a specific locus and epigenetic rewiring of these cells
upon the primary exposure (12, 14).

The bacterial metabolites directly interfere with the immune
local cell’s actions, namely in the secretion of immunoglobulins
(such as IgA), in the stimulation of lymphocytes differentiation
into regulatory T-lymphocytes (Treg) and T helper 17 (Th17), in
the production of immunomodulatory cytokines and even in the
epigenetic regulation of histone deacetylase enzymes. The
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production of IgA by plasma cells improve immunity by
blocking bacterial adherence to epithelial cells. In addition, the
PAMPs derived from microbes promote the maturation of
dendritic cells. These cells travel from the gut to mesenteric
lymph nodes, where induce naïve CD4 T cells to differentiate
into effector T cells (Tregs, Th17 cells). After maturation of these
cells in the mesenteric lymph nodes, they can migrate back to the
gut or enter systemic circulation and influence immunity in
different sites. Circulating Th17 cells enhance antitumour
immunity, protecting against bacterial and fungal infections,
whereas circulating Tregs secrete anti-inflammatory cytokines.
Activated by APC, these T cells can circulate systemically and
allow an immune response against the same organism (12). The
relationship between the microbiota and CD8 T cells remains
poorly characterized, although recent studies showed that
microbiota-mediated activation of these cells has implications
in immunity and the response to cancer therapies (Figure 1).
Some bacterial metabolites, like lipopolysaccharide (LPS),
activate innate immune response by TLR pathway stimulation
and then boosted antitumour CD8 T cells that migrate from the
gut to the periphery (11, 15, 16).

Microbiota’s deregulation, with modifications in its
functional composition and metabolic activity, is designated by
dysbiosis and is linked to the development of inflammatory,
auto-immune and malignant diseases. The changes in
microbiota homeostasis leading to an imbalance in the
symbiosis between the host and its organic habitat facilitate the
loss of beneficial bacteria, overgrowth of potentially pathogenic
microorganisms and loss of overall bacterial diversity. A break in
the intestinal mucosa’s immunological barrier causes bacterial
translocation, increased pro-inflammatory cytokines, and the
recruitment of effector T-cells and neutrophils, generating a
local and systemic inflammatory state (11, 17).
Gut Microbiota and the Breast-Gut-Axis
The impairment of the normal functioning of gut microbiota in
maintaining host wellness may deregulate the microbial-derived
products or metabolites, causing several other disorders on local
or distant organs, including in the tissue breast (10, 18). In this
context, some microorganisms seem to interfere with host cell
proliferation and apoptosis, tissue inflammation, cell invasion,
immune system function, gene expression, oncogenic signalling,
mutagenesis, angiogenesis, and hormonal and detoxification
pathways (10, 19, 20). In addition, human microbiota’s
composition also influences drug disposition, action and
toxicity, including of ICI (10, 21–23).

Concerning the links between human microbiota and BC, some
risk modulating metabolites are already known, such as oestrogens,
active phytoestrogens, short-chain fatty acid (SCFA), lithocholic acid
(LCA) and cadaverine. Oestrogen formation in gut microbiota is
mainly due tob-glucuronidase (BGUS) activity, which is a part of the
enzymatic complex of specific intestinal bacteria. The metabolism of
theseBGUS-producingbacteria leads todeconjugationofxenobiotics
and sexual hormone oestrogens and to an increase of oestrogens
reabsorption into the systemic circulation that may increase the risk
of hormone-dependent BC in women (10, 20, 24). Furthermore,
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several studies have shown differences in local and gut microbiota
betweenBCpatients andhealthycontrols (10, 25).On theotherhand,
othermetabolites are linked to a protective or risk-reducing factor for
BC development, including phytoestrogens, LCA and cadaverine
(10). The manipulation of microbiota to select certain types of
microorganisms, with the support of specific diets, prebiotics,
probiotics or symbiotics, postbiotics, antimicrobial agents or even
through fecalmicrobiota transplantation (FMT), is being studied and
pondered, eitheras aprophylactic approachoras a therapeuticuse for
BC (10, 24).

