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A phenomenological model of
proton FLASH oxygen depletion
effects depending on tissue
vasculature and oxygen supply

Wei Zou*, Haram Kim, Eric S. Diffenderfer, David J. Carlson,
Cameron J. Koch, Ying Xiao, BoonKeng K. Teo,
Michele M. Kim, James M. Metz, Yi Fan, Amit Maity,
Costas Koumenis, Theresa M. Busch, Rodney Wiersma,
Keith A. Cengel and Lei Dong

Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania,
Philadelphia, PA, United States
Introduction: Radiation-induced oxygen depletion in tissue is assumed as a

contributor to the FLASH sparing effects. In this study, we simulated the

heterogeneous oxygen depletion in the tissue surrounding the vessels and

calculated the proton FLASH effective-dose-modifying factor (FEDMF), which

could be used for biology-based treatment planning.

Methods: The dose and dose-weighted linear energy transfer (LET) of a small

animal proton irradiator was simulated with Monte Carlo simulation. We

deployed a parabolic partial differential equation to account for the

generalized radiation oxygen depletion, tissue oxygen diffusion, and

metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D

solution space. Dose and dose rates, particle LET, vasculature spacing, and

blood oxygen supplies were considered. Using a similar framework for the

hypoxic reduction factor (HRF) developed previously, the FEDMF was derived

as the ratio of the cumulative normoxic-equivalent dose (CNED) between

CONV and UHDR deliveries.

Results: Dynamic equilibrium between oxygen diffusion and tissue metabolism

can result in tissue hypoxia. The hypoxic region displayed enhanced radio-

resistance and resulted in lower CNED under UHDR deliveries. In 1D solution,

comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s,

61.5% of the tissue exhibited ≥20% FEDMF at 175 mm vasculature spacing and

18.9 mM boundary condition. This percentage reduced to 34.5% and 0% for 8

and 2 Gy deliveries, respectively. Similar trends were observed in the 3D

solution space. The FLASH versus CONV differential effect remained at larger

vasculature spacings. A higher FLASH dose rate showed an increased region

with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not

appear to alter the FLASH effect.
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Conclusion: We developed 1D, 2D, and 3D oxygen depletion simulation

process to obtain the dynamic HRF and derive the proton FEDMF related to

the dose delivery parameters and the local tissue vasculature information. The

phenomenological model can be used to simulate or predict FLASH effects

based on tissue vasculature and oxygen concentration data obtained from

other experiments.
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Introduction

With more than 50% of cancer patients receiving radiation

therapy, accurate dose delivery and treatment planning and

delivery techniques to maximize normal tissue sparing are

critical tasks for radiation oncology (2). Recently, there is

increasing evidence that ultra-high dose rate (UHDR)

radiation can provide notable FLASH normal tissue sparing

without affecting tumor control probability (3–8). Considering

that clinical radiotherapy outcomes are typically limited by

normal tissue radiotoxicity, the FLASH sparing effect, if

realized, can have a profound impact on future radiotherapy

development. Multiple review articles on the topic have pointed

out the potential of applying ultra-high dose rate radiotherapy to

achieve better radio-therapeutic outcomes (9–13). As part of the

effort to incorporate FLASH into current radiotherapy practice,

UHDR electron treatments of human (14) and animal patients

(6, 15) with superficial lesions were performed. Compared with

electron radiotherapy, proton radiotherapy provides greater

dose conformality and the ability to treat deep-seated tumors

(16), thus an attractive modality to adopt FLASH deliveries.

Recent technical developments have demonstrated that a

commercial proton therapy system can be modified to achieve

ultra-high dose rates (8, 17). Certain FLASH dose rate effects

with the proton beams were also observed in cells and animal

models (4, 8, 18, 19).

To date, the biological mechanisms of FLASH normal tissue

radioprotection effect remain unclear. In published small animal

UHDR experiments, multiple levels of dose and dose rates were

delivered. Although most studies observed the FLASH sparing

effects, a few studies have not reproduced similar findings (20,

21), or the effects were limited (4, 18). There have been

discussions on a potential threshold for FLASH dose, dose

rate, or a combination of both (12). A FLASH dose-modifying

factor was summarized for various experiments with different

experiment endpoints (11). Multiple FLASH mechanisms have

been proposed. Among those, the mechanism of radiation-

introduced oxygen depletion with ultra-high dose rate has
02
gained the most popularity (12, 13, 22–25). Support for the

oxygen depletion mechanism comes from multiple earlier cell

(26–28) and animal (10, 29, 30) radiation studies under aerobic/

normoxic and hypoxic environment where decreased oxygen

tension decreases radiosensitivity. In terms of the cell level

radiotoxicity, oxygen tension decreases as a result of

radiochemical reactions, consequently impeding oxygen-

mediated fixation of DNA damage (31, 32). In addition,

oxygen depletion reduces the yields of reactive oxygen species

(ROS), resulting in a radio-protective effect (5, 22). Spitz et al.

(22) discussed the organic redox reactions, including the labile

metal ion oxidative chain reactions that cause a substantial

amount of oxygen depletion compared to water radiolysis

alone. Recently, Labarbe et al. (33) quantitatively modeled the

kinetics of these main reactions and differential ROS production

under different dose rates. Multiple oxygen depletion/replenish

models were proposed in order to quantify the oxygen effects

under FLASH (24, 34, 35). These models have similar

components that include radiation-introduced oxygen

depletion, oxygen replenishment from the nearby vasculature,

and oxygen diffusion from nearby tissues. Moreover, these

studies used the oxygen enhancement ratio (OER) based on

the Alper–Howard–Flanders (AHF) model (36) to examine the

biological effects under UHDR deliveries.

