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Introduction

Tissues become hypoxic when their oxygen consumption exceeds their supply. In

tumors, neoangiogenesis results in disordered vascular morphology and this leads to

inadequate oxygen supply to rapidly growing cells (1). However, because vessels have

variations in their vascular tone, hypoxic status is a dynamic rather than a static event; it

may be transient and is often cyclical (2). Cyclical hypoxia with a median periodicity of

15 mins has been described in xenografts and head and neck cancers in patients (3).

Hypoxia is important because it is well accepted as a poor prognostic factor in for patients

with a range of cancer types (4–7) where it has been associated with disease that is

progressive, resistant and metastatic (8).

Under hypoxic conditions, oxygen-sensitive transcription factors (hypoxia inducible

factors [HIFs]) are upregulated. In the endometrium, HIF1a expression increases as the

tissue undergoes changes from normality to being premalignant and then to become

adenocarcinoma. This is paralleled by increased angiogenesis in the endometrium,

suggesting that HIF1a and thus tissue hypoxia might be a key regulator in

endometrial carcinogenesis (9). A poorer prognosis in patients with EC expressing

HIF-1a has been demonstrated in a metaanalysis with a hazard ratio of 2.29 (10), and its

link to tumor aggressiveness at other cancer sites is documented (11). Hypoxic status also

has been associated with mutations of multiple genes in endometrial cancer (EC) (12). In

other cancer types, driver mutations in p53, MYC and PTEN are enriched in hypoxic

tumors (13) with an effect of hypoxia on mutational load (14). Therefore, as hypoxia is
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likely to determine the evolutionary trajectories and as a result

the management and outcomes of cancer, imaging tumor

hypoxic status in EC may offer prognostic value and facilitate

personalisation of treatment strategies (15).
Endometrial cancer: Diagnosis,
staging and the changing
molecular landscape

EC, (9,300 new cases per annum in the UK (16), 65,620 new

cases in 2020 in USA (17) usually presents with post-

menopausal bleeding and is detected at an early stage.

Diagnostic confirmation on pipelle sampling of the

endometrium or at hysteroscopy is followed by pelvic

magnetic resonance imaging (MRI) for disease staging (18).

Endometrioid and mucinous carcinomas are classified as type I

and serous and clear cell carcinomas as type II. The former are

usually low grade and low stage at presentation and the latter

high grade and advanced stage. Disease outcome depends on

tumor grade, stage, subtype, depth of myometrial invasion,

lymphovascular space invasion and lymph node involvement

(19). In fact, in type I endometrial adenocarcinoma, high

expression of HIF-1 a showed a significant correlation with

higher grade of the tumor, depth of myometrial invasion,

adnexal invasion and clinical stage (20), which strengthens the

argument for hypoxia driving tumor progression by favouring

selection of adverse genetic clones.

Molecular classification is now used to define risk groups in

EC, namely deoxyribose nucleic acid (DNA) polymerase ɛ
ultramutated (POLEmut), mismatch repair-deficient (MMRd),

p53 mutant (p53abn) and those EC lacking any of these

alterations, referred to as NSMP (non-specific molecular

profile) (21). Prognosis is extremely good in POLE and poor

in p53 mutant cancers (22) with poor clinical outcomes in the

latter group being independent of histology grade or stage (23–

25); the other two categories fall between these two extremes.

TP53 mutations are highly prevalent in the serous (Type II)

subtype (88% of 42 serous ECs (26), and are also present in a

subset of endometroid (Type I) carcinomas (15% of 186

endometroid ECs (26). Recent data show that a subset of

p53mut EC is homologous recombination‐deficient (HRD),

and some of these EC can arise in the context of germline

breast cancer (BRCA)1/2 mutations (27–29). The exact

prevalence of HRD in p53mut EC is currently unknown; in a

small and selected set of cases it was 46% (28).

The biological and genetic mechanisms that causally link

hypoxia with progression of disease are being unravelled.

Hypoxia and associated acidosis activate the TP53 dependent

stress response and apoptosis (30). This then provides selective

evolutionary pressure for the emergence of mutants in the TP53

response (13). Such genetic variants then preferentially expand
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as a population. Their fitness benefit is however more than

simple survival. They are intrinsically more resistant to many of

the therapeutic modalities that operate via the TP53 apoptosis

pathway. Their failure to undergo TP53 driven cell cycle arrest

and DNA repair also leads to genetic instability (31).