The mechanism by which gut bacteria can promote BC is also
through chronic inflammation, which is associated with tumour
Frontiers in Oncology | www.frontiersin.org 3
development. Gut bacteria, through PAMPs, can upregulate the
TLR and activate NF-kB, which is an important inflammation
regulator associated with cancer. The activation of NF-kB causes
the release of several cytokines, like IL-6, IL-12, IL-17 and IL-18
and the tumour necrosis factor-alpha (TNF-alpha), leading to
persistent inflammation in the tumour microenvironment. The
PAMPs are recognized by innate-immune system cells and are
essential components for pathogens such as the bacterial LPS,
flagellin, lipoteic acid, peptidoglycans and unmethylated CpG
oligodeoxynucleotides (26). In addition, secondary metabolites
released by intestinal bacteria along with pro-inflammatory
molecules that reach the liver via portal vein may promote
FIGURE 1 | Gut Microbiota and Immune System. Gut bacteria, through PAMPs, can upregulate the TLRs and activate inflammatory pathways, which causes a release of
cytokines leading to an inflammation milieu. PAMPs can also activate APC which migrate to the mesenteric lymph nodes to stimulate T and B cells. Activation of B cells to
plasma cells allows the release of IgA into the lumen. APC activate CD4 T cells to differentiate into Tregs and Th17 cells, that can migrate back to the gut or enter systemic
circulation and influence immunity in different sites. APC may also stimulate CD8 T cells into effector cells that migrate from the gut to periphery.
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carcinogenesis. Butyrate, an intestinal microbial metabolite, can
directly enhance the antitumour cytotoxic CD8 T cell response
by modulating the ID2-dependent manner of the IL-12
signalling pathway (27).

The gut microbiome also contributes to epigenetic
deregulation, which can interact with the tumour. The
microorganisms can produce low molecular weight bioactive
substances such as folates, short-chain fatty acids and biotin,
which can participate in epigenetic processes, including altering
substrates used for methylation or synthesising the complexes
that change the action of epigenetic enzymes (28).
BREAST CANCER, MICROBIOTA
AND IMMUNOTHERAPY

BC is the most common malignancy, and the incidence and the
number of survivors continues to increase, with most developed
countries reporting 85-90% five-year survival rates. However,
patients with BC show different outcomes, according to different
molecular profiles. Currently, four molecular subtypes of BC with
prognostic and therapeutic relevance are well established: luminal
A-like subtype, with high expression of oestrogen (ER) and
progesterone (PR) receptors and low cell proliferation index;
luminal B-like subtype with high expression of ER and PR and
high cell proliferation index; HER2 overexpressing subtype and
triple negative (TNBC) subtype (ER/PR and HER2 negative) (29,
30). Furthermore, depending on histological subtype and stage at
diagnosis, the prognoses are different, with the luminal A-like and
TNBC subtypes having the best and worst prognoses, respectively.

The most relevant BC risk factors are advanced age, exposure
to endogenous and exogenous oestrogens, high breast density,
history of atypical hyperplasia, personal or family history of
breast disease, genetic predisposition and environmental factors
(31). In addition, current evidence points to other clues for a
complementary mechanism of non-hereditary risk of BC.
Infectious agents are known to be the third most important
risk factor after tobacco and obesity, contributing to 15–20% of
cancer incidence. Gut microbiota is, as mentioned previously, an
emerging field of research that is being associated with cancer
through direct and indirect interference in diverse biological
processes: host cell proliferation and death, immune system
function, chronic inflammation, oncogenic signalling,
hormonal and detoxification pathways (10, 32, 33).

Most BC patients are diagnosed in initial stages when the goal
of treatment is to cure. In early and locally advanced BC, a
multimodal approach is frequently used, incorporating surgery,
radiotherapy and systemic therapy. The primary goals of
treatment are to prolong survival and ameliorate the quality of
life (10, 31).