Oxygen enhancement ratio (OER) has been proposed to

quantify the radio-protection effect under reduced oxygen

tension, such as in tumor hypoxia environment. It is defined

as the dose ratio at anoxia and physiological oxygen levels to

achieve the same biological endpoint (37) and can be used to

compare the tissue radiosensitivity at various oxygen levels.

Compared to photon beam, the characteristic Bragg peak of a

particle beam at the end of the beam range is associated with an

increase in linear energy transfer (LET), resulting in increased

relative biological effectiveness (RBE) (38). The increase in RBE

results from an increased initial yield of DNA double-strand

breaks, resulting in lethal DNA damage (39). This effect

potentially reduces the tissue radiosensitivity to oxygen tension

(40–42). Under various particle beams, the OER for DSB
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induction and cell death was observed to decline with increased

LET (40, 43–45). The Alpha–Howard–Flanders model and

linear-quadratic (LQ) models were extended to fit the

experimental data and take into account both oxygen level and

particle LET (1, 43).

Our intention in this study is to abstract the concepts in

oxygen depletion and vasculature re-oxygenation into a

mathematical framework and seek a numerical proton FLASH

radiobiological effect taking into account the dynamic oxygen

level during delivery. The spatiotemporal oxygen level was the

solution of a parabolic partial differential equation (PDE) that

includes the radiation dose, delivery dose rate, metabolic

depletion, and oxygen diffusion with vasculature oxygen

supply boundary conditions. Adopting the conclusions from

previous UHDR simulations that the tissue distance from the

vessel (24, 34, 35) is vital for its initial and final stage of oxygen

content, this study uses information of the local tissue

vasculature spacing to confine the extent of diffusion distance.

The local vasculature information can be related to tissue

vasculature measurements and is different in various tissues.

We proposed the 1D, 2D, and 3D solution space to the PDE,

with confined boundary conditions from vessel oxygen supplies.

As chaotic tumor vasculature development often results in

lacunar features or blunt ends that affect the blood flow (46,

47), the affected oxygen supplies were built in as reduced oxygen

supply boundary conditions (BCs). The simulation was

performed in the stages prior to irradiation, dynamic radiation

dose delivery, and after irradiation. For mice proton FLASH

experiments, the experimental setup, including customized

scatterers and collimation devices, were included in the Monte

Carlo simulation to calculate the dose and the dose-weighted

linear energy transfer LETD (48). During each infinitesimal

duration of the irradiation, the local oxygen level was obtained

from the PDE solution; the impact to the delivered dose at the

oxygen level was calculated from the proton hypoxic reduction

factor (HRF). A cumulative normoxic-equivalent dose (CNED)

was obtained for various irradiation situations. A FLASH

effective-dose-modifying factor (FEDMF) derived as the ratio

of CNEDs between CONV and UHDR deliveries was used to

evaluate the FLASH effect. Once the characteristic vasculature

structure of the irradiated tissue is known, the process can be

adapted to correlate the dose delivery parameters to the

outcomes of small animal UHDR biological experiments.
Methods

Monte Carlo dose and LET calculation

Monte Carlo simulation was used to obtain the 3D voxelized

proton dose and LET distributions at the sites of the animal

irradiation with a fast multi-core Monte Carlo package MCsquare

(49, 50). This software simulates the dose and dose-weighted LET
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(LETD), which was experimentally validated (48, 51–53). The

mouse CT DICOM images were modified to include the double-

scattering animal proton FLASH platform (8). A 2-mm lead foil as

the first scatterer, a lead ball bearing as the second scatterer, and

an acrylic beam collimator with a brass collimation insert were

built into the irradiated geometry. The mouse images or a water

phantom was positioned downstream from these beam modifiers.

The volume of the simulation is 100 × 15 × 15 cm3 re-sampled

into 0.5 × 0.5 × 0.5 mm3 voxels. The proton pencil beam profile

was experimentally characterized using a 2D transmission ion

chamber IC-64 (Pyramid Technical Consultants, Boston, MA)

with 1 mm resolution. A 2D Gaussian profile was used to fit the

measured pencil beam profile (54) and input to the software as the

beam source. The code ran on a Linux system equipped with dual

36-core CPUs and took ~6 h to finish a run with 109 events. The

109 particles used for this study is sufficient, as a robustness study

of the MCSquare engine reportedly used 36 × 106 particles to

achieve a maximum statistical uncertainty of 1% (55). The

simulated dose relative to the number of events was calibrated

with an advanced Markus chamber. During the animal

experiments, the dose rate increases linearly with cyclotron

output current (8, 56), which was measured to be 213 ± 3 nA.

A higher extracted current of 800 nA was recently reported on a

hospital-based cyclotron (57). Our cyclotron has achieved similar

extraction current previously (58) and was repeated recently,

which produces 500 nA nozzle current. The time of the

irradiation was recorded by an oscilloscope. The voxel-based

dose, dose rate, and LET in mice were then obtained.
Oxygen depletion and
replenishment model

We used a mathematical model to simulate the dynamic

oxygen level change in the tissue microenvironment, including

the effects of irradiation, metabolism, and diffusion. The

spatiotemporal oxygen distribution will be obtained as the

numerical solution to a governing parabolic partial differential

equation (PDE) factoring in the dose/dose rate and tissue types

with characteristic vasculature structure. The radiation oxygen

depletion rate was ∂O
∂ t proposed to be proportional to the dose

rates (24, 34, 35), where O is the oxygen concentration in the

tissue. Here, we expressed the term as ∂O
∂ t = −K1

_D O
O+l where

_D is

the dose rate. The constant K1 represents the G-value of oxygen

depletion. Radiolytic Monte Carlo simulation in deriving the

oxygen G-value typically assumes abundant in situ oxygen

supply (59, 60). However, at lower oxygen level, from the

simulations by Lai et al. (61) and Boscolo et al. (62), the oxygen

depletion rate reduces. The term O
O+l reflects the reduced oxygen

depletion rate at lower oxygen level with small l (0.29 mM from Lai

et al.). Recently, measurements of proton radiation oxygen

depletion in bovine serum albumin (BSA) solutions or Buffer

3G solution were made using phosphorescence quenching
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method (63) in addition to a similar measurement under electron

beams (64). The G-value varies from 0.37 to 0.72 mM/Gy

depending on the solution and dose rate. When considering the

organic and labile ion processes, the radiation oxygen

depletion rate is arguably much higher (22). In this study, we

chose K1 = 0.5 mM/Gy.