Additionally, as hypoxia mimics the mesenchymal stem cell

niche (32), surviving TP53 mutants undergo Epithelial-

Mesenchymal transition (EMT) to migratory, stem cell

phenotypes. Hence the hypoxic microenvironment encourages

the selection of cancer cell populations that have an expanded

pool of stem cells (the critical units of selection in cancer

progression) that are likely to be genetically unstable. These

biological features fuel both disease progression and the

likelihood of treatment resistance (33).
Methodology and challenges
of imaging hypoxia

The prognostic relevance of hypoxia in EC has been

determined largely by using the expression of HIF-1a (12) and

the presence of tumor necrosis (34). Although the correlation of

HIF-1a with imaging estimates of hypoxia is variable (35), an

association has been demonstrated in EC (15). On imaging,

hypoxia may be measured indirectly or directly. Traditionally,

tumor vasculature has been imaged using ultrasound and

computerized tomography (CT). Doppler ultrasound, based on

the frequency shift of moving echo-generating components in

flowing blood, has been used to classify endometrial pathologies

(36). With contrast-enhanced CT, extracted metrics relate to

blood flow, blood volume and vascular permeability (37).

Although increased vascularity in tumors is highly

disorganised and leaky, often indicating an increased hypoxic

status (38), it is not a direct measurement.

Positron Emission Tomography (PET) uses hypoxia-specific

tracers such as 18F-labelled nitroimidazoles and copper (Cu)-

labelled diacetyl-bis(N4-methylthiosemicarbazone) analogues

(39). Under hypoxic conditions, free nitro radicals are retained

within the cell. Though commonly used 18F-fluoroimidazole

(18F-FMISO) (40) has relatively low uptake, slow kinetics and is

influenced by non-hypoxic metabolism. 18F-FAZA [1-(5-fluoro-

5-deoxy-a-D-arabinofuranosyl)-2-nitroimidazole)] offers better

resolution and signal-to-noise ratio (41). Cu complex agents

with diacetyl-bis(N4-methylthiosemicarbazone) (ATSM) ligand

under hypoxic conditions cannot be reversibly oxidised by the

cell also making Cu-ATSM a possible means for evaluating

hypoxia in the clinic (42–44). However, its specificity is

debatable and validation with pimonidazole stained tissues has

been variable and tumor type specific (45, 46)

A shift to non-invasive hypoxia imaging with MRI is

advantageous (47). In blood oxygen level dependent (BOLD)

MRI, also known as intrinsic susceptibility-weighted MRI,
frontiersin.org

https://doi.org/10.3389/fonc.2022.1020907
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


deSouza et al. 10.3389/fonc.2022.1020907
paramagnetic deoxyhaemoglobin within red blood cells (in

contrast to non-paramagnetic oxyhaemoglobin) increases the

MR transverse relaxation rate (R2*, the inverse of the transverse

relaxation time T2*), of water in blood and surrounding tissues.

Variations in perfusion mean that the relationship between R2*

and tissue pO2 is non-linear and perfusion dependent.

Nevertheless, BOLD-MRI is sensitive to changes in pO2 within

vessels and in tissues adjacent to perfused vessels (48, 49). R2*

has been shown to correlate positively with tissue hypoxia score

(HP5) and oxygen pressure (50) and with HIF-2a expression in

colorectal cancer with different tumor stages (51, 52).

Advantages of the BOLD-MRI technique for measurement of

hypoxia are lack of need for externally administered contrast

media, easy repeatability, near real-time visualisation of time-

dependent changes and a measure independent of blood flow.

Nevertheless, the variability of the measurement (53), means

that measuring a change in R2* following an oxygen challenge

may be preferable particularly as they have been shown to

correlate strongly with pimonidazole staining in tumor

models (54).

Oxygen in solution and deoxy Hb also affect the longitudinal

relaxation rate of tissues (55) and are exploited in the technique

of oxygen-enhanced (OE)- MRI, also known as tumor oxygen

level dependent contrast (TOLD). Their effect on the rate of

longitudinal proton relaxation (R1) can be enhanced by the

inhalation of 100% O2 which results in an increase in the

relaxation rate in normoxic tissues, primarily due to an

increase in dissolved oxygen (56). A measurable signal change

of up to 20% is achievable in normoxic tissues with 100% O2

inhalation on clinical scanners (57) that can distinguish them

from hypoxic tissue (58). OE-MRI has been validated in pre-

clinical studies (59, 60) and had initial clinical translation (61,

62) with promising results. MRI measures of hypoxia can be

implemented as an extension of the imaging staging

examination but require standardisation of image acquisition

and analysis methodology prior to clinical use.
Endometrial cancer– opportunities
for adjusting management strategies
to hypoxic status

Management of EC is primarily surgical as patients with

uterus-confined low-risk disease are often cured by surgery.