Immunotherapy has become a forefront treatment of patients
with specific malignancies. ICI utilise the immune system to
exert an antitumour effect, suppressing the interaction of T-
lymphocyte inhibitory receptors with their ligands on malignant
cells, thereby re-stimulating the T-lymphocyte-mediated
immune response against tumour-associated antigens (5, 7).
Frontiers in Oncology | www.frontiersin.org 4
BC is not traditionally considered a highly immunogenic
tumour compared with other malignancies, such as lung
cancer or melanoma, which have the highest rate of TMB.
Although, recent data have shown immunotherapy benefits,
mainly in the TNBC subtype. Usually, this BC subgroup of
patients has a dismal prognosis, with worse survival and early
relapse rates (34). KEYNOTE-012, phase Ib trial, investigated
pembrolizumab monotherapy in previously treated TNBC
patients and revealed an overall response rate (ORR) of 18.5%
and a median time to response of 17.9 weeks (35). A phase II
study using pembrolizumab (KEYNOTE-086) as first-line
therapy for metastatic TNBC showed a safety profile and
antitumour efficacy with an ORR of 23% (36). Other phases I
trials, NCT01375842 and JAVELIN, evaluated the use of
atezolizumab and avelumab and observed ORR of 10% and
5.2%, respectively (37, 38). A combination of immunotherapy
with chemotherapy was also intensively investigated.
Atezolizumab combined with nab-paclitaxel was tested in
patients with metastatic TNBC, and the ORR was 67% in the
first line, 25% in the second line, and 29% in the third or further
lines (39). The phase III trial IMpassion 130 investigated the
combination of atezolizumab plus nab-paclitaxel in untreated
metastatic TNBC patients. In the intention-to-treat population
(ITT) analysis, there was a progression-free survival (PFS)
benefit in the combination arm (chemotherapy with
atezolizumab), with 7.2 months vs 5.5 months. This benefit
was most prominent in the PD-L1 positive population analysis,
with 7.5 months vs 5.0 months. In the ITT population analysis of
overall survival (OS), the benefit in the experimental arm was not
statistically significant (21.3 months vs 17.6 months HR 0.84,
95% CI 0.69 to 1.02; P=0.08), but in the PD-L1 positive
population, there was an increase in OS (25.0 months vs 15.5
months, HR 0.62; 95% CI, 0.45 to 0.86) (40). The ENHANCE-1/
KEYNOTE-150 phase Ib/II trial evaluated eribulin combined
with pembrolizumab, in which the ORR was higher in PD-L1-
positive BC patients (30.6% vs 22.4%) (41). The KEYNOTE-355
trial evaluated the combination of pembrolizumab with
chemotherapy, and patients were stratified according to PD-L1
value (combined positive score (CPS) ≥ 1, CPS≥ 10). In the
CPS≥10 population, there was a significant PFS benefit in the
pembrolizumab arm, 5.6 months vs 9.7 months (HR for
progression or death, 0-65, 95% CI 0-49-0-86; one-sided p=0-
0012) (42).

Links Between Microbiota
and Immunotherapy
Treatment with immunotherapy has revolutionised cancer
treatment over the past few years. However, not all patients
will experience a favourable response to treatment. Thereby,
predictive markers are of utmost importance for the physician to
know whether the ICIs will benefit the patient.

Even with standardised treatment protocols, patients do not
respond similarly, reflecting each individual´s heterogeneity,
unique BC features, and tumour microenvironment (10).
There is insufficient data regarding predictive factors of
response to immunotherapy treatments for BC. HER-2+ and
January 2022 | Volume 11 | Article 815772
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TNBC are also more likely to express PD-L1 in the tumour
microenvironment than luminal BC (43, 44). Higher levels of
TILs and CD8+ T-cell/Treg ratio at diagnosis predict benefit
from adjuvant and neoadjuvant chemotherapy (45, 46). Some
tumours that harbour TILs and express PD-L1 are more likely to
respond to ICI, suggesting this may also be the case for BC (47).
In recent years, it has been shown that gut microbiota may
modulate cancer treatments’ efficacy and toxicity. On the other
hand, it is also apparent that both cancer itself and anticancer
therapies interact with gut microbiota bidirectionally. The
pharmacomicrobiomics studies may support the potential use
of gut microbiota analysis to predict patients’ response to
treatments, allowing a more personalised approach based on
the microbiota-host-cancer triad (48–50).

The response and toxicity to ICI can be affected by gut
microbiota (Table 1). In studies with mouse models, it was
shown that specific microbes influence responses to this type of
treatment differently, and a cause-effect relationship was
established between the presence of a certain bacterial species
within the intestinal microbiota and a favourable therapeutic
outcome for the immune-based treatments (8, 9). A better
response to anti-PD-(L)1 therapy was observed in mice with
specific species of microbiota (e.g., Akkermansia muciniphila,
Frontiers in Oncology | www.frontiersin.org 5
Bifidobacterium longem, Collinsella aerofaciens, Faecalibacterium
prausnitzii) (9, 10). In addition, recent data reported that OS and
PFS rates were significantly higher in patients who had not
received antibiotics before and during ICI treatment compared
to those who had received (10, 56). Germ-free or antibiotic-treated
mice received FMTs from patients’ responders to ICIs and were
inoculated with tumour cell lines two weeks after FMT and treated
with ICIs targeting PD-1 or PD-L1. FMT from responders were
enriched in Akkermansia muciniphila, Bifidobacterium longum,
Collinsela aerofaciens and/or Faecalibacterium spp. The efficacy
observed in mice undergoing FMT with responder faeces was
associated with enhanced priming of CD45+ and CD8+ T cells in
the intestine. Thus, antibiotics may pose some risk for dysbiosis
due to the lack of specificity in the type of bacteria eliminated by
their repeated use (54).