The tissue vasculature provides essential oxygen for its

biological functions. The oxygen diffuses transcapillary

through the vasculature endothelial cells to tissues. We assume

that within the time of interest in this model, the vasculature

structure is stable with no radiation damage that alters its

permeability or oxygen supply. Under normal physiological

conditions, the oxygen level reduces as a function of radial

distance from the wall (65, 66) governed by a PDE with

metabolic and diffusion terms. The oxygen transport flux via

tissue diffusion can be written as with diffusion constant K3 =

2×10−5 cm2/s (67). The tissue metabolic oxygen consumption

(66) can be modeled by the Michaelis–Menten kinetics (68, 69)

M = −K2
O

O+l . For high oxygen concentration, the oxygen is

consumed by the tissue at an approximately constant rate K2.

The rate of consumption rapidly decreases at lower hypoxic

concentration (69, 70) regulated by the parameter l. Combining

the effects of radiation oxygen depletion, tissue oxygen diffusion,

and tissue metabolic oxygen consumption, the oxygen

concentration in tissue O is governed by a parabolic PDE:

∂O
∂ t

= −K1
_D

O
O + l

− K2
O

O + l
+ K3 ∇

2 O (1)

In this study, we first simulated in 1D with dimension

comparable to the vasculature spacing and ∇2 O = ∂2

∂ x2 O(x, t).

The parameters of various dose/dose rates, oxygen distribution

prior to irradiation, and oxygen boundary conditions were studied.

The parameters used for solving Eq. (1) are listed in Table 1.

The initial condition of the oxygen concentration is the oxygen

level at the start of the irradiation and is regarded as dynamically

balanced between oxygen metabolism and diffusion. The 1D

simulation space is bounded by two blood vessels at the ends.

The blood vessels provide constant oxygen supply with Dirichlet

boundary condition (BC) as, O (~x, t)|∂Ω = Ov where Ω is the
Frontiers in Oncology 04
simulation space. The tumor structure is heterogeneous with

lacunar features or blunt ends where highly hypoxic regions exist

from low blood oxygen supply of these vessels (47). Healthier

vasculature provides a larger blood oxygen supply. In this study,

we simulated BC from 5.4 to 50.4 mM.

The simulation space of the PDE was chosen as equivalent to

the vasculature spacing. Scanning electron microscope stereo-

imaging (SEM) and micro-computed tomography (micro-CT)

had been used to characterize the vasculature structures and

revealed that the vasculature of certain normal and tumor tissues

have inter-vessel distances within the range of 25–800 mm
(Konerding et al., 1999, Folarin et al., 2010). The skin

vasculature could have larger vessel spacing (71). We chose a

representative selection of the inter-vessel spacing at 25–1,000

mm to solve the PDE in Eq (1). Therefore, the simulation space

Ω is confined between two vessels with defined spacing.

The dose rate _D was applied as a step function in time

_D =

0 t < 0

_D ~x, tð Þ 0 < t < T

0   t > T

:

8>><
>>:

Here T is the irradiation duration. The total delivered dose

is D(~x) =
Z T

0

_D(~x, t)dt. In this study, the dose rate was assumed

independent of the spatial variable~x and irradiation time t, _D =
_D0. In typical patient treatment plan, dose is calculated at CT

voxel level with the dimension of 1–3 mm. Typical vasculature

spacing is smaller than voxel dimension. Therefore, within the

vasculature spacing, we assume a constant dose rate. Before

irradiation t<0, the PDE was solved until a dynamic equilibrium

state between metabolism and oxygen diffusion was achieved;

that is, the change in oxygen level at each time step was less than

10–4O. The oxygen distribution O (~x, 0) was used to solve for the

irradiation time period 0 < t < T and then oxygen replenishment

at t > T following the dose rate step function. Each spatial–

temporal solution at the stages prior to radiation, during

radiation, or post-radiation was obtained with 1,500 time

steps. Then, 3,000 time steps for each stage for a selected

subset of initial and BCs were used to rerun the simulation

and verify the stability of the solutions.

The oxygen depletion and replenishment model can be

extended to 2D and 3D solution space using finite element

method to solve Eq (1). We demonstrated the 2D solution to a

region where multiple vessels cross and concurrently provide

oxygen supply. As shown in Figure 1A, the 2D rectangular region

was surrounded with four vessels. Within the region, seven other

vessels represented the capillary network crossing the region. Each

of the subdomains in the 2D region was meshed with triangular

elements. The Dirichlet boundary condition was applied to the

surrounding and capillary network vessels as oxygen supply sources

to the region. The time-dependent nodal solution to Eq. (1) in the

region was solved under CONV and UHDR dose deliveries.
TABLE 1 Parameters used in solving PDE Eq. (1).