Prognostic factors that describe groups by their risk of

recurrence (histological type and grade, age, tumor size, and

lymphovascular space involvement (63) are used to determine

need for adjuvant therapies. Several trials have compared

external beam radiotherapy (EBRT) after surgery versus

observation after surgery in intermediate and high-risk disease:
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the PORTEC 1 (64), ASTEC/EN5 (65) and Gynecologic

Oncology Group (GOG) (66) trials all showed a reduced risk

of vaginal and pelvic relapse though overall survival did not

differ. PORTEC 2 then showed that equivalent locoregional

control could be achieved with vaginal brachytherapy without

the toxicity of EBRT, so that adjuvant brachytherapy is the

standard-of-care in patients with intermediate-risk disease

following surgery (67). More recently, the PORTEC-3 trial,

concluded that molecular classification has strong prognostic

value in high-risk EC, with significantly improved recurrence-

free survival with adjuvant chemoradiotherapy compared to

radiotherapy alone for p53abnormal tumors, regardless of

histologic type (68).

Hypoxia imaging and its link to TP53 status offers potential

to refine management strategies by selecting patients through

prognostic stratification. Pre-operative hypoxia imaging could

identify the women who would most benefit from adjuvant

radiotherapy and select women who might benefit from EBRT

rather than adjuvant brachytherapy alone. Also, in hypoxic

tumors post-surgery, where there is residual disease, it may be

possible to dose-escalate with either brachytherapy, external

beam radiotherapy or the use of a radiosensitiser, or omit or

dose de-escalation when tumor hypoxia is not demonstrated. In

locally advanced endometrial cancer (stage III) treated primarily

with chemoradiotherapy, hypoxia imaging may also indicate

those who would benefit from hypoxia modification with a

radiosensitiser. Drugs like carbogen and nicotinamide can be

combined with radiation without increasing late toxicity but

may improve survival outcomes as in muscle-invasive bladder

cancer (69). The effect of hypoxia on the immune tumor

microenvironment is complex, but it is likely to promote

resistance to immune modulatory approaches (70).

Neoadjuvant chemotherapy (NAC) has primarily been

trialled in patients with Stage 4 or metastatic disease at

presentation with uterine papillary serous carcinomas (71) to

facilitate optimal surgical cytoreduction. More recently this has

been extended to endometrioid adenocarcinoma (72, 73) where

the use of NAC to enable cytoreductive surgery resulted in an

increased progression-free and overall survival (74). It may be

possible to refine the use of NAC further if tumor hypoxic status

along with tumor stage and volume were considered to select

patients likely to respond. Finally, the association of hypoxia

with genetic instability and DNA damage repair efficacy

(supported by the prevalence of HRD in p53 mutated EC

(28)), indicates that hypoxia imaging could be an important

predictive selector for women who benefit from agents such as

poly adenosine diphosphate ribose polymerase (PARP)

inhibitors although their use in EC remains to be established.

As with EC in the primary setting, locally recurrent EC that

shows a high degree of hypoxia may benefit from dose-escalation
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or use of a radiosensitiser. Development of prognostic

models based on hypoxic status and molecular profiling (75)

may change approaches to maintenance therapies and

surveillance. Poor prognostic tumors at risk of progressive

disease thus identified may benefit from a more aggressive

surveillance strategy adapted to their risk. It may also enable

implementation of future maintenance therapy approaches in

suitable patient cohorts.
Discussion and concluding remarks

The technical validation and demonstration of target

monitoring with hypoxia imaging remains a major challenge.

Continuous measurements indicate variable O2 saturation, there

is heterogeneity within each tumor and between tumor sites in the

same patient (76) and thresholds for differentiating normoxic from
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hypoxic tissues in imaging studies are lacking. The impact of

hypoxia on chemoresistance has been long established (77), but

the range of hypoxia particularly across the different molecular

subtypes needs to be understood. Recording hypoxia within tumors

requires obsessive attention to imaging technique, adherence to

imaging protocols such as those mandated by the Quantitative

Imaging Biomarkers Alliance, and as with all biomarker studies, an

establishment and understanding of the reproducibility of the

measurement (78, 79). Despite these restrictions, when

implemented according to protocol, hypoxia imaging with MRI

can be a simple add-on to the staging examination of endometrial

cancer. The additional imaging time of 10 mins for a BOLD

evaluation and 10 mins for a TOLD evaluation is clinically

achievable and can even be implemented in conjunction to

increase the robustness of hypoxia evaluation. Methods such as

MR fingerprinting may in future also allow simultaneous

acquisition of both the T2* and T1 information (80) before,
FIGURE 1

Diagnostic and management pathway for patients with endometrial cancer. Current diagnostic tests are shown in light blue and proposed
hypoxia imaging in dark blue; current management options are shown in light green and alternative strategies based on hypoxia imaging and
molecular stratification in dark green.
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during and after the oxygen challenge, markedly reducing image

acquisition time. The derived information is a useful adjunct to that

already available and has the potential to substantially alter and

enhance the management options offered to patients (Figure 1).
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