On the other hand, gut microbiota may also influence ICI
toxicity (Table 1). Some studies have shown that patients with
specific bacteria (e.g., Bacteroidaceae, Barnesiellaceae,
Rikenellaceae) have a higher risk of immune-mediated toxicity.
Evidence suggests that most colitis-associated phylotypes were
related to Firmicutes (relatives of Faecalibacterium prausnitzii
and Gemmiger formicilis), whereas no colitis was assigned to
Bacteroidetes (52). In 2016 a prospective study with 34 patients
TABLE 1 | Clinical studies with association between gut microbiota and efficacy/toxicity of immune checkpoint inhibitors.

Reference Study population Results

Favourable microbiota Unfavourable microbiota

Dubin et al. (51)
Nature
Communications
2016

Metastatic melanoma
patients who received
ipilimumab

Lower risk of anti-CTLA-4-induced colitis:
• Bacteroidaceae, Barnesiellaceae, Rikenellaceae

–

Chaput et al. (52)
Annals of
Oncology 2017

Metastatic melanoma
patients who received
ipilimumab

Lower risk of anti-CTLA-4-induced colitis:
• Bacteroides spp. associated with less anti-CTLA-4-induced colitis

Higher risk of anti-CTLA-4-induced
colitis:
• Faecalibacterium prausnitzii,
Gemmiger formicilis, butyrate
producing bacterium L2-21

Gopalakrishnan
et al. (11)
Science 2018

Metastatic melanoma
who received PD-1
inhibitors

Higher clinical response:
• > gut bacterial diversity
• Faecalibacterium prausnitzii

Lower clinical response:
• < gut bacterial diversity
• Anaerotruncus colihominis,
Bacteroides thetaiotaomicron,
Escherichia coli

Matson et al. (53)
Science 2018

Metastatic melanoma
who received PD-1
inhibitor

Higher clinical response:
• Akkermansia muciniphila, Bifidobacterium adolescentis, Bifidobacterium longum,
Collinsella aerofaciens, Enterococcus faecium, Klebsiella pneumoniae, Lactobacillus
spp., Parabacteroides merdae, Veillonella parvula

Lower clinical response:
• Roseburia intestinalis,
Ruminococcus obeum

Routy et al. (54)
Science 2018

Metastatic urothelial
carcinoma, NSCLC,
and RCC
who received PD-1/
PD-L1
inhibitors

Higher clinical response:
• ↑ Akkermansia muciniphila, Alistipes spp., Eubacterium spp., Ruminococcus spp.
• ↓ Bifidobacterium adolescentis, Bifidobacterium longum, Parabacteroides
distasonis

–

Vetizou et al. (8)
Science 2015

Advanced melanoma
and NSCLC who
received ipilimumab

Higher clinical response:
• B. fragilis, B. thetaiotaomicron

–

Frankel et al. (55)
Neoplasia 2017

Metastatic melanoma
patients who received
ICI

Higher clinical response:
• Bacteroides caccae, Bacteroides thetaiotamicro, Dorea formicogenerans,
Faecalibacterium prausnitzii, Holdemania filiformis

–

January
CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; ICI, immune checkpoint inhibitors; NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1; RCC, renal cell
carcinoma.
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analysed the intestinal microbiota with the subsequent
development of ICI-induced colitis. Bacteroidetes phylum is
enriched in colitis-resistant patients and is consistent with an
immunomodulatory role of these commensal bacteria (51).
CONCLUSION

A plethora of immunotherapy options is now part of treatment
armamentarium of several malignancies, including BC.
Unfortunately, despite this remarkable success, only a minority
of BC patients respond to ICI and there is insufficient data
regarding predictive factors of response.

In recent years, it has been shown that both cancer itself and
anticancer therapies interact with gut microbiota bidirectionally.
Frontiers in Oncology | www.frontiersin.org 6
Thus, the pharmacomicrobiomics studies may support the
potential use of gut microbiota analysis to predict patients’
response to ICI, allowing a more personalised and precision
medicine in oncology. Also, microbiota manipulation can be
used to improve treatment outcomes in BC patients. However,
further studies are necessary to validate microbiota analysis and
modulation as part of the ‘real world’ BC clinical practice.
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