Parameter Values

Radiation oxygen
depletion rate

K1, l 0.5 mM/Gy, 0.29 mM

Oxygen metabolism K2, l 18.9 mM/s and 3.15 mM

Tissue oxygen diffusion K3 2×10−5 cm2/s

Oxygen boundary
condition

Ov 2.4–50.4 mM

Inter-vessel distance Ω 25–1,000 mm

Dose rate _D(~x, t) CONV 0.5 Gy/s, UHDR 125 and
285 Gy/s

Dose D 2, 8, 15 Gy
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The finite element method was used to solve Eq. (1) in the

3D solution space described in Figure 1B. The cuboid has five

vessels passing through the region. One is at the center and the

other four at the four vertical edges. Tetrahedral mesh elements

were applied (Figure 1C). Finer mesh was generated at the

interface to the vessels. At the vessel interfaces, Dirichlet BCs

were set asO(~x, t)|∂Ω' = Ov, where ∂Ω' represents the interfaces to

the vessels. Newmann BCs ∇O(~x, t)•~n|∂Ω" = 0 were set to other

surfaces ∂Ω" as the cuboid is assumed to repeat itself in space,

and the solution is therefore symmetric at the surfaces.
Proton FLASH effective-dose-
modifying factor

The oxygen enhancement ratio (OER) was used to indicate

the effective dosimetric response or tissue biological response

under different tissue oxygen concentrations. The tissue

radiosensitivity is a function of tissue oxygen concentration

and particle LET, and its value declines with increasing LET

(39, 44). The particle oxygen radiosensitivity was found to have

small dependence on cell type and the delivered dose; when

using LETD, the oxygen radiosensitivity is independent of the

ion type (1, 72). Scifoni et al. (1) studied the dependence of the

survival level as a bidimensional parameterization of LETD and

oxygen. In this paper, we used the same parameterization

formula and the term hypoxia reduction factor (HRF) (65) as

the ratio of the dose at given oxygen level and LET to the dose at

normoxic condition that produces the same survival level.

HRF LET ,Oð Þ = D LET ,Oð Þ
Dnorm

jsame survival

=
b aM + LETgð Þ= a + LETgð Þ + O

b + O
(2)
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where M is the anoxic condition of maximum effect (~3); g =3;
and a=8.27×105 (keV/mm)g and b=2.4 mM. In this equation, the

LETD distribution of the proton was input from the small animal

Monte Carlo simulation, which is time independent for the

scattered-field dose delivery. The oxygen distribution is the

numeric solution from Eq. (1).

The derived HRF(~x, t) from Eq. (2) is spatiotemporally

distributed within the vasculature intraspacing. At the end of

the irradiation, we define the cumulative normoxic-equivalent

dose (CNED) as the cumulative dose equivalent to achieve the

same biological effect under normoxic condition. Using the

definition of HRF, CNED can be expressed as

CNED(~x) =
Z T

0

_D(~x, t)
HRF(~x, t)

dt

= _D
Z T

O

1
HRF ~x, tð Þ dt for constant dose rate (3)

The CNED is the output of this multi-stage model

framework, which includes the effects of ion beam

characteristics and dynamic oxygen effect. As the tissue

HRF≥1, CNED is smaller than the delivered dose D. The

dynamic oxygen effect from the irradiation can be expressed

by the ratio of the two CNED(~x)/D. To characterize the FLASH

sparing effects, Bourhis et al. proposed using the FLASH dose-

modifying factor to indicate the ratio of the dose delivered in

CONV and UHDR dose rates to achieve the same biological

effect (11). They summarized that >1.3 dose-modifying factor

were observed in various in vivo experiments. Using a similar

concept, we defined the proton FEDMF in this study as the ratio

of CNED(~x) the under CONV and UHDR dose rates and

considered the FLASH effect with FEDMF≥1.20,

FEDMF ~xð Þ = CNED ~xð ÞCONV
CNED ~xð ÞUHDR

(4)
B CA

FIGURE 1

2D and 3D geometries for oxygen distribution solution to Eq (1). (A) The 2D region to simulate the dynamic oxygen level changes under various
dose rates. The vessels across the region are shown in red color. The triangular mesh is illustrated and shown in 10 times of its actual size. (B) The
3D cuboid geometry. Five vessels across the region at the center and four vertical edges concurrently provide oxygen supplies. (C) The 3D mesh.
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Results

The Monte Carlo simulation software MCSquare was used

for mice irradiation dose and LETD calculation. From the beam

profile, a 20%–80% penumbra of 7.3 mm was obtained in mice,

which is consistent with the film profile measurement. The

irradiation ultra-high dose rate was calculated as 126.5 Gy/s

and 285 Gy/s at 222 and 500 nA nozzle current. The LETD at the

mice was derived as 1.2 keV/mm.

The oxygen level before irradiation (t<0) was examined first

at various inter-vessel spacing. The inter-vessel oxygen spatial

solution shows that at fixed vascular oxygen supply BC, a

dynamic equilibrium oxygen status is maintained between the

metabolic consumption and diffusion. Poor BC in the tumor

environment results in a hypoxic region (using hypoxic

threshold 18.9 mM in this study) throughout the vessel spacing

(blue curves in Figures 2A, B). In a healthy tissue with normal

vasculature BC, a larger vessel spacing causes a hypoxic central

region at a distance from the vessels (orange curve in Figure 2B).

Comparing the two curves in Figure 2B, poor BC and large

vasculature spacing create a severe hypoxic region, while a

healthy BC and large vessel spacing result in a more moderate

hypoxic region between the vessels. Both low BC or large vessel

spacing can result in a hypoxic region. For example, a hypoxic

region starts to appear at 175 mm spacing and 50.4 mM BC, and

at 125 mm spacing and 35 mM BC. At 250 mm spacing and 50.4

mMBC, 45% of the space between vessels is hypoxic with a mean

oxygen level of 24.1 mM.

When a single-field dose is delivered at CONV and UHDR

dose rates, 0.5 and 125 Gy/s, it will result in different

spatiotemporal oxygen depletions, the extent of which depends

on the vasculature spacing and BC. Figure 3 shows the

spatiotemporal oxygen levels as the solution to Eq. (1) pre-,

during, and post-irradiation of 15 Gy under CONV and UHDR
Frontiers in Oncology 06
deliveries with two vasculature intraspacings and 10.1 mM BC.

The changes in oxygen levels at the mid-point between the vessels

are shown in Figure 4. Figures 3A–C, 4A show that regardless of

the vasculature spacing and BCs, CONV dose rate creates

minimal changes in the oxygen concentration. This result infers

that for all tissue types under CONV dose rate, the effect from

radiation-induced oxygen depletion is negligible. UHDRs can

generate reduced oxygen level before oxygen replenishment

from nearby vessels occurs, as shown in Figures 3B–D, 4B,

which can be responsible for the radiation-induced FLASH

radioprotection effect. At lower BC Ov=10.1 mM, the oxygen

depletion by fast dose rate is apparent for small vasculature

intraspacing of 50 mm, especially in the central region of the

vasculature spacing (Figure 3B). Figure 4B (dashed orange line)

shows that the oxygen level at the mid-point drops from 8.0 to 3.7

mM after the irradiation. At larger vasculature spacing of 250 mm,

the originally severe hypoxic central region does not experience

much further oxygen depletion, regardless of the dose rates

(Figures 3C, D). In this case, the mid-point oxygen level

remains<0.1 mM (dashed purple lines in Figures 4A, B). Under

ultra-high dose rates, a healthy vasculature (BC=50.4 mM)

experiences a reduction in oxygen concentration with radiation

dose in both large and small vasculature inter-vessel space. At the

midpoint, the oxygen level is reduced from 47.6 to 43.0 mM for 50

mm spacing and 2.5 to 0.0 mM for 250 mM spacing.

A lesser dose causes smaller changes in oxygen levels under

the same high dose rate. At the midpoint of 50 mm spacing, 2, 8,

and 15 Gy reduce the oxygen level by 0.8, 2.8, and 4.3 mM,

respectively, with 10.1 mM BC, and 0.8, 2.9, and 4.7 mM,

respectively, with 50.4 mM BC. The amount of oxygen level

reduction is smaller at the midpoint of 250 mM spacing. For 2, 8,

and 15 Gy irradiation, the changes in oxygen concentration are

0.0, 0.1, and 0.1 mM, respectively, with 10.1 mM BC, and 0.7, 2.3,

and 2.5 mM, respectively, with 50.4 mMBC. After irradiation, the
BA

FIGURE 2

Pre-irradiation oxygen levels taking into account oxygen metabolism and diffusion. (A) Small vasculature spacing results in oxygen levels similar
to vasculature oxygen BCs—normal BC of 50.4 mM (orange) or poor BC of 10.1 mM (blue). (B) Hypoxic regions develop between blood vessels in
conjunction with large vasculature spacing, shown for both normal (50.4 mM; orange) and poor (10.1 mM; blue) oxygen BCs. The dashed line in
panels (A, B) indicates the hypoxic threshold of 18.9 mM.
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oxygen level recovers from radiation-introduced depletion

within a few seconds.

Based on the amount of oxygen depletion by CONV and

UHDR dose rate, the dynamic HRF and CNED can be derived
Frontiers in Oncology 07
using Eqs. (2) and (3) Figure 5 shows cases of the radiation

oxygen depletion effect using the dose ratio CNED(~x)/D (blue

curves) under 0.5 and 125 Gy/s with 15 Gy against the left y-axis.

The FEDMFs as the ratio of the CNEDs under CONV and
BA

FIGURE 4

Midpoint oxygen levels for different oxygen supply BCs, vasculature spacings, and dose rates. The change in oxygen concentration from 15 Gy
irradiation under the dose rates of (A) 0.5 Gy/s and (B) 125 Gy/s under 10.1 and 50.4 mM for 50 and 250 mm spacings. The dashed vertical lines
indicate the duration of the irradiation.
B

C D

A

FIGURE 3

Spatiotemporal changes in oxygen levels for different vasculature spacings and dose rates. Oxygen levels (mM) under 15 Gy irradiation with
spacings of 50 mm (A, B) and 250 mm (C, D) under BC=10.1 mM. The time between two vertical white lines indicates the duration of the
irradiation. (A, C) Irradiated with 0.5 Gy/s; (B, D) irradiated with 125 Gy/s.
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UHDR dose rates are plotted in orange against the right y-axis.

As shown previously, FLASH dose delivery further depletes the

oxygen compared with the CONV delivery. The CNED(~x)UHDR
everywhere in the space is smaller or equal to the CNED(~x)CONV ,

which results in FEDMF≥1. The differential FLASH effect

between CONV and UHDR deliveries can be inferred from

the FEDMF. From Figure 5, the impact to the FLASH effect from

the vasculature spacing and BC is apparent. At well-oxygenated

50.4 mM BC, radiation within both 50 and 175 mm vasculature

spacings result in very small oxygen effects regardless of the dose

rates (Figures 5A, B). Hence, the FEDMF is close to unity,
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indicating no apparent FLASH effect. At an intermediate BC of

18.9 mM, small vasculature spacing does not show the FLASH

effect where the FEDMF is close to 1, due to the short distance

from the nearby vessels and quick replenishment of depleted

oxygen. However, within the pre-existing hypoxic region prior

to irradiation at 175 mm vasculature spacing, FLASH-introduced

radio-protection effect appears with apparent differential

CNEDs between UHDR and CONV dose deliveries. It results

in 61.5% of the inter-vessel space with larger than 1.20 (or 20%)

FEDMF (Figure 5D). Under poorer oxygen BC of 5.4 mM,

differential FLASH effects show up in both 50 and 175 mm,
B

C D

E F

A

FIGURE 5

The ratio of CNED to delivered dose D and FLASH effective-dose-modifying factor for different vasculature intraspacings and oxygen BCs. (Left
axis) The ratio of the CNED to the delivered 15 Gy dose under conventional 0.5 Gy/s (solid blue) and UHDR 125 Gy/s (dashed blue) dose rates;
(right axis) the FLASH effective-dose-modifying factor derived from the CNEDs under the two dose rates. Two different vasculature spacings
[(A, C, E) 50 mm; (B, D, F) 175 mm] with high 50.4 (A, B), medium 18.9 (C, D), and low 5.4 mM (E, F) BCs are shown.
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but to a much less extent compared with 18.9 mM BC, which has

55.0% and 31.0% space with FEDMF above 1.20. If the

intermediate BC can represent the situation in normal tissues,

the FLASH effects are more prominent than the poor BC cases,

as in the tumor environment. When considering different dose

deliveries, the amount of region with FEDMF≥1.20 reduces with

delivered dose (Figure 6). The percentage of the space with

FEDMF≥1.20 reduces from 61.5% for 15 Gy to 34.5% and 0% for

8 and 2 Gy deliveries in the 175 mm vasculature spacing.

Although limited blood oxygen supply is typical for tumor

vasculature (73), vasculature spacing is not well characterized for

various normal and tumor tissues. In one study by Folarin et al.

(74), the most probable vasculature spacing appears to be ~100–

200 mm in both colorectal normal mucosa and tumor tissues.

Our simulation shows that at 175 mm, better oxygenated normal

tissue shows a larger region (61.5% for 18.9 mM BC) with

FEDMF≥1.20 than poorer oxygenated tumor tissue (31.0% for

5.4 mM BC). For other vasculature spacings, Figure 7A plots the

percentage of the region with FEDMF≥1.20 under 5.4, 18.9, and

50.4 mM BCs. At smaller than 100 mm vasculature spacing, the

percentage of the region with FEDMF≥1.20 can be larger than

50% in poor BC of 5.4 mM. This percentage quickly reduces at

larger vasculature spacing. The FLASH effect does not show up

for 18.9 mM BC unless with larger than 100 mm vasculature

spacing and peaks at 175 mm. At larger than 125 mm inter-vessel

spacing, 18.9 mM BC has a larger region with FEDMF≥1.20 than

the smaller 5.4 mM BC. It could indicate that the FLASH normal
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tissue sparing should be more readily observable in tissues with

larger vasculature spacing.

Higher dose rate increases the amount of the region with

FLASH effects. At an increased dose rate of 285 Gy/s with ~800

nA cyclotron output current, a larger percentage and wider

range of the vasculature spacing will show the FLASH effect

(Figure 7B). This could potentially indicate that the FLASH

effect would be more readily observed in tissues with wider range

of vasculature spacing when the UHDR dose rate increases.

We also examined the FLASH effects under irradiation with

higher LETD near the Bragg peak (BP). At LETD of 10 and 20

keV/mm of 15 Gy to 175 mm vessel spacing, 61.5 and 61.0% of

the region shows FLASH effect for BC of 18.9 mM, and 31.0%

and 31.0% for BC of 5.4 mM. It is a minimal change from the low

LET deliveries. FLASH effect from other vessel spacing and BCs

showed the same independence of the proton LET. This result is

reasonable, as the summarized experimental data (1, 43)

demonstrated that the difference in cell survival introduced by

LET only occurs at much higher LET, for example, in carbon ion

beams. This result is validated by a recent FLASH study on mice

(75), which showed that dose from entrance and SOBP under

ultra-high dose rates both preserved a significantly higher

number of crypt cells and demonstrated similar tumor growth

compared to the deliveries under conventional dose rate.

An example of the dynamic oxygen simulation in 2D space

was performed in a 750×250 mm2 rectangular region as shown in

Figure 1. In this finite element model, 227,104 elements and
FIGURE 6

The delivered dose makes a difference in the FLASH effective-dose-modifying factor. Plotted are the FLASH effective-dose-modifying factors
from 15 Gy delivered at 0.5 and 125 Gy/s dose rates for 175 mm vasculature spacing and 18.9 mM BC.
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557,832 nodes were generated. Well-oxygenated supply of 50.1

mM was provided at the left and right boundaries. The other

vessels provided 10.1 mM BCs. A dose of 10 Gy at 0.5 and 285

Gy/s dose rates were simulated. Figure 8A demonstrates the

oxygen distribution prior to irradiation from the balance of

vessel oxygen supplies and metabolic consumption. The dose

delivered at CONV dose rate minimally altered the oxygen

distribution in the region. However, the dose delivered at
Frontiers in Oncology 10
FLASH dose rate further reduced the regional oxygen level

(Figure 8B). The time-varying oxygen nodal solution was used

to calculate the FLASH effective-dose-modifying factor FEDMF

using Eqs (2)–(4). Figure 8C shows the FEDMF distribution in

the region. It is observed that substantial portion 58.5% of the

region demonstrates FEDMF≥1.20.

The oxygen distribution solutions in 3D space were obtained

under various vessel oxygen supply and dose delivery conditions.
B

C

A

FIGURE 8

(A) Contour plot of the oxygen distribution in the simulated 2D region prior to irradiation; (B) contour plot of the oxygen distribution after UHDR
irradiation of 10 Gy at 285 Gy/s; (C) FLASH effective-dose-modifying factor (FEDMF) comparing the CONV and FLASH effective dose using the
hypoxic reduction factor model.
BA

FIGURE 7

Flash effective-dose-modifying factor relates to vasculature spacing, oxygen BCs, and FLASH dose rates. Percentage of the region with FEDMF≥
1.20 is plotted against the vasculature spacing for different BCs (5.4, 18.9, and 50.4 mM) for two different proton FLASH dose rates: (A) 125 Gy/s
and (B) 285 Gy/s.
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Figures 9A, B show the oxygen distributions after 15 Gy at 0.5

and 125 Gy/s irradiations, where the vessels supply 18.9 mMBCs.

The region away from vessels shows differential oxygen level

under CONV than under UHDR irradiations, although both are

hypoxic. According to Eqs (2)–(4), the voxel CNEDs are

different under different dose rates and results in 73.6% of the

3D volume showing FEDMF≥1.20. Figure 9C shows the FEDMF

in the cross-section plane at half of the cuboid height. In the

region where CONV and UHDR hypoxic levels are different,

high FEDMF values are shown. Higher dose rate will increase the

region of high FEDMF. At 285 Gy/s, 78.4% of the 3D volume

shows FEDMF≥1.20. Under 2, 8, and 10 Gy irradiations of the

same geometry and BCs, the percentage volume showing

FEDMF≥1.20 reduces to 0%, 0%, and 16.6% compared with

0.5 and 125 Gy/s. When the vessels are further apart, the

percentage volume showing FEDMF≥1.20 also reduces. For 15

Gy, it reduces to 72.1% and 23.5% when the center vessel is 123.7

and 176.8 mm, respectively, from the edge vessels.
Discussion

In this study, we modeled the radiation oxygen depletion

process with the proton FLASH dose delivery parameters in 1D,

2D, and 3D space. The tissue vasculature spacing parameter, which

can be quantified for normal and tumor tissues (74, 76), was

introduced as the PDE solution space. We demonstrated that

prior to irradiation, larger vasculature spacing causes more

hypoxic regions in tissues even under healthy vasculature oxygen

supply BCs. This is consistent with the experiments summarized by

Hendry (25) that demonstrated the possible existence of hypoxic

normal tissues in the skin, lung, and gut. If the normal tissue is

considered in a uniform physioxia stage, as Pratx and Kapp (24)

pointed out, the <1 mM/Gy radiation oxygen depletion rate will not

demonstrate FLASH sparing effects for >50.4 mM oxygen
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concentration. They pointed out that hypoxic stem cell niche

exists in normal tissues, which experience the FLASH

radioprotection effect (77). We also showed that the pre-existing

hypoxic region is responsible for a smaller CNED under UHDR

comparing with that under CONV dose rate. When the initial

hypoxic level is at the steep gradient region of the HFR curve, under

high dose rate irradiation, the radiolysis and ROS reactions cause the

oxygen level to quickly go down further before the replenishment

from nearby blood vessels can occur. The infinitesimal

accumulation of the HFR-weighted dose shows a reduced

dosimetric effect. This effect does not occur when the pre-existing

hypoxic condition is severe, for example, under larger vasculature

spacing and poor BCs. Our simulation results confirmed the

previous studies with single-vessel as the oxygen source (24, 35)

that the distance from the vessels is essential in providing FLASH

sparing effects. We further demonstrated both in 1D and 3D

solutions that the oxygen supply BCs are crucial to the FLASH

effects. As shown in Figure 6, at large vasculature spacing, healthier

oxygen supply BC will show up more FLASH effects compared with

poorer oxygen BC. This result supports the observation in skin

FLASH experiments in animals and patients (6, 14) where skin has

typically larger vasculature spacing between two plexuses (71).

The vasculature information is not readily available for all

the normal and tumor tissues interested to the clinic or used in

in vivo UHDR experiments. Literature survey shows few tissues

were characterized for their vasculature structures (71, 74, 76, 78,

79). In addition, the blood oxygen supply is dependent on the

vessel endothelial structure, diameter, and distance from the

major vessel where the measurements and dynamic simulations

were performed in few selections of tissues (68–70, 80). It

involves the disassociation of the oxygen from the blood cells

and perfuses through the permeable vessel walls of epithelial

cells. The vessel oxygen supply also varies due to the

autoregulation of the blood flow caused by activities (81) and

could react to the reduction by the radiation. Typical stress-
B CA

FIGURE 9

Semi-transparent 3D plots of the oxygen distribution under 15 Gy at (A) 0.5 Gy/s and (B) 125 Gy/s. The distance from the center vessel to the
edge vessels is 88.4 mm. (C) The resulting FEDMF in the cross-section plane at half of the cuboid height.
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induced functional recruitment (82) can elevate the blood

oxygen content by 6%–20% with a time constant about 10 s

(83). In this model, it is possible to apply a transient vessel

oxygen BCs to simulate the functional recruitment, 0(~x, t)|∂Ω =

0v(1 + aerf(2t/T)) where a is the vessel oxygen elevation level

and T is the time constant. Using a=20% and T=10 s, the oxygen

level under UHDR irradiation does not change much compared

with the results using constant BC, due the ultra-fast delivery.

The oxygen level under CONV irradiation appears slightly

higher than the solution with constant BC, which results in

larger differential effective dose between the UHDR and CONV

deliveries, therefore increased FEDMF. In an example of 175 mm
inter-vessel space and 18.9 mM BC, transient BC results in 68.5%

of inter-vessel space with FEDMF ≥ 1.20, 7% more than the

situation when constant BC is considered. Future experiments

on the vessel blood flow and transient oxygen supply under

irradiation condition would be of great interest to understand

the tissue oxygen levels. Furthermore, we realized that the local

vasculature of tumor and normal tissues is a complex 3D

structure. The 1D solution space is an oversimplified model

that has unrealistic assumptions on the geometry. It must use the

dose delivery parameters and oxygen depletion rate from 3D

simulations or measurements to have meaningful results by

using a space of same dimension. We have demonstrated that

with finite element method, the solution space can be extended

to 2D and 3D regions with multiple vessels across the region and

provide oxygen concurrently. It is possible to obtain the oxygen

depletion solution within a realistic tissue/vasculature 3D space

with finite element method. Cui and Pratx (84) provided an

example of mesh in 3D vasculature space in a mouse brain and

worked on oxygen level recovery after the irradiation. To extend

our current work into 3D vasculature space, it is imperative to

perform the simulation on a representative collection of the

animal tumor and normal tissue vasculature models to derive

statistically meaningful results for FLASH sparing effects.

In this paper, we have used constant K1 for both

conventional and FLASH oxygen depletion rates. As several

recent publications (33, 85, 86) pointed out, at very high track

density per unit time under ultra-high dose rate, radical chain

reactions occur inter-track, which can potentially reduce the

oxygen consumption. In vitro measurements of oxygen

depletion using phosphorescence quenching method (64, 87)

supports reduced oxygen depletion rate under ultra-high dose

rate compared to that under the conventional dose rate. Further

study is needed to understand the in vivo oxygen depletion rate

under different modalities in both normal and tumor tissues and

make necessary adjustment to this model.

In this study, we showed that the local FEDMF varies

throughout the inter-vessel spacing. The percentage of the inter-

vessel spacing with calculated FEDMF≥1.20 was used to quantify

the FLASH effect. As shown in Figure 4, these regions are at a

distance away from the vessels where the oxygen replenishment

by diffusion from vessel is not instantaneous, so that FLASH
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oxygen depletion causes a local oxygen level different from that in

the CONV delivery. Currently, it is not clear how much the

percentage has to be in order for the FLASH sparing

radiobiological outcome to be observed in different tissues. To

establish the relationship, the animal tissue vasculature

characteristics in terms of vessel spacing and vessel oxygen

supplies should be experimentally characterized. Then, a series

of UHDR and CONV studies with various levels of delivery

parameters and defined biological endpoints should be carried

out to correlate with the simulation results. Nonetheless, we have

shown that under current clinical standard fractionation of 2 Gy/

fraction delivery, no region shows FEDMF≥1.20. Therefore, it is

very likely that 2 Gy FLASH deliveries will not exhibit any FLASH

sparing effect. Even at 8 Gy delivery, it is questionable that the

FLASH sparing effect can be observed experimentally. In our

simulation, higher dose rates and delivered dose increase the

percentage of the region showing significant FEDMF, which could

indicate that the FLASH radiobiological effect is more readily

observable under higher dose rates.

In this paper, we simulated oxygen depletion as a generalized

concept beyond the individual cell level. The reduced

radiosensitivity under hypoxia used in AHF or particle HRF

models were adopted from experimental in vitro cell

experimental data. One caveat in using the particle HRF model

is that these data did not include the dose rate information, which

should be considered in the future for particle FLASHHRFmodel.

In addition, the oxygen level was generally measured

extracellularly. On the other hand, microenvironment oxygen

depletion simulations have been performed using the

mechanism of oxygen scavenging electrons and hydrogen atoms

in pure water as the model for ROD (61, 88, 89). It is worth

pointing out that other oxygen scavengers in tissues such as

peroxyl radicals and the reaction chain can, in turn, re-supply

the oxygen (33, 86, 90). As the oxygen level is different at

extracellular and at nucleus level, establishing the relationship of

cell level oxygen solubility and the magnitude of radiation oxygen

depletion under different dose rates can help with the

understanding of the radiation oxygen-depletion mechanism.

For higher LET beams, FLASH effect due to oxygen depletion

mechanism will decrease. This is due to more direct damage to

DNA than indirect damage involving free radicals. For carbon ion

beam of 60 MeV/u from plateau to Bragg peak region, the LET

values vary from 50 to >400 keV/mm (91). Using our 1D model, at

the plateau region, 15 Gy with LET as high as 50 keV/mm changes

the region showing FEDMF≥1.20 to 59.5% (with BC of 18.9 mM,

175 mm vessel spacing), a 2% reduction from the proton

irradiation. This value drops drastically to 22% at LET of 100

keV/mm, to 0% at LET of 200 and 400 keV/mm towards the Bragg

peak. Therefore, minimal FLASH sparing effect is expected at the

carbon ion Bragg peak region. In addition, it is considered that an

oxygenated microenvironment exists from multiple ionization of

water for high LET particles (41), which can reduce the local

effective oxygen depletion rate and achieve more efficient cell
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killing. The simulation by Zakaria et al. (92) pointed out that

UHDR carbon ion beams can realize the FLASH sparing of normal

tissues at the plateau region and efficient tumor control at the

Bragg peak region.

Although the oxygen depletion under high dose-rate radiation

is one of the hypotheses for the FLASH sparing effect, other

mechanisms were proposed. Indeed, when a certain region of the

tumor has optimal vasculature spacing and oxygen supply, it can

potentially receive the FLASH sparing effect, based on the oxygen

depletion model in this work. However, anti-tumor efficacy has

been observed to be the same regardless of the dose rate. As many

pointed out, FLASH oxygen depletionmechanism can only be one

of the FLASH mechanisms that synergistically realize the FLASH

sparing effect in normal tissue and equipotent control of tumor

growth. Immune response activation can also be responsible for

the FLASH effects (13, 93). The modified response from UHDR

beams is evidenced by the amount of the induction of the

transforming growth factor beta (TGFb) signaling cascade (3,

18, 19). Differential vessel response between UHDR and CONV

deliveries also occurs (19, 94). The investigation of the FLASH

radio-biological mechanism(s) is still an ongoing task for the

radio-biology community.
Conclusion

We demonstrated in this study an integrated simulation

approach of the UHDR oxygen depletion effect for small animal

proton irradiation experiments. The local tissue vasculature

spacing and oxygen supply are important in setting different

tissue oxygen levels prior to irradiation. With the local

vasculature information, we investigated the FEDMF as an

indicator of the FLASH effect under various proton dose and

dose rate levels. The amount of the inter-vessel space showing

significant ≥20% FEDMF was derived. Larger dose and higher

dose rate can result in a more pronounced FLASH effect. The

FLASH effect was not found to be sensitive to the proton LETD

in the context of this modeling framework. The vasculature

spacing and blood oxygen supply are quantifiable and have been

performed in a few types of tissues. With more tissue-specific

vasculature information, future work will include the correlation

of the simulation results with FLASH biological experimental

results, which will eventually help the translation of the UHDR

delivery technique to the clinic.
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